
Indian Statistical Institute Indian Statistical Institute 

ISI Digital Commons ISI Digital Commons 

Journal Articles Scholarly Publications 

12-1-2020 

Application of Random Forest and data integration identifies three Application of Random Forest and data integration identifies three 

dysregulated genes and enrichment of Central Carbon dysregulated genes and enrichment of Central Carbon 

Metabolism pathway in Oral Cancer Metabolism pathway in Oral Cancer 

Srija Mukhopadhyay 
National Institute of Biomedical Genomics 

Sahana Ghosh 
National Institute of Biomedical Genomics 

Debodipta Das 
National Institute of Biomedical Genomics 

P. Arun 
Tata Medical Centre 

Bidyut Roy 
Indian Statistical Institute, Kolkata 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.isical.ac.in/journal-articles 

Recommended Citation Recommended Citation 
Mukhopadhyay, Srija; Ghosh, Sahana; Das, Debodipta; Arun, P.; Roy, Bidyut; Biswas, Nidhan K.; Maitra, 
Arindam; and Majumder, Partha P., "Application of Random Forest and data integration identifies three 
dysregulated genes and enrichment of Central Carbon Metabolism pathway in Oral Cancer" (2020). 
Journal Articles. 21. 
https://digitalcommons.isical.ac.in/journal-articles/21 

This Research Article is brought to you for free and open access by the Scholarly Publications at ISI Digital 
Commons. It has been accepted for inclusion in Journal Articles by an authorized administrator of ISI Digital 
Commons. For more information, please contact ksatpathy@gmail.com. 

https://digitalcommons.isical.ac.in/
https://digitalcommons.isical.ac.in/journal-articles
https://digitalcommons.isical.ac.in/scholarly-publications
https://digitalcommons.isical.ac.in/journal-articles?utm_source=digitalcommons.isical.ac.in%2Fjournal-articles%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.isical.ac.in/journal-articles/21?utm_source=digitalcommons.isical.ac.in%2Fjournal-articles%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ksatpathy@gmail.com


Authors Authors 
Srija Mukhopadhyay, Sahana Ghosh, Debodipta Das, P. Arun, Bidyut Roy, Nidhan K. Biswas, Arindam 
Maitra, and Partha P. Majumder 

This research article is available at ISI Digital Commons: https://digitalcommons.isical.ac.in/journal-articles/21 

https://digitalcommons.isical.ac.in/journal-articles/21


RESEARCH ARTICLE Open Access

Application of Random Forest and data
integration identifies three dysregulated
genes and enrichment of Central Carbon
Metabolism pathway in Oral Cancer
Srija Mukhopadhyay1, Sahana Ghosh1, Debodipta Das1, P. Arun2, Bidyut Roy3, Nidhan K. Biswas1,
Arindam Maitra1 and Partha P. Majumder1,3*

Abstract

Background: Studies of epigenomic alterations associated with diseases primarily focus on methylation profiles of
promoter regions of genes, but not of other genomic regions. In our past work (Das et al. 2019) on patients
suffering from gingivo-buccal oral cancer – the most prevalent form of cancer among males in India – we have
also focused on promoter methylation changes and resultant impact on transcription profiles. Here, we have
investigated alterations in non-promoter (gene-body) methylation profiles and have carried out an integrative
analysis of gene-body methylation and transcriptomic data of oral cancer patients.

Methods: Tumor and adjacent normal tissue samples were collected from 40 patients. Data on methylation in the
non-promoter (gene-body) regions of genes and transcriptome profiles were generated and analyzed. Because of
high dimensionality and highly correlated nature of these data, we have used Random Forest (RF) and other data-
analytical methods.

Results: Integrative analysis of non-promoter methylation and transcriptome data revealed significant methylation-
driven alterations in some genes that also significantly impact on their transcription levels. These changes result in
enrichment of the Central Carbon Metabolism (CCM) pathway, primarily by dysregulation of (a) NTRK3, which plays
a dual role as an oncogene and a tumor suppressor; (b) SLC7A5 (LAT1) which is a transporter dedicated to essential
amino acids, and is overexpressed in cancer cells to meet the increased demand for nutrients that include glucose
and essential amino acids; and, (c) EGFR which has been earlier implicated in progression, recurrence, and stemness
of oral cancer, but we provide evidence of epigenetic impact on overexpression of this gene for the first time.
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(Continued from previous page)

Conclusions: In rapidly dividing cancer cells, metabolic reprogramming from normal cells takes place to enable
enhanced proliferation. Here, we have identified that among oral cancer patients, genes in the CCM pathway – that
plays a fundamental role in metabolic reprogramming – are significantly dysregulated because of perturbation of
methylation in non-promoter regions of the genome. This result compliments our previous result that perturbation
of promoter methylation results in significant changes in key genes that regulate the feedback process of DNA
methylation for the maintenance of normal cell division.

Keywords: Random Forest, Epigenomic, Transcriptomic, Integrative analysis, Gingivo-buccal oral cancer

Background
For various cancers both DNA methylation and gene ex-
pression data have been analyzed separately and alter-
ations have been found to be associated with
susceptibility and outcome [1, 2]. It is well known that
DNA methylation impacts on gene expression. There-
fore, attempts have been made to perform integrative
analyses of these two types of data to draw robust infer-
ences [3]. Various methods of data integration have been
used [4, 5]. Methylation and expression data are high
volume, highly correlated data. Further, the number of
genes or DNA regions/sites on which data are collected
are orders of magnitude higher than the number of pa-
tients and controls. This is commonly known as the
“large p, small n” problem or “curse of dimensionality”
in Statistics. Many statistical methods involve inversion
of a matrix for obtaining estimates of parameters. When
the number of variables (p), on which data are available,
for each patient exceeds the total number of patients (n),
inversion of the relevant matrix becomes impossible [6].
This results in parameter estimates that are not unique;
therefore, inferences are liable to be compromised. Ran-
dom forest (RF) is a machine learning inferential method
that is data-adaptive and tree-based. It handles corre-
lated and large data sets very efficiently and is, therefore
particularly appealing for analysis of high-dimensional
genome data. Normally, only a small portion of a high-
dimensional data is associated with a phenotype. A re-
gression framework does not apply to this scenario. The
highly correlated nature of genomic data also makes the
application of standard statistical models inappropriate.
RF is a non-parametric tree-based approach that is par-
ticularly suited for such data-analysis problems. RF can
also be used to select and rank variables by taking ad-
vantage of variable importance measures. A good review
of RF in genomic data analysis can be found [7].
We have used RF methodology to identify gene-body

methylation differences between tumor and adjacent
normal tissues in patients with oral squamous cell car-
cinoma of the gingivo-buccal region (OSCC-GB), the
most common form of oral cancer in India [8, 9]. We
then integrated the knowledge thus obtained with data
on levels of transcription of genes, which we use as a

proxy for gene-expression levels, to discover
methylation-driven alterations in the gene-body regions
of the genome that significantly associate with dysregula-
tion of genes in oral cancer.
DNA methylation occurs predominantly on cytosines

followed by guanine residues (CpG). This type of methy-
lation is referred to as CpG methylation. Although about
3–4% of all cytosines are methylated in normal human
DNA, there are CpG islands,which are clusters of CpG
dinucleotides in GC-rich regions, that remain unmethy-
lated in all normal tissues [10]. Normally, a gene is tran-
scribed if the CpG island in the promoter region
remains unmethylated. But in cancer, the transcription
of a tumor suppressor gene is silenced by the methyla-
tion of promoter CpG island of that gene. We had earl-
ier analyzed data on methylation in CpG sites in the
known promoter regions of all genes, but ignored gene-
body CpG sites; sites that are on the coding regions of
genes [4]. In our previous study, we identified about 200
genes that showed significant inverse correlation be-
tween promoter methylation and expression. These in-
cluded a set of genes that act as transcription factors
and genes associated with multiple cancer types. A sig-
nificant finding of the study [4] was the identification of
significant upregulation of CD274 and CD80 via pro-
moter hypomethylation and hence immunosuppressive
effects in OSCC-GB. Since in our previous study we had
not considered gene body methylation, in the present
study we have applied a modern data-adaptive method
(RF) on gene-body methylation data and subsequently
integrated with gene expression data. Our present ana-
lysis has resulted in the identification of some dysregu-
lated genes and a pathway that were not identified in
our earlier [4] analysis of promoter methylation and
expression.

Methods
Patient recruitment and sample collection
This study was approved by the Institutional Ethics
Committees of the Tata Medical Centre and the Na-
tional Institute of Biomedical Genomics, India. Patients
suffering from oral squamous cell carcinoma of the gin-
givobuccal region (OSCC-GB) were recruited into this
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study with written informed consent. From each patient,
a sample of tumor tissue and adjacent normal tissue
were sampled by one of us (P.A.). The tissue samples
were stored appropriately. TNM staging of 40 tumor
samples were done following the 7th edition of the
American Joint Committee on Cancer (AJCC) [11].
Summary statistics of demographic and clinical charac-
teristics of the patients are provided in Table 1.

DNA methylation
Methylation data from paired tumour and adjacent nor-
mal tissue samples of 40 OSCC-GB patients were gener-
ated using the Illumina Infinium MethylationEPIC
BeadChip [4]. Using the R package minfi, we estimated
for each CpG site, the CpG-specific methylation level (β-
value) as the ratio of the intensity of methylated (M) to
the combined intensities of both methylated (M) and
unmethylated (U) alleles:

β ¼ M�

M� þ U� þ C

where M* and U* denote signal intensities of M and U
alleles, respectively, and the constant C set at 100 (as

recommended by the BeadChip manufacturer) [4, 12,
13]. The β-value ranges from 0 (unmethylated) to 1
(methylated). The sites that had a detection p-value
≥0.01 and those that mapped to X or Y chromosomes
were removed. We further removed (a) probes that
masked with “NA” values, (b) SNP associated probes
with minor allele frequency (MAF) > 0.01, (c) probes that
overlapped with a repetitive element, (d) multi-mapped
probes, (e) probes that did not map to annotated
protein-coding genes [4, 12, 14, 15], and (f) probes that
mapped to 3’UTR region of the genome.

Random Forest classifier
To analyze the difference between Tumor and Normal
samples, a Random Forest (RF) method was used on
Methylation data as implemented in the randomForest
package in R [12, 14–19]. The random forest algorithm
is an ensemble classifier similar to Classification and Re-
gression Tree (CART) [17]. Each tree in an RF is built
by choosing a bootstrap sample of two-third of the total
number of individuals; the remaining one-third (Out-Of-
Bag [OOB] sample) is utilised for validation. For each
node in a tree, a binary splitting rule is used on a sample
of CpG sites from the bootstrap sample to find the best
split. The variable with the maximum information gain

Table 1 Demographic and clinical characteristics of 40 gingivo-buccal oral squamous cell carcinoma patients included in this study

Clinical Characteristics* Frequency Percent

Age

< 40 7 0.18

40–50 16 0.40

51–60 11 0.28

> 60 6 0.15

Gender

Male 33 0.83

Female 7 0.18

Risk-habit

Chewing Tobacco 19 0.48

Chewing Tobacco and (Smoking and/or Alcohol) 16 0.40

Smoking and/or Alcohol 4 0.10

None 1 0.03

Tumor Stage

T1 9 0.23

T2 12 0.30

T4 19 0.48

Lymph Node Invasion

N0 21 0.53

N1 10 0.25

N2 9 0.23

*All patients were M0 (no metastasis) at the first presentation when tissue samples were collected for analysis
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[20] is selected. A parameter mtry defines the number of
variables randomly selected for each node in a tree, and
another parameter ntree specifies the number of trees to
be built in a forest. Normally, the value of mtry is taken
to be the square root of the number of variables; this is
also the default value in the R package. The output of
randomForest provides an aggregated misclassification
error (OOB error rate), which is estimated from predic-
tions made on the OOB samples, and variable import-
ance, which measures the weighted mean of the
improvement in individual trees by each variable [15–17,
21]. The most reliable variable importance method is
“permutation accuracy importance” or “Mean Decrease
Accuracy” (MDA) [21, 22]. MDA permutes the data of i
th variable in the OOB sample and records the permuted
OOB error rate. The difference of the original and per-
muted OOB error rate averaged over the number the
trees gives the importance score for i th variable (VIi) in
the random forest [19, 21–23]. A high value of MDA
implies greater importance of the variable [21, 22].

VIi ¼ 1
ntree

Xntree

j¼1

OOBerrorpermuted
ij −OOBerrorij

� �

Classification of samples
For efficient computation, only probes with |average
Δβ| ≥ 0.2 were considered, where each Δβ was calculated
by obtaining the difference between the β-values of
tumor and adjacent normal samples of a patient for each
probe indicating differential methylation between them
and then taking average over the number of patients. A
CpG site was considered hypermethylated if average
Δβ ≥ 0.2 and hypomethylated if average Δβ ≤ − 0.2 [4].
Before implementing the random forest (RF) classifier,
ntree and mtry parameters were tuned to generate an
accuracy rate [12, 16]. The best performing combination
of parameters were those for which the OOB error rate
stabilised and reached a minimum; i.e., the combination
of parameters with the highest accuracy rate. Once the
optimum set of parameters was determined, “random-
Forest” was executed 50 times on the methylation data
of 40 paired samples. In each iteration variables (probes)
with MDA-score > 0 were only selected [18]. The se-
lected probes were then mapped to their respective
genes. A gene was considered for further analyses if it
satisfied the following conditions: (a) there were at least
two probes in the non-promoter region of the gene, (b)
methylation status of all probes in the non-promoter re-
gion were unidirectional; either hypermethylated or
hypomethylated, and (c) had no probes in the promoter
region. The stringency of criteria (a) and (b) were
adopted to minimize the chance of false-positive

discovery, and the criterion (c) was adopted to make dis-
coveries attributable to gene-body methylation only.

RNA sequencing
RNA was extracted and RNA sequencing was performed
to obtain levels of transcription of genes, on the same set
of 40 paired samples. Paired-end libraries were con-
structed and sequenced using Illumina HiSeq2500 [4, 24].
The quality of the RNA-Seq reads was checked by
FastQC. TopHat2 [4, 24–26] was then used to align these
reads to a hg19 reference transcriptome or genome.
Multi-mapped reads and non-concordant reads were fil-
tered out using SAMtools [4] and duplicate reads were re-
moved using MarkDuplicates from PICARD [4]. Cufflinks
[4, 24–26] was then used to assemble and reconstruct the
transcriptome. Finally, using Cuffnorm, normalised FPKM
values for each gene were estimated [4]. Only those genes
that had non-zero transcription levels in all samples were
considered for further analysis. We have used the level of
transcription of a gene as a proxy for the level of expres-
sion of the gene, and have used transcription and expres-
sion levels interchangeably in this report.

Integration of methylation and transcription data
Those genes for which there was no promoter probe
and with multiple probes in the non-promoter region
that were uniformly hyper- or hypo-methylated, and for
which the level of transcription/expression change be-
tween tumour and normal tissues, averaged over the 40
pairs of samples, was higher than two-fold, were identi-
fied to be dysregulated by methylation in non-promoter
regions [4]. Methylation effects on the 1st exon are simi-
lar to those of the promoter and exon boundary methy-
lation modulates alternative splicing events [27]. Since
this study is focused on gene expression alterations due
to aberrant methylation on gene body, the genes that
had 1st exon [28, 29] and exon boundary [27, 30] probes
were removed. Finally, we considered only those genes
for mapping on pathways that satisfied the known bio-
logical directionality of control; genes with hypermethy-
lation (hypomethylation) in the gene-body region in the
tumour tissue should have a significantly higher (lower)
level of expression in the tumor tissue [31, 32].

Enrichment analysis of pathways
Genes that were so identified by the integration of both
methylation and expression data were analyzed for en-
richment of biological pathways. We considered path-
ways in KEGG for this analysis. ClueGo and CluePedia
plug-ins of Cytoscape were used. To identify whether a
pathway in KEGG was significantly enriched, a right-
sided test based on hypergeometric distribution was
used. Benjamini-Hochberg correction method was used
to correct the p-values for multiple testing [4, 33].
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Results
Identification of genes with abundant methylation in the
non-promoter region
A total of 484,420 autosomal probes with detection p-
value < 0.01 were associated with 18,688 genes. After re-
moving 3’UTR and unannotated probes, 333,208 probes
remained which were associated with 18,684 genes. Of
these, 22,711 probes were with |average Δβ| ≥ 0.2 that
mapped to 7027 genes. By fine-tuning (Figure S1), a
stable OOB error rate was obtained with default mtry =
150 and ntree = 2000. Random forest was executed 50
times, with these optimal values of the parameters. The
MDA scores of each variable and OOB error rate were
recorded for 50 iterations. A uniform OOB error rate of
1.25% was observed in each iteration (Table S1). The set
of probes with MDA > 0 comprised 10,105 probes that
mapped to 4831 genes. Among these, for 433 genes
all probes in the non-promoter region were hyper-
methylated, and for 233 genes all were hypomethy-
lated. We have focused on these 666 unidirectionally
methylated genes, for drawing further inferences inte-
grated with gene expression patterns in tumor-normal
paired tissues.

Integration of methylation and gene-expression
In paired tissues collected from the 40 OSCC-GB pa-
tients, non-zero levels of transcription/expression were
found for 477 genes. Considering the 666 genes that ex-
hibited significant and unidirectional methylation, it was
found that 132 of these genes showed at least two-fold
difference in the level of expression between tumour and
normal tissues, averaged over the 40 patients. Of these
132 genes, 8 genes were removed as they had 1st exon
and exon boundary probes. However, of these 124 only
for 67 (54%) genes, the direction of change of expression
level was consistent with that of methylation change
(Table 2). That is, genes with hypermethylation (hypo-
methylation) in the tumour tissue had significantly
higher (lower) levels of expression in the tumor tissue.

Enriched pathway
The pathway enrichment analysis using the 67 genes
dysregulated by methylation alteration in the gene-body
region between tumour and normal tissues, identified
enrichment of one significant (corrected p-value =
0.0012) KEGG pathway. This was Central Carbon me-
tabolism in Cancer with three associated genes EGFR,
NTRK3, and SLC7A5. It has been reported, based on
cell line studies, that overexpression of EGFR can impact
on the development of solid tumors, including oral can-
cer [34]. It was found that EGFR was overexpressed and
globally hypermethylated.

Discussion
By applying the novel Random Forest data-adaptive
method to high-dimensional data (about 500,000 data
points per individual) to identify significant alterations
in gene-body methylation in gingivo-buccal oral tumor
tissue compared to adjacent normal tissue, and subse-
quent integration with gene expression data it was de-
tected that some genes and pathways were not earlier
inferred to be involved in OSCC-GB only through cell-
line studies. Although we found that only about 54% of
genes found to have aberrant methylation were also dys-
regulated in the expected direction, this is not unex-
pected because gene-body methylation may not be the
only cause of dysregulation of a gene. Hence, the direc-
tionality of dysregulation may not be in accord with
what is expected under the methylation-transcription
model. As a matter of fact, it is striking that over 50% of
genes show transcription levels in accord with what is
expected under gene-body hyper- or hypo-methylation.
The significantly enriched pathway that has been identi-
fied using this data-adaptive and data-integrative ap-
proach is the Central Carbon Metabolism (CCM)
pathway, which is involved in transport and oxidation of
main carbon sources inside the cell. Fundamental cellu-
lar processes require energy for growth. The catabolic
and anabolic reactions in metabolism are finely balanced
and tightly regulated. Dysregulation results in cellular
transformation and tumor progression. In rapidly divid-
ing cancer cells, metabolic reprogramming from normal
cells takes place to enable enhanced proliferation. CCM
pathway plays a fundamental role in metabolic repro-
gramming. Changes in central carbon metabolism of
cancer stem cells have also been noted [35]. It is note-
worthy that enrichment of the CCM pathway in OSCC-
GB takes place by gene-body methylation mediated dys-
regulation of three key genes, EGFR, NTRK3, SLC7A5
(Fig. 1).
Significant downregulation of NTRK3 mediated by

promoter methylation was noted in our earlier study [4].
NTRK3 is a neurotrophin receptor. It behaves as an
oncogene in breast cancer [36, 37] and possibly also in
hepatocellular carcinoma [38]. However, it also plays a
dual function. It acts as a tumor suppressor in colorectal
cancer in which it is epigenetically inactivated [39]. In
OSCC-GB also, NTRK3 is epigenetically dysregulated
and appears to behave as a tumor suppressor.
SLC7A5 – earlier known as LAT1 – is a transporter

dedicated to essential amino acids. Cancer cells have an
increased demand for nutrients that include glucose and
essential amino acids; the so-called “Warburg effect.”
Overexpression of SLC7A5, as we have observed here, is
explained in part by the presence, in its promoter, of a
canonical binding site for the proto-oncogene c-Myc
[40] that is known to regulate glucose metabolism [41].
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Overexpression of SLC7A5 is also controlled by methy-
lation in the promoter [4] and non-promoter regions
(this study).
EGFR has been earlier implicated in progression, re-

currence, and stemness of oral cancer [42, 43]. EGFR is
inappropriately activated in cancer mainly because of
amplification and point mutations. Transcriptional up-
regulation of EGFR due to autocrine/paracrine mecha-
nisms has also been described [44]. Here, for the first
time, it is shown that dysregulation of EGFR takes place
by epigenetic mechanisms in oral cancer.
Cancer cells rapidly multiply. Significant metabolic

changes occur during cancer development and progres-
sion. Cancer cells have a lot of metabolic requirement

Table 2 Results of 67 genes that showed significant
relationship between methylation in the non-promoter region
and gene expression

Gene Mean of Δβ values of
probes in the non-
promoter region
averaged over all
patients

log2 fold-change of
gene-expression
values averaged
over all patients

ABCA3 −0.242 −2.740

ADAMTS17 −0.235 −1.418

ADCY2 − 0.282 −4.311

ADCYAP1R1 −0.231 −3.227

AFAP1L2 0.278 1.749

AGRN 0.299 1.830

ANGPT1 −0.255 −1.084

ANK2 −0.292 −3.425

ARNT2 −0.257 −1.056

ATP8A1 −0.263 −1.419

BCL11B 0.344 1.154

BMPER −0.226 −2.030

BNC2 −0.284 − 2.276

CACNA1D −0.261 −2.461

CACNA2D1 −0.256 −2.616

CADM1 −0.256 −1.519

CDCA7 0.235 1.265

CIT 0.274 1.201

CLIC5 −0.264 −3.547

COBL −0.283 −3.073

COL27A1 0.323 1.918

DNAH17 0.228 3.230

EEPD1 −0.245 −1.291

EGFR 0.240 1.147

EPHB2 0.285 2.239

EPSTI1 0.269 2.851

EXT1 0.272 1.068

FAM13C −0.340 −1.862

FAM171A1 −0.232 −1.712

FGD5 −0.266 −1.149

FHIT −0.289 −2.022

GFI1 0.318 1.787

ICAM5 0.301 1.476

IGDCC4 −0.296 −2.178

KCNAB1 −0.279 −1.560

LAMB4 −0.206 − 1.731

LDB2 −0.268 −1.250

LRP8 0.227 1.393

MCF2L −0.242 −2.238

MEGF11 −0.257 −1.094

Table 2 Results of 67 genes that showed significant
relationship between methylation in the non-promoter region
and gene expression (Continued)

Gene Mean of Δβ values of
probes in the non-
promoter region
averaged over all
patients

log2 fold-change of
gene-expression
values averaged
over all patients

NCS1 0.290 1.266

NDRG1 0.208 1.343

NKAIN1 −0.241 −1.384

NTRK3 −0.298 −3.202

PALM −0.274 −2.500

PAPPA 0.258 1.324

PARK2 −0.278 −2.854

PDZRN3 −0.250 −1.409

PLCL1 −0.243 −1.626

PML 0.220 1.562

PPM1L −0.303 −2.386

PRKD1 −0.276 −1.051

RGS20 0.221 2.582

RTKN 0.235 1.183

SCIN −0.278 −3.784

SDK2 0.247 2.410

SLC6A17 −0.240 −1.586

SLC7A5 0.241 1.367

SOBP −0.286 −2.687

SPRED3 0.280 1.989

SUSD4 −0.319 −1.780

TECTA −0.286 −1.007

TENM2 0.275 2.951

TMEM232 −0.213 −1.995

TRAM2 0.264 1.327

WNK2 −0.217 −3.895

ZNF423 −0.254 −1.799
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for the increase of their biomass and genome. These in-
clude the increased demand for nutrients such as glu-
cose, essential amino acids and also glutamine, that
becomes conditionally essential, for protein synthesis
and/or energy supply [45–48]. Cancer cells utilize large
amounts of glucose and glutamine and maintain high
rates of glycolysis and glutaminolysis; called the War-
burg effect. These increased requirements are met by
the cancer cells themselves. Cancer cells undergo a large
number of mutations, some of which take place in genes
that belong to specific pathways, such as the central car-
bon metabolism pathway, which help meet these add-
itional requirements. The central carbon metabolism
pathway is large, complex and performs a variety of
functions. About 70 genes are involved in this pathway,
that are involved in a variety of functions that include
glucose import, glycolysis, pentose phosphate flux, lac-
tate excretion, pyruvate dehydrogenase flux, TCA cycle
flux, pyruvate carboxylase flux, gluconeogenic flux, gly-
cine biosynthesis, glutathione biosynthesis, proline bio-
synthesis, palmitate biosynthesis (fatty acid synthase
activity), desaturation of palmitate, elongation of palmi-
tate, and desaturation of stearate [49]. Changes in one or
more components of the central carbon metabolism

pathway have been identified in various cancers. The
genes that we have found to be significantly altered
in their levels of expression resulting from gene-
body methylation changes – NTRK3, SLC7A5
(LAT1) and EGFR – belong to the subcomponents
related to the Warburg effect, notably glucose im-
port and glycolysis.

Conclusions
Three key genes NTRK3, SLC7A5 (LAT1) and EGFR
were dysregulated in the CCM pathway. Of these,
NTRK3 [4, 50] and SLC7A5 [4] were earlier identified to
be associated with oral cancer. However, we provide the
first evidence of epigenetic impact on overexpression of
EGFR in oral cancer. To enable enhanced proliferation
of cells in a cancer tissue, metabolic reprogramming
from normal cells usually takes place. In the present
analysis, we have identified that among oral cancer pa-
tients, genes in the CCM pathway – that plays a funda-
mental role in metabolic reprogramming – are
significantly dysregulated because of perturbation of
methylation in non-promoter regions of the genome.
This result compliments our previous result that per-
turbation of promoter methylation results in significant

Fig. 1 Genes found altered in Central Carbon Metabolism (CCM) pathway in gingivo-buccal oral cancer. EGFR, SLC7A5, NTRK3, the three key
genes (marked in blue and appearing on the vertical lines to the left of the figure), were significantly dysregulated in the CCM pathway
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changes in key genes that regulate the feedback process
of DNA methylation for the maintenance of normal cell
division. Taken together, it is evident that in oral cancer
methylation driven alterations in both promoter and
non-promoter genomic regions result in disruption of
normal cell division accompanied by metabolic repro-
gramming to enable rapid cell proliferation.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12885-020-07709-0.

Additional file 1: Figure S1. Fine-tuning randomForest parameters mtry
and ntree.

Additional file 2: Table S1. Results of 50 iterations of tuned Random
Forest classifier showing the number of variables selected and the OOB
error rate.

Abbreviations
RF: Random Forest; OSCC-GB: Oral Squamous Cell Carcinoma of the Gingivo
Buccal region; CCM: Central Carbon Metabolism pathway; MAF: Minor Allele
Frequency; CART: Classification And Regression Trees; OOB: Out-Of-Bag
sample; MDA: Mean Decrease Accuracy; VI: Variable Importance;
FPKM: Fragments Per Kilobase of transcript per Million mapped reads;
KEGG: Kyoto Encyclopedia of Genes and Genomes

Acknowledgements
We are grateful to all participating members of Systems Medicine Cluster
(SyMeC) and International Cancer Genome Consortium (ICGC) India project
for their guidance and advice during the course of this study.

Authors’ contributions
PPM and SM conceived of the study and designed the analysis of data. PA
coordinated patient recruitment and sample collection. AM, NKB, DD and SG
coordinated data generation and data collection. PPM and BR contributed
towards the fine-tuning of the method. PPM and SM wrote the manuscript.
PPM, DD, SG, PA, BR, AM and NKB edited the draft manuscript. All authors
read and approved the final manuscript.

Funding
This work was partially supported by the J.C. Bose National Fellowship
provided to PPM and a grant from the Department of Biotechnology (DBT),
Govt. of India, through the SyMeC project (BT/Med-II/NIBMG/SyMeC/2014/
Vol. II). The funding bodies played no role in the design of the study and
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Raw IDAT files of 40 samples generated using Illumina Infinium methylation
array were deposited under EGAS00001003896 EGA study ID and aligned
bam files for transcriptome data of 40 samples were deposited under
EGAS00001003893 EGA study ID. Biospecimens may be shared on request, if
not exhausted. Dispatch of biospecimens requires prior approval from the
Government of India.

Ethics approval and consent to participate
The study was approved by the Institutional Ethics Committees, Dr. R.
Ahmed Dental College & Hospital (RADCH), Kolkata, Chittaranjan National
Cancer Institute (CNCI), Kolkata, National Institute of Biomedical Genomics
(NIBMG), Kalyani, and Indian Statistical Institute (ISI), Kolkata. Prior written
informed consent was obtained from all study participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interest.

Author details
1National Institute of Biomedical Genomics, Kalyani 741251, India. 2Tata
Medical Centre, Kolkata, India. 3Indian Statistical Institute, Kolkata, India.

Received: 26 July 2020 Accepted: 3 December 2020

References
1. Jiao, Y., Widschwendter, M., Teschendorff, AE. A systems-level integrative

framework for genome-wide DNA methylation and gene expression data
identifies differential gene expression modules under epigenetic control.
Bioinformatics. 2014; 30:2360–2366. doi: https://doi.org/10.1093/
bioinformatics/btu316.

2. Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, Tononi P,
Pattini P, Moruzzi S, Campagnaro T, Conci S, Olivieri O, Corrocher R,
Delledonne M, Choi S-W, Friso S. DNA methylation and gene expression
profiles show novel regulatory pathways in hepatocellular carcinoma. Clin
Epigenet. 2015;7:43. https://doi.org/10.1186/s13148-015-0077-1.

3. Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang T, HM KS,
Nephew KP. Integrated analysis of DNA methylation and gene expression
reveals specific signaling pathways associated with platinum resistance in
ovarian cancer. BMC Med Genomics. 2009;2:34. https://doi.org/10.1186/
1755-8794-2-34.

4. Das D, Ghosh S, Maitra A, Biswas NK, Panda CK, Roy B, Sarin R, Majumder
PP. Epigenomic dysregulation-mediated alterations of key biological
pathways and tumor immune evasion are hallmarks of gingivo-buccal oral
cancer. Clin Epigenet. 2019;11(1):178. https://doi.org/10.1186/s13148-019-
0782-2.

5. Ma X, Liu Z, Zhang Z, Huang X, Tang W. Multiple network algorithm for
epigenetic modules via the integration of genome-wide DNA methylation
and gene expression data. BMC Bioinformatics. 2017;18:72. https://doi.org/
10.1186/s12859-017-1490-6.

6. Johnstone IM, Titterington DM. Statistical challenges of high-dimensional
data. Phil Trans R Soc A. 2009;367:4237–53. https://doi.org/10.1098/rsta.2009.
0159.

7. Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics.
2012;99:323–9. https://doi.org/10.1016/j.ygeno.2012.04.003.

8. Muttagi SS, Patil BR, Godhi AS, Arora DK, Hallikerimath SR, Kale AD. Clinico-
pathological factors affecting lymph node yield in Indian patients with
locally advanced squamous cell carcinoma of mandibular Gingivo-Buccal
sulcus. Indian J Cancer. 2016;53:239–43. https://doi.org/10.4103/0019-509X.
197724.

9. Pathak KA, Gupta S, Talole S, Khanna V, Chaturvedi P, Deshpande MS, Pai PS,
Chaukar DA, D’Cruz AK. Advanced squamous cell carcinoma of lower
gingivobuccal complex: patterns of spread and failure. Head Neck. 2005;27:
597–602. https://doi.org/10.1002/hed.20195.

10. Esteller M. The necessity of a human epigenome project. Carcinogenesis.
2006;27(6):1121–5. https://doi.org/10.1093/carcin/bgl033.

11. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant
tumors. 7. Oxford: Wiley-Blackwell; 2011. p. 336.

12. Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE. Predicting
genome-wide DNA methylation using methylation marks, genomic
position, and DNA regulatory elements. Genome Biol. 2015;16:14. https://
doi.org/10.1186/s13059-015-0581-9.

13. Ma X, Wang Y-W, Zhang MQ, Gazdar AF. DNA methylation data analysis and
its application to cancer research. Epigenomics. 2013;5(3):301–16. https://
doi.org/10.2217/epi.13.26.

14. Everson TM, Lyons G, Zhang H, Soto-Ramírez N, Lockett GA, Patil VK, Merid
SK, Sӧderhӓll C, Melén E, Holloway JW, Arshad SH, Karmaus W. DNA
methylation loci associated with atopy and high serum IgE: a genome-wide
application of recursive Random Forest feature selection. Genome Med.
2015;7:89. https://doi.org/10.1186/s13073-015-0213-8.

15. Naue J, Hoefsloot HCJ, Mook ORF, Rijlaarsdam-Hoekstra L, van der Zwalm
MCH, Henneman P, Kloosterman AD, Verschure PJ. Chronological age
prediction based on DNA methylation: massive parallel sequencing and
random forest regression. Forensic Sci Int. 2017;31:19–28. https://doi.org/10.
1016/j.fsigen.2017.07.015.

16. Houseman EA, Christensen BC, Yeh R-F, Marsit CJ, Karagas MR, Wrensch M,
Nelson HH, Wiemels J, Zheng S, Wiencke JK, Kelsey KT. Model-based
clustering of DNA methylation array data: a recursive-partitioning algorithm

Mukhopadhyay et al. BMC Cancer         (2020) 20:1219 Page 8 of 9

https://doi.org/10.1186/s12885-020-07709-0
https://doi.org/10.1186/s12885-020-07709-0
https://doi.org/10.1093/bioinformatics/btu316
https://doi.org/10.1093/bioinformatics/btu316
https://doi.org/10.1186/s13148-015-0077-1
https://doi.org/10.1186/1755-8794-2-34
https://doi.org/10.1186/1755-8794-2-34
https://doi.org/10.1186/s13148-019-0782-2
https://doi.org/10.1186/s13148-019-0782-2
https://doi.org/10.1186/s12859-017-1490-6
https://doi.org/10.1186/s12859-017-1490-6
https://doi.org/10.1098/rsta.2009.0159
https://doi.org/10.1098/rsta.2009.0159
https://doi.org/10.1016/j.ygeno.2012.04.003
https://doi.org/10.4103/0019-509X.197724
https://doi.org/10.4103/0019-509X.197724
https://doi.org/10.1002/hed.20195
https://doi.org/10.1093/carcin/bgl033
https://doi.org/10.1186/s13059-015-0581-9
https://doi.org/10.1186/s13059-015-0581-9
https://doi.org/10.2217/epi.13.26
https://doi.org/10.2217/epi.13.26
https://doi.org/10.1186/s13073-015-0213-8
https://doi.org/10.1016/j.fsigen.2017.07.015
https://doi.org/10.1016/j.fsigen.2017.07.015


for high-dimensional data arising as a mixture of beta distributions. BMC
Bioinformatics. 2018;9:365. https://doi.org/10.1186/1471-2105-9-365.

17. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL,
Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh R-F,
Wiencke JK, Kelsey KT. Aging and Environmental Exposures Alter Tissue-
Specific DNA Methylation Dependent upon CpG Island Context. Plos Genet.
2009;5(8):e1000602. https://doi.org/10.1371/journal.pgen.1000602.

18. Yang Y, Nephew K, Kim S. A novel k-mer mixture logistic regression for
methylation susceptibility modeling of CpG dinucleotides in human gene
promoters. BMC Bioinformatics. 2012;13:S15. https://doi.org/10.1186/1471-
2105-13-S3-S15.

19. Archer KJ, Kimes RV. Empirical characterization of random forest variable
importance measures. Comput Stat Data Anal. 2008;52(4):2249–60. https://
doi.org/10.1016/j.csda.2007.08.015.

20. Deng H, Runger G. Gene selection with guided regularized random forest.
Pattern Recogn. 2013;46:3483–9. https://doi.org/10.1016/j.patcog.2013.05.
018.

21. Strobl, C., Boulesteix, A., Kneib, T., Augustin, T., Zeileis, A Conditional variable
importance for random forests BMC Bioinformatics 2008; 9:307. doi: https://
doi.org/10.1186/1471-2105-9-307.

22. Grömping U. Variable importance assessment in regression: linear regression
versus random Forest. Am Stat. 2009;63(4):308–19. https://doi.org/10.1198/
tast.2009.08199.

23. Strobl C, Boulesteix A, Zeileis A, Hothorn T. Bias in random forest variable
importance measures: illustrations, sources and a solution. BMC
Bioinformatics. 2007;8:25. https://doi.org/10.1186/1471-2105-8-25.

24. Ghosh, S., Chan C-KK. Analysis of RNA-Seq Data Using TopHat and Cufflinks.
Methods Mol Biol. 2016; 1374:339–361. doi: https://doi.org/10.1007/978-1-
4939-3167-5_18.

25. Chu Y, Corey DR. RNA sequencing: platform selection, experimental design,
and data interpretation. Nucleic Acid Therapeutics. 2012;22(4):271–4. https://
doi.org/10.1089/nat.2012.0367.

26. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H,
Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression
analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc.
2012;7:562–78. https://doi.org/10.1038/nprot.2012.016.

27. Gelfman S, Cohen N, Yearin A, Ast G. DNA-methylation effect on
cotranscriptional splicing is dependent on GC architecture of the exon–
intron structure. Genome Res. 2013;23:789–99. https://doi.org/10.1101/gr.
143503.112.

28. Lokk K, Modhukur V, Rajashekar B, Martens K, Magi R, Kolde R, Koltsina M,
Nilsson TK, Vilo J, Salumets A, Tonisson N. DNA methylome profiling of
human tissues identifies global and tissue-specific methylation patterns.
Genome Biol. 2014;15:3248. https://doi.org/10.1186/gb-2014-15-4-r54.

29. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, Scandura JM. DNA
Methylation of the First Exon Is Tightly Linked to Transcriptional Silencing.
Plos One. 2011;6(1):e14524. https://doi.org/10.1371/journal.pone.0014524.

30. Sun X, Tian Y, Wang J, Sun Z, Zhu Y. Genome-wide analysis reveals the
association between alternative splicing and DNA methylation across
human solid tumors. BMC Med Genomics. 2020;13(4). https://doi.org/10.
1186/s12920-019-0654-9.

31. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan I. On the presence and role of
human gene-body DNA methylation. Oncotarget. 2012;3:462–74. https://doi.
org/10.18632/oncotarget.497.

32. Yang, X., Han, H., Carvalho D., D, D., Lay, F., D., Jones, P., A., Liang G. Gene
body methylation can Alter gene expression and is a therapeutic target in
Cancer. Cancer Cell 2014; 26:1–14. doi: https://doi.org/10.1016/j.ccr.2014.07.028.

33. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A,
Fridman W-H, Pages F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to
decipher functionally grouped gene ontology and pathway annotation
networks. Bioinformatics. 2009;25(8):1091–3. https://doi.org/10.1093/
bioinformatics/btp101.

34. Huang C-Y, Chan C-Y, Chou I-T, Lien C-H, Hung H-C, Lee M-F. Quercetin
induces growth arrest through activation of FOXO1 transcription factor in
EGFR-overexpressing oral cancer cells. J Nutr Biochem. 2013;24(9):1596–603.
https://doi.org/10.1016/j.jnutbio.2013.01.010.

35. Wong TL, Che N, Ma S. Reprogramming of central carbon metabolism in
cancer stem cells. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2017;1863:
1728–38. https://doi.org/10.1016/j.bbadis.2017.05.012.

36. Li, Z., Tognon, CE, Godinho, FJ, Yasaitis L, Hock H, Herschkowitz JI, Lannon
CL, Cho E, Kim S-J, Bronson RT, Perou CM, Sorensen PH, Orkin SH. ETV6-

NTRK3 Fusion Oncogene Initiates Breast Cancer from Committed Mammary
Progenitors via Activation of AP1 Complex. Cancer Cell. 2007; 12:542–558.
doi: https://doi.org/10.1016/j.ccr.2007.11.012.

37. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA,
Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PHB.
Expression of the ETV6-NTRK3 gene fusion as a primary event in human
secretory breast carcinoma. Cancer Cell. 2002;2:367–76. https://doi.org/10.
1016/S1535-6108(02)00180-0.

38. Xiong D, Sheng Y, Ding S, Chen J, Tan X, Zeng T, Qin D, Zhu L, Huang A,
Tang H. LINC00052 regulates the expression of NTRK3 by miR-128 and miR-
485-3p to strengthen HCC cells invasion and migration. Oncotarget. 2016;
7(30):47593–608. https://doi.org/10.18632/oncotarget.10250.

39. Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, Lutterbaugh JD,
Markowitz SD, Grady WM. NTRK3 Is a Potential Tumor Suppressor Gene
Commonly Inactivated by Epigenetic Mechanisms in Colorectal Cancer. Plos
Genet. 2013;9(7):e1003552. https://doi.org/10.1371/journal.pgen.1003552.

40. Hayashi K, Jutabha P, Endou H, Anzai N. C-Myc is crucial for the expression
of LAT1 in MIA Paca-2 human pancreatic cancer cells. Oncol Rep. 2012;28(3):
862–6. https://doi.org/10.3892/or.2012.1878.

41. Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV.
Evaluation of myc E-box phylogenetic footprints in glycolytic genes by
chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24:5923–36.
https://doi.org/10.1128/MCB.24.13.5923-5936.2004.

42. Mirza, Y., Ali, S., M., A., Awan, M., S., Idress, R., Naeem, S., Zahid, N., Qadeer, U.
Overexpression of EGFR in Oral premalignant lesions and OSCC and its
impact on survival and recurrence. Oncomedicine. 2018; 3:28–36. doi:
https://doi.org/10.7150/oncm.22614.

43. Lv X-X, Zheng X-Y, Yu J-J, Ma H-R, Hua C, Gao R-T. EGFR enhances the
stemness and progression of oral cancer through inhibiting autophagic
degradation of SOX2. Cancer Med. 2019;00:1–10. https://doi.org/10.1002/
cam4.2772.

44. Wilson KJ, Mill C, Lambert S, Buchman J, Wilson TR, Hernandez-Gordillo V,
Gallo RM, LMC A, Settleman J, Riese DJ II. EGFR ligands exhibit functional
differences in models of paracrine and autocrine signaling. Growth Factors.
2012;30(2):107–16. https://doi.org/10.3109/08977194.2011.649918.

45. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer:
relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121:
29–40. https://doi.org/10.1016/j.pharmthera.2008.09.005.

46. Heiden, M., G., V., Cantley, L., C., Thompson, C., B. Understanding the
Warburg effect: the metabolic requirements of cell proliferation. Science.
2009; 324(5930):1029–1033. doi: https://doi.org/10.1126/science.1160809.

47. Bhutia, Y., D., Ganapathy, V. Glutamine transporters in mammalian cells and
their functions in physiology and cancer. Biochim Biophys Acta (BBA) – Mol
Cell Res 2016; 1863(10):2531–2539. doi: https://doi.org/10.1016/j.bbamcr.
2015.12.017.

48. Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Glutamine Transport
and Mitochondrial Metabolism in Cancer Cell Growth. Front Oncol. 2017;
7(306). https://doi.org/10.3389/fonc.2017.00306.

49. Richardson AD, Yang C, Osterman A, Smith JW. Central carbon metabolism
in the progression of mammary carcinoma. Breast Cancer Res Treat. 2008;
110:297–307. https://doi.org/10.1007/s10549-007-9732-3.

50. Campbell PJ, Getz G, Korbel JO, et al. Pan-cancer analysis of whole
genomes. Nature. 2020;578:82–93. https://doi.org/10.1038/s41586-020-1969-6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Mukhopadhyay et al. BMC Cancer         (2020) 20:1219 Page 9 of 9

https://doi.org/10.1186/1471-2105-9-365
https://doi.org/10.1371/journal.pgen.1000602
https://doi.org/10.1186/1471-2105-13-S3-S15
https://doi.org/10.1186/1471-2105-13-S3-S15
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1016/j.csda.2007.08.015
https://doi.org/10.1016/j.patcog.2013.05.018
https://doi.org/10.1016/j.patcog.2013.05.018
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1198/tast.2009.08199
https://doi.org/10.1198/tast.2009.08199
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1007/978-1-4939-3167-5_18
https://doi.org/10.1007/978-1-4939-3167-5_18
https://doi.org/10.1089/nat.2012.0367
https://doi.org/10.1089/nat.2012.0367
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1101/gr.143503.112
https://doi.org/10.1101/gr.143503.112
https://doi.org/10.1186/gb-2014-15-4-r54
https://doi.org/10.1371/journal.pone.0014524
https://doi.org/10.1186/s12920-019-0654-9
https://doi.org/10.1186/s12920-019-0654-9
https://doi.org/10.18632/oncotarget.497
https://doi.org/10.18632/oncotarget.497
https://doi.org/10.1016/j.ccr.2014.07.028
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1016/j.jnutbio.2013.01.010
https://doi.org/10.1016/j.bbadis.2017.05.012
https://doi.org/10.1016/j.ccr.2007.11.012
https://doi.org/10.1016/S1535-6108(02)00180-0
https://doi.org/10.1016/S1535-6108(02)00180-0
https://doi.org/10.18632/oncotarget.10250
https://doi.org/10.1371/journal.pgen.1003552
https://doi.org/10.3892/or.2012.1878
https://doi.org/10.1128/MCB.24.13.5923-5936.2004
https://doi.org/10.7150/oncm.22614
https://doi.org/10.1002/cam4.2772
https://doi.org/10.1002/cam4.2772
https://doi.org/10.3109/08977194.2011.649918
https://doi.org/10.1016/j.pharmthera.2008.09.005
https://doi.org/10.1126/science.1160809
https://doi.org/10.1016/j.bbamcr.2015.12.017
https://doi.org/10.1016/j.bbamcr.2015.12.017
https://doi.org/10.3389/fonc.2017.00306
https://doi.org/10.1007/s10549-007-9732-3
https://doi.org/10.1038/s41586-020-1969-6

	Application of Random Forest and data integration identifies three dysregulated genes and enrichment of Central Carbon Metabolism pathway in Oral Cancer
	Recommended Citation
	Authors

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patient recruitment and sample collection
	DNA methylation
	Random Forest classifier
	Classification of samples
	RNA sequencing
	Integration of methylation and transcription data
	Enrichment analysis of pathways

	Results
	Identification of genes with abundant methylation in the non-promoter region
	Integration of methylation and gene-expression
	Enriched pathway

	Discussion
	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

