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Abstract: Magnetic resonance imaging (MRI) is a very effective method for identifying any abnormality in the structure and
physiology of the spine. However, MRl is time consuming as well as costly. In this work, the authors propose an algorithm which
can reduce the time of MRI and thus the cost, with minimal compromise on accuracy. They reconstruct a three-dimensional (3D)
image of the spine from a sequence of 2D MRI slices along any one axis with reasonable slice gap. In order to preserve the
image at the edges properly, they regenerate the 3D image by using a combination of bicubic and bilinear interpolation along the
orthogonal axis. From the reconstructed 3D, they use a simple geometric method to slice out any possible location along any
axis and get the information in that region. They have tested their algorithm on real data, and found that their algorithm reduces

the time by 80%, with high internal data preservation accuracy of about 96%.

1 Introduction

Medical imaging is the method of capturing the visual orientation
of the interior of a specimen, and also the visualisation of the
function of some of its organs or tissues [1]. This technique can be
used for various purposes such as to diagnose patients, to analyse
fossils and so on.

The commonly used methods incorporate radiology, which uses
the imaging technologies of X-ray radiography, computer aided
tomography (CT), magnetic resonance imaging (MRI), medical
ultrasonography or ultrasound, endoscopy, elastography, tactile
imaging, thermography, medical photography. In addition, there are
also nuclear medicine based functional imaging techniques such as
positron emission tomography and single-photon emission
computed tomography.

MRI is a medical imaging technique primarily used in radiology
to form pictures of the anatomy and the physiological processes of
the body in both health and disease. It is widely used for diagnosis
of any brain and spine abnormality/disease [2] because it captures
the tissue structure of the body most effectively. The diversity and
complexity of lesion cells, particularly in functionally critical
organs, make it very challenging to visualise a lesion in MRI [3].

MRI images are typically captured in 2D. For accurate medical
diagnosis of three-dimensional (3D) lesions, 3D visualisation [4-7]
can facilitate surgeons to decide on the portion of the tumour/lesion
to be removed.

There are two types of 3D reconstruction techniques [6, 8],
namely, surface rendering and volume rendering. In case of surface
rendering [8], the surface of the 3D object is reconstructed and
preserved. In case of volume rendering [6, 8-10], the internal
structure of the 3D object is also reconstructed to visualise a
volumetric view. Thus, when this 3D data is sliced into 2D we also
get to view the internal structures of the 3D object also. With the
development of image processing technology, 3D visualisation has
become an important method for the medical diagnosis [11], as it
offers abundant and accurate information for medical experts.

2 Motivation

At present, there are several techniques for 3D MRI scan, but these
are mostly used for brain imaging. Since the area of concern for
spine is large, 3D image capturing of spine would be far more time
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consuming and noise prone due to any slightest movement of the
subject during the long period of imaging. During the MRI, a
patient is also subjected to deafening noise and it takes about 30—
45 min to perform a whole spine MRI [3]. Thus, for MRI of the
spine, three sets of 2D axial, sagittal and coronal slices, are
available to the medical experts as shown in Fig. 1.

There is a uniform gap ranging from 1 to 5 mm between two
consecutive slices of an MRI. Hence, our goal is to create efficient
accurate 3D reconstruction and visualisation of MRI of the spine
from a single sequence of 2D slices, and also providing an user
interface for the surgeons to cut that reconstructed 3D image as
needed with virtual scissors and to view any slice in any of the
other planes. Thus, the scan time will be reduced from 45 min [12]
to around 6 min (ideally the time taken to capture a single set of
slices along a specified axis). Since the time is proportional to cost,
the huge cost of MRI, especially in the developing countries, can
also be reduced and better health-care can be attained. This would
also facilitate exploratory diagnosis easily.

The human spine MR images have unique characteristics [13—
18]: it has broadly three fine layers: dura mater, arachnoid mater
and spinal cord which are very similar and hard to distinguish.
Spine is a long structure with different shape and features for each
vertebra, therefore posing a challenge to the traditional 3D
reconstruction algorithms. In [19], we can find 3D reconstruction
and slicing of brain. In this work, we focus on that problem for
spine MRI. Since the spine covers a larger area, and both hard and
soft tissues are of equal importance, the method for brain is not
directly applicable to the features of MRI spine.

In our work, we have

* reconstructed the human spine from the 2D MRI slices taking
into account only single sequence of the MRI slices with an inter
slice gap of 3—5 mm, either sagittal, axial or coronal, by applying a
combination of bilinear and bicubic interpolation to reconstruct the
missing slices (the gap) in between consecutive slices.

* sliced this reconstructed 3D as per user request to view the
internal structure accurately

To the best of our knowledge, this is a first of its kind technique
for 3D reconstruction of MRI of spine from a sequence of slices in
one plane and slicing this regenerated 3D as per user instructions
for viewing the internal structure.
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Sagittal slice

Axial slice

Fig. 1 Anatomical planes of a human body as captured during MRI

3 Preliminaries

In this section, we present the fundamentals of interpolation
techniques, which have been used in our proposed methodology.
Then, the metrics for image similarity metrics are briefly discussed
which have been used to validate and establish our results.

3.1 Interpolation

Interpolation is the process of generating missing data points
within a given data range. We have used a combination of three
interpolation techniques for generating the missing points between
consecutive slices. The techniques are discussed as follows.

3.1.1 Bilinear interpolation: Bilinear interpolation [20] is an
extension of linear interpolation. It is used for interpolating a
function of two variables (say, x and y) on a rectilinear 2D grid.
The principle objective is to perform linear interpolation first in
one variable, and then in the other one. Let us determine the
unknown intensity value of pixel g at the point (x, y) in the 2D grid.
It is assumed that the values at the the four neighbouring points of
(), namely P = (x5, 31, P = (X, 1), Py = (X2, 1) and
P» = (%2, y,) are known. The grey level assigned to g by bilinear
interpolation is given by (1), where the four coefficients ay, a,, a, a;
are obtained by solving (2)

g(x,y) = ay+ axx + )y + azxy (1)
L oxo oy xy|a g(pi)
I x y xayn||a g(p)

= 2
I % y xy||e g(p,)
L x » xple 8(p»)

We have used bilinear interpolation in our proposed algorithm
to reconstruct the slices in between the consecutive slices in the
given sequence, which are missing due to the gap between slices
while capturing the images.

3.1.2 Bicubic interpolation: Bicubic interpolation [20, 21] creates
smoother curves than bilinear interpolation, and introduces fewer
‘artefacts’, or pixels that stand out and conspicuously deteriorate
the apparent quality of the image. In case of MR images, there is a
significant amount of noise along the edges. In order to get
smoother edges, bicubic interpolation is a better choice over
bilinear interpolation. The bicubic interpolation method attempts to
fit a surface between four corner points using a third-order
polynomial function. In order to compute a bicubic interpolation,
the intensity values and the horizontal, vertical and diagonal
derivatives at the four corner points need to be specified. The
interpolated surface, S(x, y), described by third-order polynomial is
as follows:
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Sx.y = 2 Z aijxlyj (3)
i=0,=0

There are 16 coefficients specified by a;; that need to be
determined in order to compute the function for the interpolated
surface in the above equation. Four of the coefficients are
determined directly from the intensity values in the four corners;
eight of the coefficients are obtained from spatial derivatives in the
horizontal and vertical directions, and the remaining four
coefficients are determined from diagonal derivatives. In our
proposed algorithm, we have used bicubic interpolation along the
edges of an image for accurate reconstruction of missing portions
of edges in between slices. The four points in our case happen to be
two neighbouring pixels in a slice and the corresponding two in the
following slice in the sequence of 2D slices along an axis.

3.1.3 Marching cubes algorithm: The Marching cubes [22] is a
simple iterative algorithm for creating a mesh of triangles to
represent the surfaces for a given 3D object specified as a 3D array.
The algorithm works by ‘marching’ over the entire image of the 3D
object which has been equally sub-divided into cubes. Each cube is
called a voxel. The algorithm then determines whether the 3D
image intersects a cube, and assigns boolean values to the corners
of the cube accordingly. Intuitively, suppose the values at all the
corners of the cube (i.e. the voxel) are 1. Then the cube is said to
lie entirely inside the surface. Similarly, if all the corners of the
cube have value 0, then the cube is said to lie entirely outside the
surface. In both the cases, there would be no triangular surface
passing through the cube. The main aim of the algorithm is to
determine triangles (its intersection points, normals) in the cases
where some corners of a cube are 1 and the others are 0. As there
are 8 corners in a cube (voxel), there are 256 cube configurations
which are stored in a look-up table. Then the final mesh is obtained
through iterative linear interpolation. We have used Marching cube
algorithm [22] for surface rendering part of the 3D reconstruction
from the 2D slices of MRI.

3.2 Similarity metrics for images

The definitions of four most popular similarity metrics for images
that we have used for validating our results are presented next.

3.2.1 Root mean square error (RMSE): The RMSE [23, 24] is a
frequently used measure of the differences between values
predicted by an estimator and the values observed. It is the square
root of the average of the square of the errors. RMSE of an images
fi(x,y) with respect to an image f,(x,y) is defined as the square
root of the mean square error (MSE) [24]

1 M N i
MSE = an::l m; Lf,(n,m) — f,(n, m)] 4)

where M X N is the size of the image matrix. Thus, the RMSE=
VMSE.

If RMSE is close to 0, the probability of the two images being
identical is higher. We have used RMSE to compare our sliced
results with the ground truth images.

3.2.2 Mutual information: Mutual information [24, 25] is a
quantitative measurement of information about one random
variable (¥) with respect to another random variable (X). However,
information is a reduction in the uncertainty of a variable. So, the
higher is the mutual information between X and Y, the lower is the
uncertainty of X given Y or vice versa. Let G and R be the ground
truth and reconstructed images, respectively. The mutual
information M1sg between them is defined as

pGR(gs r)

Mlgr =Y. pc.r(g Mlog 2@ P

&r

®)
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where pg g is the jointly normalised histogram of G and R, pg and
pr are the normalised histograms of G and R, and g, r represent the
pixel value of image G and image R, respectively.

A large value of MI indicates accurate reconstruction. Mutual
information has been used for checking accuracy of the generated
missing data, compared to the available ground truth data. The
greater is the mutual information between a generated slice and the
original MRI slice, the better is the accuracy of our algorithm.

3.2.3 Structural similarity index method (SSIM): SSIM [26] is
used for measuring the similarity between two images. The
measurement or prediction of image quality is based on an initial
uncompressed or distortion-free image as reference. The SSIM
index between two images X and Y is obtained as

(2 pxpy + c)2oxy + )

SSIM(X,Y) =
(Ux + Hy + ) (0% + oy + ¢)

(©6)

where uy and uy are the mean of X and Y, respectively, oy and oy
are the standard deviation of X and Y, respectively, oxy is the
covariance of X and Y, and ¢, and ¢, are two constants which
stabilise the ratio with a weak denominator. If SS/M is nearly equal
to 1, then the two images can be considered to be identical. We
have used SSIM to compare our sliced results with the ground truth
images.

4 Related works

There are several works for 3D reconstruction from 2D images
using CT images [27, 28], but they fail to give good accurate
results for MR images. In CT images, most of the information
being for hard tissue, geometric features and edges are more
prominent than in the case of MRI images. Thus, these methods do
not accurately generate the information of the missing planes if the
gap between two consecutive slices is more than 1 mm.

The Marching cubes [22] algorithm is widely accepted for
reconstructing a 3D surface from a given 3D image. For
approximating contours, it uses patterned cubes or isosurfaces.
However, it requires certain techniques to reduce memory and time
for reconstructing a surface from large volumetric data. The usual
way to solve this problem [29] is by diminishing the size of a
volumetric image, but the quality of the surface of 3D
reconstructed image becomes substandard if only sub-sampling is
applied. Due to poor reconstruction by only volumetric sub-
sampling, another method is proposed which improves the quality
of a surface reconstructed from the sampled volumetric data. It is
based on a pipeline of Visualization Toolkit (VTK) [30, 31]. They
used an approach that consists of three major steps: preprocessing,
reconstructing and displaying. In [31], the preprocessing steps
focused on thresholding, sampling and Gaussian filtering. In
particular, the standard deviation parameters for Gaussian filtering
and the effect of the sub-sampling factors were studied. Further,
memory and time utilisation were considered in this research as
well. In [32], the authors have used tri-linear interpolation for
reconstruction of MRI of brain and it gave better results than
marching cube, but again fails in preserving the minute internal
details. In [33], the authors have used edge based interpolation for
correction of blurred and noisy edges in a 2D plane, but this work
is inadequate for generating a large number of missing points in a
3D image. For 3D reconstruction by this technique applied on our
real data, the accuracy after slicing is obtained to be 79.62%.

5 Proposed methodology
5.1 3D reconstruction

In this work, at first we have carried out de-noising of the slices
using Shearlet transform [34], a recent widely accepted technique
for de-noising of MRI images. We worked with the slices along the
coronal plane (x,z), assuming that the slices are already registered
with each other. The 3D image to be reconstructed is represented
by a 3D matrix D(,j,k), which has a typical size of
512 %512 % 512 since 2D slices are of 512 x 512 pixels. The

2748

Input: The sequence of 2D MRI slices (x-z plane/ x-y plane/ y-z
plane) of spine (SC), gap.
Output: 3D volumetric representation of spine
begin
Step 1: Denoise all the slices in SC' using shearlet transform
Step 2: D = Concatenate(SC); /*partially fill up 3D matrix
D with the available data, maintaining the slice gap*/
Step 3: G = Gradient(SC); /*a sequence of 2D matrices
computed for each pixel in each 2D slice*/
Step 4: Compute covariance(x;, z;); /*a sequence of 2D
matrices computed for each pixel in each 2D slice*/
Step 5: for each 2D slice in SC
begin
for each pixel
begin
Compare the edge strength of the
current pixel with the edge strength of
the pixel in the positive and negative
gradient directions.
if the edge strength of the current pixel
is the largest compared to the other
pixels in the mask with the same
direction and cov(z;, y;) ~ 0 for most
of the neighbors (upto 8 neighbors in
same slice to be considered)
then D =Bicubic_interpolation(D,SC(i))
else D =Bilinear_interpolation(D,SC(i))
end
end
Step 6: D = Marching_cube(D)
Step 7: D = Smooth(D). /*MATLAB standard function®/
Step 8: D = Colormap(D). /*MATLAB standard function*/
Step 9: Rotate_para(D). *MATLAB standard function®/
Step 10: Display(D).
end

Fig. 2 Algorithm 1: proposed algorithm: 3D reconstruction

length of an adult spine is around 450 mm. Initially, it is partially
filled with the available data for 2D slices taken at a gap of 5 mm
or 3 mm. For example, if the source data is for 5 mm gap, then the
matrix D is filled for values j=1,6,11,...446. We calculate the
gradient and covariance of each pixel in each slice. The edge
strength of each pixel is calculated based on the approximate
absolute gradient magnitude |G|=|G,| + |G,| in the coronal plane and
is stored in a separate matrix corresponding to the original matrix.
Next, we compare the edge strength of the current pixel with that
of each of the pixels in the positive and negative gradient
directions. If the edge strength of the current pixel is the largest
compared to the other pixels in the mask of 8 X 8 neighbours of the
pixel with the same direction, and covariance(x;, z;) ~ 0 for most of
the neighbours, then we apply bicubic interpolation along y-axis in
the original matrix to generate the missing pixels, else we apply
bilinear interpolation to generate the missing pixels.

We have combined bicubic with bilinear interpolation in our
proposed Algorithm 1 (see Fig. 2), in order to preserve the edges
having minimum noise with the help of bicubic interpolation and to
reconstruct the other components using the faster bilinear
interpolation. This also reduces the time complexity compared to
that of using bicubic interpolation for the full reconstruction, yet
preserves the internal structures as required.

The above procedure is repeated until we reach the topmost
layer of the 3D matrix in the x—z plane, taking two consecutive
slices at a time. Then, we break the 3D matrix in voxels and further
apply the Marching cubes algorithm for more accurate 3D
reconstruction. For visualisation, we smooth the image by
Savitzky-Golay filters [35] and local regression, then apply
colormap, and activate the rotation operation (Rotate_para) so that
the user can rotate the 3D image and view all sides of it as needed.
Finally, we display the 3D reconstructed image on screen. A brief
description of the method is illustrated in Fig. 3.

3D reconstruction can also be performed on the sequence of 2D
slices along the sagittal (y—z) plane, or axial (x—) plane with the
corresponding value of gap, using the same algorithm.
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INPUT:

SC (the sequence of
slices along any one axis),
and gap between
two consecutive slices

v

Denoise each slice
using Shearlet transform

v

For each slice compute
the gradient and covariance
of eachpixel

v

Fill 3D matrix D[i,j,k]
with values in SC
for j=1,gap+1,2*gap+1,.....
and 0's for other j

‘For each pixel ‘" in D[i,j k] ‘

Apply bi-cubic Apply bi-linear
interpolation to interpolation to
fill entries in D fill entries in D

for j+1,....j+gap-1,... for j+1,.....j+gap-1,.....

| [
Y

Marching cube algorithm
is aplied on the 3D data

¥

Smooth the 3D data

Calculate iso-surface,

iso-cap, aspect ratio
for vizualization

v

Apply colormap
and enable
rotation operation

OUTPUT:
Display 3D image

Fig. 3 Overview of proposed 3D reconstruction methodology

5.1.1 Computational complexity of proposed algorithm: The
time complexity of bicubic interpolation and bilinear interpolation
are both O(n’), where n is the total number of pixels in the 2D
matrix along a single plane where the missing pixels are being
calculated. An additional computation time for bicubic
interpolation is to compute the gradient and cross-derivative at
each re-sampled pixel position as it considers 16 nearest pixels as
compared to 4 pixels in case of bilinear. The time complexity for
interpolation is O(n’) where n is the number of known pixel
intensity values and we interpolate along one axis, the

IET Image Process., 2020, Vol. 14 Iss. 12, pp. 2746-2755
© The Institution of Engineering and Technology 2020

Input: D, the 3D matrix for the reconstructed volume data, gap
Output: Sequence of Sagittal, Coronal and Axial slices

begin

Step 1: [m, n, p]=Getdimension(D); j= 1;

Step 2: while 7 < m do /*Slice along sagittal axis*/

begin

Step 3: M1 = D(y,:,:) /* Matrix Estimation*/.

Step 4: M 1=squeeze(M 1)/* convert 3D matrix to a 2D one*/
Step 5: M1 = Smooth(M1)

Step 6: Display(M 1)

Step 7: j=j+gap;

end

Step 8: Steps 2-8 must be repeated for each of the other two
indices of D to get the required slices in the other two planes
end

Fig. 4 Algorithm 2: proposed algorithm: slicing a 3D image

computational complexity of local gradient and covariance is O(m),
where m is the total number of pixels in the 2D slice. Hence, time
complexity of the proposed algorithm is O(r’) if (n x n X n) is the
size of the 3D matrix.

5.2 2D slicing from 3D

The process of breaking the 3D image into several components
along any axis is called slicing of the 3D image. In case of MR
imaging, the images along the three axes are taken separately and
hence it is expensive and time consuming. In order to reduce the
total time and cost of imaging, we have designed an algorithm,
Algorithm 2 (see Fig. 4) to generate the slices along all possible
planes after re-constructing the 3D image from a sequence of 2D
slices along one axis.

After the 3D image is created using Algorithm 1 (Fig. 2), we
can slice out the image, along x, y or z axis given the specified gap
by the user using Algorithm 2 (Fig. 4). We can also specify the
location, with specific values for x, y and z and extract out the
information based on that and display it as an image with a
specified aspect ratio. The brief methodology is illustrated in Fig.

First, the size of the 3D matrix D in terms of m, n and p is
extracted and the gap between slices is stored in gap variable.
Initialising j = 1, while j is less than or equal to m, the value of
D(j, :, ;) (matrix estimation) is extracted and j is increased by gap.
The squeeze function is used to change the dimension of the
extracted slice from 3D to 2D. Then smooth function is used on the
extracted image for eliminating excess data, and the aspect ratio to
view the image on screen is set. The image is rotated so that the
display is always in x—y plane and then we either display it or store
it in a specified location as instructed by the user. The same steps
are repeated for the slices along y and z axis by replacing m with n
and p, respectively.

The time complexity of the slicing algorithm is O(n”) where
n X n is the size of each 2D slice.

6 Results and analysis

We used a workstation with Intel(R) Core(TM) 13-3340S processor
@ 2.80GHz, 4 G.B RAM and 64 bit operating system to
implement our code using MATLAB 2018. We ran it on 25 real life
T2-MRI datasets (512*512 pixels) of spine, collected from Bangur
Institute of Neurosciences, S.S.K.M, Kolkata. We have focused on
T2 weighted MRI as any deformity or disease is most highlighted
in this format [3]. The execution time for 3D reconstruction part of
our proposed algorithm is approximately 3 min and that for slicing
is 0.036 s (if all slices are to be generated with 1 mm inter-slice gap
and size of each image is on an average 280 kB).

We have effectively carried out 3D reconstruction of the slices
in the coronal plane and sliced out all other planes from it. Time
taken to capture all possible slices along all plane using a
commonly used MRI machine is about 20 min approximately in
one format (T1 weighted or T2 weighted or diffusion weighted
etc.). The time taken to capture a single sequence of slice in one
format is approximately 6 min. The most widely used techniques
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Input: 3D image,
slice gap, required plane
along which slices
are to be generated
or the co-ordinates of
particular slices to be
generated

v

Get size [m,n,p]
of the 3D image

¥

Extract the required
information using simple
matrix etimation

v
Squeeze the image,
smooth it, rezise it,

rotate it

¥

Display or store
the 2D slices

Fig. 5 Overview of proposed 3D slicing methodology

used in the subcontinent takes about 2 min time for reconstruction
using all three planes [6] but in this case the patient is kept under
MRI scanner for over 45 min approximately. Our algorithm takes
approximately 3 min to reconstruct the 3D from slice sequence of a
single plane and generate all possible slices from the reconstructed
3D. Hence, time reduced per format of data to be captured is
approximately 9 min, thus, reducing the time of capturing the data
by 80%.

We have used 12 sets of cervical spine data, among which 7
data sets were captured with an interslice gap of 3 mm and 4 data
sets were captured with an interslice gap of Smm, 10 sets of
lumbar spine data, among which 3 data sets were at an interslice
gap of 3 mm, 2 data sets at an interslice gap of 1 mm and 5 data
sets at an intersilce gap of 5 mm, and 3 sets of full spine data, all of
which were taken with an interslice gap of 5 mm.

In the proposed work, we have used bicubic interpolation along
the edges and bilinear otherwise in order to preserve the edges
properly without increasing the time of computation excessively.
Using only bi-cubic interpolation increases the time as well as
smoothens the magnetic resonance image of fine tissues along the
edges resulting in errors. The output of our 3D reconstruction on
Cervical spine data set 1 is shown in Fig. 6. Next, this
reconstructed 3D is sliced as shown in Fig. 7 and the resulting
slices are compared with the original data using MI, RMSE and
SSIM as shown in Table 1.

Let k € {Cervicalspine, LumbarSpine, Fullspine}, the set of
three different types of data,
g € {1 mm,2mm,3 mm,4mm,5mm}, the set of five different
possible gaps between slices. Let p, be the total number of dataset
of each type k, and g, be the total number of slices of a single
dataset £ with a specific gap g.

The values reported in Table 1 for a dataset type £ and inter-
slice gap of g are calculated as follows:

(see (7))

(sce (8))

(see (9))

In Fig. 8, we have shown the output of 3D reconstruction and
slicing on data set 14 of full spine. The average time taken for 3D
reconstruction is 3 min approximately based on the size of the input
data set and the time taken for slicing is approximately 2 s.

In Table 2, the average accuracy percentage with respect to each
slice axis is calculated as
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Fig. 6 3D reconstruction of cervical spine (Data set 1) from coronal MRI
slices
(a) Input - Coronal Slices at 5 mm gap, () Reconstructed 3D image

Awis% = Avg(AML %, ARYSEG, AT %) (10)

where

(see (11))

(see (12))

(see (13))

where G is the set of ground truth images and Recon is the set
of sliced images after reconstruction. The mutual information
MI(G, Recon) is between the original ground truth image and the
sliced reconstructed image, and MI1(G, G) is the mutual information
if the original image and the sliced image are equal. For the subsets
of MRI data sets of each of the three regions of spine along each of
the three axes perpendicular to the plane of slicing after
reconstruction with five different values of inter-slice gap, Table 1
reports the values of mutual information, entropy difference,
RMSE and structural similarity index measure, averaged over all
data sets for a particular region over all three axes and all five
inter-slice gaps obtained by our proposed method in comparison to
the original data. Table 2 shows the average accuracy of the slices
after applying our method along all 3 sequence of slices. Since the
original data was at a slice gap of either 5mm, 3 mm or 1 mm
slices, hence these slices could be exactly matched with the
original dataset, whereas in case of 2 and 4mm gap we can
compare only the matching slices in the original dataset
considering Imm=4pixels. The average accuracy of the slices
generated after reconstruction compared to the original slices is
96%.

Our proposed technique has been separately compared with
bilinear interpolation as well as bicubic interpolation. The
comparison results show that our algorithm gives good accuracy
with respect to M1, RMSE and SSIM as shown in Fig. 9.

The technique in [6] for 3D reconstruction of MRI images
considering slices in 3-planes needed around 15 min for one format
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Fig. 7 Slices from 3D reconstructed image of cervical spine (Data set 1) as shown in Fig. 6b
(a) Sliced Sagittal with 3 mm gap, (b) Sliced Coronal with 2 mm gap, (¢) Sliced Axial with 3 mm gap

Table 1 Average mutual information, root mean square and structural similarity index of slices along all three axes for cervical,

lumbar and full spine

Region Inter-slice Avg Avg Avg
gap Mi RMSE SSIM
1mm 5.72 0.04 0.97
cervical 2mm 57 0.045 0.962
spine 3mm 5.7 0.049 0.96
4 mm 5.7 0.045 0.96
5mm 5.72 0.04 0.97
1mm 6.12 0.035 0.98
lumbar 2mm 6.09 0.04 0.978
spine 3 mm 6.1 0.04 0.977
4 mm 6.09 0.04 0.978
5mm 6.12 0.032 0.98
1mm 5.44 0.045 0.959
full 2mm 5.43 0.05 0.952
spine 3mm 5.4 0.05 0.952
4 mm 54 0.049 0.955
5mm 5.442 0.045 0.96

> 3% | (MI(G;,Recon)))

1 ji=1
=|— 7
Avg_MI(g) ( Di ( (total_number_of_slices_with_k_type_datasets_and_gap_g) )) M
Pk dg
o $_ (RMSE(G;,Recon;
Avg RMSEy(g) = |- Z’”Z-’—‘(. G ) ®)
P\ (total_number_of _slices_with_k_type_datasets_and_gap_g)
Pk dg
.l S (SSIM(G;,Recon;
Avg_SSIM(g) = |~ (=1 X< | (SSIM(G, Recon,) ©)
Pr| (total_number_of _slices_with_k_type_datasets_and_gap_g)
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|

Fig. 8 3D reconstruction and slicing of MRI spine (full spine: data set 14)

a
|

(a) Input: sagittal slices with 5 mm gap, (b) Reconstructed 3D, (c) Sliced sagittal at 1 mm gap from the reconstructed 3D

5 m
Mig _ |1 Deap =12 = 1MI(G)),Gj) — (MI(G;,Recon)))
Awxis % = (5 (total_number_of _slices(axis)_over_all_gaps) * 100 an
5 m
RMSEq, _ || 1 Daap =12 = 1 RMSE(G;,Recon))
Auis % = (5 (total_number_of_slices(axis)_over_all_gaps) * 100 (12)
5 m
ssigy _ |y (1 Deap=12,=1(1 = SSIM(G;, Recon)))
Awis % =1 (5 (total_number_of _slices(axis)_over_all_gaps) *100 (13)

(say, T1 weighted [3, 4, 26]) as the total execution time from
acquiring the 2D slices, reconstructing the 3D using them and
again slicing from the reconstructed 3D as per user's input along
any plane through any given inter slice gap. The results after
slicing on our datasets using 3-plane method [6] shows
approximately an average RMSE 0.04, average mutual information
5.7 and average structural similarity index measure 0.975 which
are very close to our experimental results as shown in Table 1 but
the execution time for our proposed method is approximately 3 min
only (for one format say, T2 weighted). Our proposed algorithm
works on any of the commonly used formats of MRI data.

We have also compared our work with the average performance
of 3-plane methods [6] and a robust edge directed interpolation
technique for reconstruction [27] based on accuracy and time as

2752

shown in Fig. 10. Our proposed algorithm gives better accurate
result in much less time.

6.1 User interface

We have designed an user interface as shown in Fig. 11, with
which an user can generate a 3D view from a set of 2D MRI slices
along a single plane and slice out this 3D as per specifications to
see the slices along any plane in different orientations.

7 Conclusion

We have carried out our experiments with real life data from the
subcontinent. We have compared our results with the ground truth
data and it shows that our algorithm provides an average accuracy
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Table 2 Average accuracy of each sequence of cut along axial, sagittal and coronal planes considering inter-slice gaps (1, 2,

3, 4 and 5mm)
Data Region % Accuracy % Accuracy % Accuracy
set of spine (axial) (sagittal) (coronal)
1 cervical 98.675 92.562 97.006
2 lumbar 98.800 92.957 98.052
3 lumbar 98.876 93.774 98.004
4 full 97.826 92.000 97.098
5 cervical 98.990 93.788 97.935
6 cervical 98.987 92.989 97.996
7 cervical 98.980 92.895 97.986
8 lumbar 98.959 92.723 97.845
9 lumbar 98.977 93.555 98.684
10 lumbar 98.841 93.912 97.887
11 cervical 98.018 94.851 98.106
12 cervical 98.114 93.194 98.238
13 lumbar 98.944 93.186 97.866
14 full 98.003 92.365 97.474
15 cervical 97.833 92.699 97.830
16 lumbar 98.847 92.423 97.653
17 cervical 98.970 92.660 97.800
18 cervical 98.391 93.198 97.855
19 cervical 98.682 92.654 97.807
20 lumbar 98.772 93.766 97.880
21 full 98.104 92.326 97.398
22 lumbar 98.974 93.194 97.863
23 lumbar 98.976 93.256 97.861
24 cervical 98.769 92.823 97.894
25 cervical 98.622 92.543 97.777
AvgRMSE AvgMI
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Fig. 9 Comparison of our proposed algorithm with those by only bilinear and only bicubic interpolation

of 96%. To the best of our knowledge, we could not find a similar
work of reconstructing 3D image from a single sequence of MRI
slices with more than 2 mm gap between slices and then cutting out
slices from the 3D as per the user's wish, in existing literature and
hence were unable to show a direct comparison of our results with
any of the earlier works.
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Fig. 10 Comparison of our proposed algorithm with 3-plane methods [6] and Mia et al. [33] with respect to time and accuracy
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Fig. 11 User interface for 3D reconstruction and slicing
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