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Abstract: In this study, the authors introduce new Montgomery and Edwards form elliptic curves targeted at the 256-bit security
level. To this end, they work with three primes, namely p1 := 2506 − 45, p2 := 2510 − 75 and p3 := 2521 − 1. While p3 has been
considered earlier in the literature, p1 and p2 are new. They define a pair of birationally equivalent Montgomery and Edwards
form curves over all the three primes. Efficient 64-bit assembly implementations targeted at Skylake and later generation Intel
processors have been made for the shared secret computation phase of the Diffie-Hellman key agreement protocol for the new
Montgomery curves. Curve448 of the Transport Layer Security, Version 1.3 is a Montgomery curve which provides security at
the 224-bit security level. Compared to the best publicly available 64-bit implementation of Curve448, the new Montgomery
curve over p1 leads to a 3–4% slowdown and the new Montgomery curve over p2 leads to a 4.5–5% slowdown; on the other
hand, 29 and 30.5 extra bits of security, respectively, are gained. For designers aiming for the 256-bit security level, the new
curves over p1 and p2 provide an acceptable trade-off between security and efficiency.

1 Introduction
One of the most extensively used modern cryptographic primitives
is the Diffie-Hellman (DH) [1] key agreement protocol. Koblitz [2]
and Miller [3] have independently shown that the DH protocol can
be instantiated using cyclic groups arising from the theory of
elliptic curves. Among the various models of elliptic curves, the
Montgomery form [4] provides the most efficient model for
implementing DH key agreement. The famous and widely
deployed Curve25519 [5] is a Montgomery form curve. As part of
the Transport Layer Security (TLS) protocol, Version 1.3 [6], RFC
7748 [7] specifies two elliptic curves, namely Curve25519 and
Curve448, for DH key agreement. Curve25519 provides security at
the 128-bit security level and Curve448 provides security at the
224-bit security level.

Various cryptographic primitives targeted at the 256-bit security
level have been proposed in the literature. For example, both
SHA-2 and SHA-3 have variants for the 256-bit security level [8].
In the context of public key cryptography, there are proposals for
cryptographic pairings targeted at the 256-bit security level [9, 10].
A general purpose elliptic curve called E-521 has been proposed in
[11] for the 256-bit security level.

In view of the above discussion, design and implementation of
ECDH key agreement protocol at the 256-bit security level is a
relevant research problem. TLS, Version 1.3, however, does not
include a 256-bit secure solution. A possible reason for this
omission is the apprehension that the computation of key
agreement at the 256-bit security level will be significantly slower
than that at the 224-bit security level. While, there will indeed be a
slowdown, to the best of our knowledge, the magnitude of this
slowdown is presently unknown. Consequently, it is not clear
whether such a slowdown is an acceptable trade-off for achieving
higher security.

We consider the following four primes: 2506 − 45, 2510 − 75,
2521 − 1 and 2448 − 2224 − 1. For convenience of notation, we will
denote 2506 − 45 as p506−45, 2510 − 75 as p510−75, 2521 − 1 as
p521−1 and 2448 − 2224 − 1 as p448−224−1. Fix a prime p. Given
A ∈ F p∖{ − 2, 2} and B ∈ F p∖{0}, the Montgomery curve EM, A, B
over F p is given by the equation EM, A, B:By2 = x3 + Ax2 + x. Given
a, d ∈ F p∖{0} and a ≠ d, the twisted Edwards curve EE, a, d is given
by the equation EE, a, d:au2 + v2 = 1 + du2v2. For convenience of

notation, a Montgomery curve EM, A, 1 will be denoted as M[A]; an
Edwards curve EE, 1, d will be denoted as E[d]; and a twisted
Edwards curve EE, −1, d will be denoted as E[d]. If we wish to
emphasise the underlying prime p, then we will write M[p, A],
E[p, d] and E[p, d] instead of M[A], E[d] and E[d], respectively.

Our contributions: In this work, we propose new curves at 256-
bit security level and perform efficient 64-bit implementation of
ECDH key agreement. A summary of the new curves is given in
Table 1. Also, for comparison, we include the two curves
M[156326] and E[39082/39081] at the 224-bit security level
which are part of TLS, Version 1.3. The curve M[156326] has been
named Curve448 in [7].

The prime p521−1 has been considered earlier in [12] which
proposed the Weierstrass form curve P-521. This prime was later
considered in [11] which introduced the curve
E[p521−1, −376014] (and named it E-521) as part of a suite of
general purpose high security elliptic curves. Using the isogenies
given in [13], it can be shown that E-521 is 4-isogenous to
M[1504058] shown in Table 1. To the best of our knowledge,
neither of the curves M[1504058] or E[376015/376014] appear
earlier in the literature. Also, to the best of our knowledge, the
primes p506−45 and p510−75 have not been considered earlier in
the literature and so the question of proposing curves over the
corresponding fields does not arise.

From Table 1, we observe that M[p506−45, 996558],
M[p510−75, 952902] and M[p521−1, 1504058] provide 29, 30.5
and 36.5 bits more security compared to M[p448−224−1, 156326]
(i.e. Curve448).

To assess the performance of the new curves, we have carried
out a 64-bit assembly implementation of the DH shared secret
computation over the new Montgomery curves. Field elements are
represented using a number of 64-bit words or limbs. Our target
processors were the Skylake and later generation Intel processors.
So, we chose the packed or saturated limb representation of field
elements. Further details of field representation are provided in
Section 4.

Timing measurements were taken on the Skylake and the Kaby
Lake processors. For comparison, we have considered the best
previously reported [14] 64-bit implementation of the shared secret
computation phase of the DH protocol over Curve448 on the
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Skylake and Kaby Lake processors. Detailed cycle counts are
reported later. Below we summarise the main findings. The
following statements refer to the DH shared secret computations
over the mentioned curves.

i. M[p506−45, 996558] is about 1.3–1.4% faster than
M[p510−75, 952902].

ii. M[p506−45, 996558] is about 19% faster than
M[p521−1, 1504058].

iii. M[p506−45, 996558] is about 3–4% slower than Curve448.
iv. M[p510−75, 952902] is about 4.5–5% slower than Curve448.
v. M[p521−1, 1504058] is about 21–22% slower than Curve448.

While M[p521−1, 1504058] provides 36.5 bits of extra security
compared to Curve448, the slowdown is also quite significant. On
the other hand, M[p506−45, 996558] and M[p510−75, 952902]
provide 29 and 30.5 bits of extra security compared to Curve448
and the slowdowns for these curves are much less marked. So, if
security around the 256-bit security level is desired, either of the
curves M[p506−45, 996558] or M[p510−75, 952902] seem to
provide a reasonable trade-off between speed and security.

The curve E[p506−45, 249140/249139] which is birationally
equivalent to M[p506−45, 996558] can be used for the key
generation phase. The small base point on
E[p506−45, 249140/249139] is helpful for fixed base scalar
multiplication. Also, curve E[p506−45, 249140/249139] can be
used to implement a signature scheme following the approach used
for EdDSA [15]. Similarly, if the curve M[p510−75, 952902] is
used for shared secret computation of the DH protocol, then the
curve E[p510−75, −238225/238226] which is birationally
equivalent to M[p510−75, 952902] can be used for key generation
and also for instantiation of a signature scheme following [15].

We have made the source codes of our implementations
publicly available at the following link: https://github.com/kn-cs/
mont256-dh.

2 Montgomery and (twisted) Edwards form
elliptic curves
Let p be a prime and F p be the finite field of p elements. Following
TLS, Version 1.3, we consider elliptic curves over F p, where p is a
large prime. Montgomery curve EM, A, B and twisted Edwards curve
EE, a, d have already been defined. In our applications, we will have
B = 1 and a to be either 1 or −1. If a = 1, then the corresponding
curve is simply called an Edwards form curve (instead of twisted
Edwards form curve). If a is a square and d is not a square in F p,
then the addition formula in EE, a, d is complete [16]. In this case,
EE, a, d is called a complete twisted Edwards curve. Further, if
a = −1, then particularly efficient addition formulas are known
[17].

If p ≡ 1 mod 4, −1 is a square modulo p. In this case, if d is a
non-square, the addition formula over EE, −1, d is both complete and
the fastest. On the other hand, if p ≡ 3 mod 4, −1 is a non-square
modulo p and so the addition formula over EE, −1, d is not guaranteed
to be complete. In this case, one considers the Edwards curve EE, 1, d
with d a non-square so that the addition formula is complete. It is
not, however, the fastest. If the base point on EE, 1, d is small, then
the difference in the number of operations between the addition
formulas on EE, −1, d and EE, 1, d is small. More concretely, if the base

point on EE, 1, d is ( ⋅ , 2), then this difference is just two left shifts.
See [18] for details.

For p ≡ 3 mod 4, addition formula over EE, −1, d is not
guaranteed to be complete making constant time implementation of
scalar multiplication problematic. On the other hand, for the
verification phase of a signature scheme based on the EdDSA
template [15], constant time implementation is not an issue. For
this application, one may move from EE, 1, d to EE, −1, d′, for some d′
(see below) using a birational equivalence and perform the main
computation of signature verification over EE, −1, d′.

We refer to [4, 19, 20] for background theory and further details
about Montgomery form curves. For (twisted) Edwards curves, we
refer to [16, 21, 22].

2.1 Montgomery-Edwards connection

RFC7748 [7] of TLS, Version 1.3 specifies both Montgomery and
Edwards form curves for a given security level. In the present state
of knowledge, the shared secret computation of the DH key
agreement is performed best on a Montgomery form curve. On the
other hand, the key generation phase as well as the computations
required for an elliptic curve signature scheme based on the
template in [15] are performed best on an Edwards form curve.

Edwards and Montgomery curves can be connected by either
birational equivalences or by isogenies. For example, for the 128-
bit security level, Curve25519 and Ed25519 are birationally
equivalent. Similarly, at the 224-bit security level, Curve448 (i.e.
M[p448-224-1, 156326]) and E[p448-224-1, 39082/39081] are
birationally equivalent. Additionally, Curve448 is 4-isogenous to
E[p448-224-1, −39081] [7]. The curve E[p448-224-1, −39081] was
proposed in [23] where it was named Ed448-Goldilocks and it has
been called Edwards448 in [7].

We provide below some explicit birational equivalences
between Montgomery and Edwards form curves. These can be
obtained by composing the elementary birational equivalences
provided in [16, 22]. The verification of these birational
equivalences, on the other hand, can be done by direct substitution.

Case p ≡ 3 mod 4: Let EM, A, B:By2 = x3 + Ax2 + x be a
Montgomery curve and EE, 1, d:u2 + v2 = 1 + du2v2 be an Edwards
curve over F p. Note that −1 is not a square in F p.

i. If (A + 2)/B is a square in F p, then the map

(x, y) ↦ (u, v) = δx
y , x − 1

x + 1 (1)

where δ2 = (A + 2)/B is a birational equivalence from EM, A, B
to EE, 1, d with exceptional points y = 0 and x = − 1.
Conversely, the map

(u, v) ↦ (x, y) = 1 + v
1 − v , δ(1 + v)

u(1 − v) (2)

is a birational equivalence from EE, 1, d to EM, A, B with
exceptional points u = 0 and v = 1. The relation between A and
d is (A + 2)/4 = 1/(1 − d).

ii. If (A − 2)/B is a square in F p, then the map

(x, y) ↦ (u, v) = δx
y , x + 1

x − 1 (3)

Table 1 Montgomery and Edwards curves at the 256-bit security level proposed in this work along with Curve448 of TLS,
Version 1.3. In the table, M[156326] is Curve448
Prime Security Mont Base Pt (Mont) Ed Base Pt (Ed)
p448−224−1 223 M[156326] (5, ⋅ ) E[39082/39081] ( ⋅ , −3/2)
p506−45 252 M[996558] (3, ⋅ ) E[249140/249139] ( ⋅ , 2)
p510−75 253.5 M[952902] (4, ⋅ ) E[−238225/238226] ( ⋅ , 3/5)
p521−1 259.5 M[1504058] (8, ⋅ ) E[376015/376014] ( ⋅ , 9/7)
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where δ2 = (A − 2)/B is a birational equivalence from EM, A, B
to EE, 1, d with exceptional points y = 0 and x = 1. Conversely,
the map

(u, v) ↦ (x, y) = v + 1
v − 1, δ(v + 1)

u(v − 1) (4)

is a birational equivalence from EE, 1, d to EM, A, B with
exceptional points u = 0 and v = 1. The relation between A and
d is (A − 2)/4 = 1/(d − 1).

Suppose that d is not a square so that the addition formula over
EE, 1, d is complete. Since both d and −1 are not squares, −d is a
square. So, the map

(u, v) ↦ (u^, v^) = γu, 1
v (5)

where −γ2 = d is a birational equivalence with exceptional points
v = 0 from the Edwards curve EE, 1, d:u2 + v2 = 1 + du2v2 to the
twisted Edwards curve EE, −1, −1/d:−u^2 + v^2 = 1 + ( − 1/d)u^2v^2.

Case p ≡ 1 mod 4: Let EM, A, B: y2 = x3 + Ax2 + x be a
Montgomery curve and EE, −1, d:−u2 + v2 = 1 + du2v2 be an Edwards
curve over F p. Note that −1 is a square in F p.

i. If (A + 2)/B is a square in F p, then the map

(x, y) ↦ (u, v) = δx
y , x − 1

x + 1 (6)

where −δ2 = (A + 2)/B is a birational equivalence from EM, A, B
to EE, −1, d with exceptional points y = 0 and x = − 1.
Conversely, the map

(u, v) ↦ (x, y) = 1 + v
1 − v , δ(1 + v)

u(1 − v) (7)

is a birational equivalence from EE, −1, d to EM, A, B with
exceptional points u = 0 and v = 1. The relation between A and
d is (A + 2)/4 = 1/(1 + d).

ii. If (A − 2)/B is a square in F p, then the map

(x, y) ↦ (u, v) = δx
y , x + 1

x − 1 (8)

where −δ2 = (A − 2)/B is a birational equivalence from EM, A, B
to EE, −1, d with exceptional points y = 0 and x = 1. Conversely,
the map

(u, v) ↦ (x, y) = v + 1
v − 1, δ(v + 1

u(v − 1) (9)

is a birational equivalence from EE, −1, d to EM, A, B with
exceptional points u = 0 and v = 1. The relation between A and
d is (A − 2)/4 = − 1/(d + 1).

2.2 Security properties

Let n and nT be the orders of E(F p) and its quadratic twist,
respectively. Let ℓ and h (resp. ℓT and hT) be such that n = h ⋅ ℓ
(resp. nT = hT ⋅ ℓT). Suppose that ℓ and ℓT are primes.
Cryptography is done over an ℓ-order subgroup of E(F p).

The parameters h and hT are called the co-factors of the curve
and its twist, respectively. For a Montgomery curve, the curve
order n is a multiple of 4. Also, n + nT = 2(p + 1). From this, it is
easy to argue that if p ≡ 3 mod 4, then the minimum value of
(h, hT) is (4, 4), while if p ≡ 1 mod 4, then the minimum value of
(h, hT) is either (8, 4) or (4, 8).

The embedding degrees k and kT of the curve and its twist are
defined as follows. The parameter k (resp. kT) is the smallest
positive integer such that ℓ (pk − 1) (resp. ℓT (pkT − 1)).

The complex multiplication field discriminant D of E is defined
in the following manner. Let t = p + 1 − n. By Hasse's theorem,
t ≤ 2 p and in the cases that we considered t < 2 p so that
t2 − 4p is a negative integer; let s2 be the largest square dividing
t2 − 4p; define D = (t2 − 4p)/s2 if t2 − 4p mod 4 = 1 and
D = 4(t2 − 4p)/s2 otherwise.

SafeCurves [24] suggests that all of the parameters ℓ, ℓT, k, kT
and D should be large to ensure security against various known
attacks. Considering twist security, the security level of a curve in
terms of bits is defined to be (1/2) min (log2 ℓ, log2 ℓT).

3 Curves for the 256-bit security level
Since our target is 256-bit security, we need a κ-bit prime where κ
is about 512. Further, we chose to work over (pseudo-)Mersenne
primes 2m − δ with δ small, so that we can leverage the efficient
algorithms for arithmetic modulo such primes.

The prime p521−1 is a Mersenne prime and has been suggested
earlier for defining elliptic curves [11, 12]. This prime provides a
few bits more security than our target 256-bit security level. So, we
considered some pseudo-Mersenne primes which are less than 2512.
We found two pseudo-Mersenne primes less than 2512 which may
be considered for 256-bit security. These are p506-45 and p510-75.
Another pseudo-Mersenne prime 2511−187 (denoted as p511-187)
has been earlier suggested in [11]. In Section 8.2 of the Appendix,
we discuss our reasons for not considering this prime.

The curve search methodology that was used is the following.
Let α = (A + 2)/4. The quantity α is used in the Montgomery
ladder computation and a small value for α helps the efficiency of
the ladder computation. We ran a search program written in
Magma that started with α = 1 and incremented the value one by
one. For each value of α, the Montgomery form curve
y2 = x3 + Ax2 + x was generated with A = 4α − 2 and the
parameters n, nT, h, hT, ℓ, ℓT and D mentioned in Section 2.2 were
computed. The first α (and the corresponding A) for which an
optimal value for (h, hT) was obtained and the parameters ℓ, ℓT and
D were large was considered. If the value of A was such that it is
possible to obtain a birational equivalence to a (twisted) Edwards
form curve, then the corresponding pair of Montgomery and
Edwards form curves has been reported. Specific details of the
application of this search methodology to the primes p506−45 and
p510−75 are mentioned below.

Curves over F 2506 − 45: Let p = 2506−45. We ran a search program
to find Montgomery curves M[p, A] satisfying the security criteria
given in Section 2.2. The minimum positive value of A for which
(h, hT) = (4, 4) and the other parameters mentioned in Section 2.2
are large is A = 996558. This gives the curve
M[p506−45, 996558]. The curve E[p506−45, 249140/249139] is
birationally equivalent to M[p506−45, 996558] using the birational
equivalences given by (3) and (4). The quantity 249140/249139 is
a non-square modulo p506−45 and so the addition formula over
E[p506−45, 249140/249139] is complete. The parameters for
M[p506−45, 996558] are given in Fig. 1 of the Appendix. The
point (3, ⋅ ) is a point of order ℓ on the Montgomery curve
M[p506−45, 996558]; the corresponding point on the Edwards
curve E[p506−45, 249140/249139] is ( ⋅ , 2). The set of scalars is
defined to be 4(2503 + {0, 1, …, 2503 − 1}). Given a 64-byte scalar a,
assuming the least significant byte ordering, the clamping function
clamp(a) is defined as follows: clear bits 0 and 1 of the first byte;
set bit number 1 of the last byte and clear bits numbered 2 to 7 of
the last byte.

Remark: Let α = (A + 2)/4 = 249140. The curves
M[p506−45, 4α − 2] and E[p506−45, 1 − α] can be shown to be 4-
isogenous using the isogenies given in [13]. Further, using the fact
that −α is a square in F p, the curves M[p506−45, 2 − 4/α] and
E[p506−45, 1 − α] are birationally equivalent using the birational
equivalences given by (3) and (4).
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Curves over F 2510 − 75: Let p = 2510−75. We ran a search program
to find Montgomery curves M[p, A] satisfying the security criteria
given in Section 2.2. The minimum positive value of A for which
an optimal value of (h, hT) is obtained is A = 793638. In this case,
neither (A + 2) nor (A − 2) is a square in F p. So, the birational
equivalences in Section 2.1 for connecting Montgomery and
Edwards curves cannot be applied. One may consider a quadratic
twist of EM, A, 1. Since 2 is not a square, EM, A, 2 is a quadratic twist of
EM, A, 1. Then EM, A, 2 can be connected to EE, −1, d using either of the
birational equivalences given by (6), (7) or (8), (9). The form of d
in these two cases are (A − 2)/(A + 2) and (A + 2)/(A − 2),
respectively. Since both (A + 2) and (A − 2) are not squares, both
(A − 2)/(A + 2) and (A + 2)/(A − 2) are squares. Consequently, the
completeness of the addition formula over EE, −1, d is not ensured.
Since p ≡ 1 mod 4, it is desirable to use birational equivalences to
connect a Montgomery curve to a twisted Edwards form curve
having a complete addition formula. For A = 793638, this does not
seem to be possible using the birational equivalences in Section
2.1.

The next value of A for which an optimal value of (h, hT) is
obtained is A = 952902. In this case, we obtain the curves
M[p510−75, 952902] and E[p510−75, −238225/238226] which
are birationally equivalent using the birational equivalences given
by (6) and (7). The quantity −238225/238226 is a non-square
modulo p510−75 and so the addition formula over
E[p510−75, −238225/238226] is complete. The parameters for
M[p510−75, 952902] are given in Fig. 2 of the Appendix. The
point (4, ⋅ ) is of order ℓ on the Montgomery curve
M[p510−75, 952902]; the corresponding point on the twisted
Edwards curve E[p510−75, −238225/238226] is ( ⋅ , 3/5). The set
of scalars is set to be 8(2510 + {0, 1, …, 2510 − 1}). Given a 64-byte
scalar a, assuming the least significant byte ordering, the clamping
function clamp(a) is defined as follows: clear bits 0, 1 and 2 of the
first byte; set bit number 5 of the last byte and clear bits numbered
6 and 7 of the last byte.

Remark: Let α = (A + 2)/4 = 238226, which is a square. The
curves M[p510−75, 4α − 2] and E[p510−75, α − 1] can be shown
to be 4-isogenous using the isogenies given in [13]. Further,
M[p510−75, 4/α − 2] and E[p510−75, α − 1] are birationally
equivalent using the birational equivalences given by (6) and (7).
M[p510−75, 2 − 4/α] and E[p510−75, α − 1] are birationally
equivalent using the birational equivalences given by (8) and (9).

Curves over F 2521 − 1: The curve E-521 [11] is same as the curve
E[p521−1, −376014]. Using the isogenies given in [13], the curve
E[p521−1, −376014] is 4-isogenous to M[p521−1, 1504058]. This
gave us M[p521−1, 1504058]. Since the birational equivalences in
Section 2.1 are simpler than the isogenies in [13], we obtained the
Edwards form curve E[p521−1, 376015/376014] which is
birationally equivalent to M[p521−1, 1504058]. The birational
equivalences are given by (3) and (4). The quantity
376015/376014 is a non-square modulo p521−1 and so the
addition formula over E[p521−1, 376015/376014] is complete.
The parameters for M[p521−1, 1504058] are given in Fig. 3 of the
Appendix. The point (8, ⋅ ) is a point of order ℓ on the
Montgomery curve M[p521−1, 1504058]; the corresponding point
on the Edwards curve E[p521−1, 376015/376014] is ( ⋅ , 9/7).

The set of scalars for EM, 1504058, 1 is set to be
4(2518 + {0, 1, …, 2518 − 1}). Given a 65-byte scalar a, assuming the
least significant byte ordering, the clamping function clamp(a) is
defined as follows: clear bits 0 and 1 of the first byte; set bit

number 0 of the last byte and clear bits numbered 1 to 7 of the last
byte.

Remark: Let α = (A + 2)/4 = 376015. The curves
M[p521−1, 2 − 4/α] and E[p521−1, 1 − α] are birationally
equivalent using the birational equivalences given by (3) and (4).

4 Implementation
Let m = 1 + ⌊log2 p⌋. Elements of F p are m-bit strings which are
represented using κ 64-bit words. Each such word is termed as a
limb by convention. We have used packed or saturated limb
representation of the field elements, according to which, m is
written as m = η(κ − 1) + ν with 1 ≤ ν ≤ η, where η = 64. So, the
first κ − 1 limbs of a field element are 64 bits long and the last limb
has length between 1 and 64 bits.

The four primes that we have worked with are specified in
Table 2 along with their representations. For the two primes
p506−45 and p521−1, the value of 64κ − m ≥ 3 (which means,
there are three or more ‘free’ bits in the last limb), for the prime
p510−75, 64κ − m = 2 (which means, there are two ‘free’ bits in
the last limb) and for the prime p448−224−1, 64κ = m (which
means, there are no ‘free’ bits in the last limb). There are
consequences of these features to the Montgomery ladder
computation which are mentioned below.

The Skylake and later processors provide the instruction triplet
known as mulx/adcx/adox. These instructions allow the use of
two independent carry chains for efficiently multiplying/squaring
two large integers having 64-bit saturated limb representation. A
general algorithmic description for multiplication/squaring of 64κ-
bit numbers, κ ≥ 4 can be found in [25]. We have used these
algorithms for the implementation of integer multiplication/
squaring.

Integer multiplication/squaring of κ-limb quantities produces a
2κ-limb output. The reduction step reduces this output modulo the
prime p. For reducing an element after an integer multiplication/
squaring, we have used algorithms reduceSLMP and
reduceSLPMP from [25]; the algorithm reduceSLMP has been
used for the Mersenne prime p521−1, while the algorithm
reduceSLPMP has been used for the pseudo-Mersenne primes
p506−45 and p510−75. A full reduction reduces the output to a
value less than p. For intermediate steps of the computation, it is
more efficient to perform a partial reduction. This is done using a
size reduction which reduces the 2κ-limb quantity to a κ-limb
quantity which is either an m-bit or an (m + 1)-bit integer. For the
Mersenne prime p521−1, size reduction to an m-bit integer is
performed while for the pseudo-Mersenne primes p506−45 and
p510−75 size reduction to an (m + 1)-bit integer is performed.

The Montgomery ladder algorithm interleaves field
multiplications/squarings with field additions/subtractions. The
inputs to an addition/subtraction operation are outputs of
multiplication/squaring operations and the outputs of addition/
subtraction operations are inputs to multiplication/squaring
operations. Consider the case of the pseudo-Mersenne primes
p506−45 and p510−75. The outputs of multiplication/squaring are
size reduced to (m + 1) bits and so the inputs to addition/
subtraction operations are (m + 1)-bit quantities. The outputs of the
addition/subtraction operations are required to be κ-limb quantities
so that the integer multiplication/squaring algorithm can be applied
to these outputs. Depending upon the sizes of the outputs of
addition/subtraction operations and the relative values of η and ν, it
may be possible to avoid the reduction step after an addition/
subtraction operation.

In the case of addition, since the inputs are at most (m + 1)-bit
quantities, the outputs of integer addition are at most (m + 2)-bit
quantities. If m + 2 ≤ 64κ, then the reduction after integer addition
can be avoided. This condition holds for both p506−45 and
p510−75 so that the reduction operation after integer addition can
be avoided in both cases.

Consider a field subtraction of the type a − b mod p, where a
and b are (m + 1)-bit integers. To avoid handling negative numbers,
a suitable multiple of p is added to a so that the result is guaranteed
to be positive. Since the result will ultimately be reduced modulo p,

Table 2 Saturated limb representations of primes related to
this work
Prime m κ η ν 64κ − m
p448-224-1 448 7 64 64 0
p506−45 506 8 64 58 6
p510−75 510 8 64 62 2
p521−1 521 9 64 9 55
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the correctness of the result is not affected by adding a multiple of
p. In the case of p506−45, the operation a − b mod p is performed
as (4p + a) − b. The quantity (4p + a) − b is at most an (m + 3)-bit
quantity. Since for p506−45, m + 3 < 64κ, the value (4p + a) − b
fits in κ limbs and the reduction step is not required to be
performed. On the other hand, for p510−75, the reduction step
after subtraction has to be performed to ensure that the result fits
within κ limbs. It is this feature that makes the ladder computation
for p506−45 more efficient than the ladder computation for
p510−75.

4.1 Timings

We have carried out the timing experiments on a single core of
Skylake and Kaby Lake processors. The turbo-boost and hyper-
threading features were turned off while measuring the cpu-cycles.
The time stamp counter TSC was read from the CPU to RAX and
RDX registers by RDTSC instruction.

Platform specifications: The specifications of the hardware and
software tools used in our software implementations are given
below.

Skylake: Intel® CoreTM i7-6500U 2-core CPU @ 2.50 GHz. The
OS was 64-bit Ubuntu 14.04 LTS and the source code was
compiled using GCC version 7.3.0.
Kaby Lake: Intel® CoreTM i7-7700U 4-core CPU @ 3.60 GHz.
The OS was 64-bit Ubuntu 18.04 LTS and the source code was
compiled using GCC version 7.3.0.

Timings in the form of cpu-cycles are provided in Table 3 for
Skylake and Kaby Lake processors. For comparison, we have
considered the timings of the most efficient previously published
64-bit implementation of Curve448 [14]. We downloaded the
software for Curve448 and measured the cpu-cycles on the same
platforms on which we have measured the cpu-cycles of our
implementations. This has been done to keep the comparisons
consistent.

The curves listed in Table 3 provide security at different
security levels. Curves targeted at different security levels have
possibly different applications. So, the main point of the results in
Table 3 is to provide an understanding of the trade-off between
security and efficiency. In particular, it provides an answer to the
question of how much efficiency is lost in moving to higher
security levels. Moving from Curve448 to either
M[p506−45, 996558] or M[p510−75, 952902] increases security
by about 30 bits, with slowdowns of 3–4% and 4.5–5%,
respectively. Similarly, M[p506−45, 996558] offers about 8 bits
less security than M[p521−1, 1504058] but, provides a speed-up of
about 19%.

5 Conclusion
In this paper, we have proposed new Montgomery and Edwards
form elliptic curves targeted at the 256-security level. Efficient 64-
bit assembly implementations of DH shared secret computation on
these curves have been made. Timings have been obtained on the
Skylake and Kaby Lake processors of Intel. Compared to
Curve448, two of the new curves provide 29 and 30.5 bits of
additional security with slowdowns of 3–4% and 4.5–5%,
respectively. Consequently, at the 256-bit security level, these two
curves provide acceptable security/efficiency trade-off compared to
Curve448 which provides security at the 224-bit security level.
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8 Appendix
 
8.1 Curve parameters

In this section, we provide the values of the parameters of the
curves considered in this work. The parameters for the curve
M[p506−45, 996558] are shown in Fig. 1, the parameters for the
curve M[p510−75, 952902] are shown in Fig. 2 and the parameters
for the curve M[p521−1, 1504058] are shown in Fig. 3. 

8.2 Primes p511-187 and p519-91

In this section, we provide reasons for not considering the primes
p511−187 and p519−91.

Case of p511−187: We have considered the primes p506−45
and p510−75 for obtaining suitable Montgomery form curves. The
prime p511−187 has been earlier proposed in [11]. We mention the
reasons for not considering this prime.

In Section 4, it has been mentioned that in the ladder algorithm,
multiplications/squarings are interleaved with additions/
subtractions. Also, it has been pointed out that for p506−45, the
reduction operations after both additions and subtractions can be
avoided while for p510−75, the reduction operation after addition
can be avoided, but the reduction operation after subtraction needs
to be performed. This makes the ladder algorithm for p506−45
more efficient than the ladder algorithm for p510−75.

With the above in mind, let us consider the case for p511−187.
For this prime, m = 511, κ = 8, η = 64 and ν = 63, i.e. elements of
p511−187 have 8-limb representations where the first seven limbs

are 64 bits each and the last limb has 63 bits. As mentioned in
Section 4, for pseudo-Mersenne primes, the reduction algorithm
after multiplication/squaring reduces to an (m + 1)-bit quantity. So,
for p511−187, the output of the reduction algorithm after
multiplication/squaring will be a 512-bit quantity. The outputs of
multiplications/squarings are provided as inputs to addition/
subtraction operations. Since the inputs to the addition/subtraction
operations are themselves 512-bit quantities, it is not possible to
avoid the reduction operations after the addition/subtraction
operations. So, a summary of the comparative situation for the
three primes is the following.

Case p506−45: The reduction operations after both additions and
subtractions can be avoided.
Case p510−75: The reduction operations after additions can be
avoided, but the reduction operations after subtractions need to be
performed.
Case p511−187: The reduction operations after both additions and
subtractions have to be performed.

Consequently, in terms of speed, the ladder algorithm for p506−45
will be the fastest, followed by the ladder algorithm for p510−75
and then the ladder algorithm for p511−187. The timing results in
table show that the ladder algorithm for p506−45 is about 1.3–
1.4% faster than the ladder algorithm for p510−75 at the cost of
decreasing security by about 1.5 bits. In terms of efficiency, one
may expect the ladder algorithm for p510−75 to be also about 1–
2% faster than the ladder algorithm for p511−187 at the cost of
decreasing security by about 0.5 bits. On the balance, the half-bit
security gain of p511−187 over p510−75 is perhaps not worth a
drop in speed.

Remark: Considering a pseudo-Mersenne prime to be of the
form 2m − δ, the value of δ for the primes p506−45, p510−75 and
p511−187 are 45, 75 and 187, respectively. For the 64-bit
arithmetic that we have considered, this difference in the value of δ

Fig. 1  Parameters for the curve M[p506−45, 996558]
 

638 IET Inf. Secur., 2020, Vol. 14 Iss. 6, pp. 633-640
© The Institution of Engineering and Technology 2020

http://safecurves.cr.yp.to/index.html
https://eprint.iacr.org/2018/985


does not affect the speed of the multiplication algorithms. In
particular, we note that it has been reported in [25] that the
multiplication algorithm for p511−187 takes 118 cycles on
Skylake. We have observed the same speed for the multiplication
algorithms for p506−45 and p510−75. While the value of δ does
not affect the speed of the multiplication algorithm for 64-bit
arithmetic, it may be an issue for 32-bit or, 16-bit arithmetic.

Case of p519−91: We have considered the Mersenne prime
p521−1. A reviewer has pointed out that p519−91 = 2519 − 91 is a
pseudo-Mersenne prime which is close to p521−1 and suggested
us to consider it for implementation.

Both p519−91 and p521−1 have 9 limbs using packed or
saturated limb representation. So, the integer multiplication
algorithms for both the primes will have the same efficiency. The
difference, however, is in the efficiency of the reduction algorithm.

The reduction algorithm for Mersenne primes is more efficient than
the reduction algorithm for pseudo-Mersenne primes (i.e. for the
same value of κ, algorithm reduceSLMP is more efficient than
algorithm reduceSLPMP described in [25]). So, overall the field
multiplication algorithm for p521−1 is faster than the field
multiplication algorithm for p519−91. In [25], it has been reported
that the field multiplication algorithm for p521−1 requires 128
cycles on Skylake. Following the suggestion of the reviewer, we
have implemented the field multiplication algorithm for p519−91
and this requires 137 cycles. Since the multiplication algorithm for
p519−91 itself is slower than the multiplication algorithm for
p521−1, the ladder algorithm for p519−91 will also be slower than
the ladder algorithm for p521−1. Due to this reason, we did not
consider p519−91 for implementation.

Fig. 2  Parameters for the curve M[p510−75, 952902]
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Fig. 3  Parameters for the curve M[p521−1, 1504058]
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