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Abstract We address the possibility of having an enhanced
signal for tensor non-Gaussianities in presence of a source,
as a signature of Primordial Gravitational Waves. We employ
a nearly model-independent framework based on Effec-
tive Field Theory of inflation and compute tensor non-
Gaussianities therefrom sourced by particle production dur-
ing (p)reheating to arrive at an enhanced signal strength.
We obtain the non-linearity parameters and also find that
squeezed limit bispectra are more enhanced than equilateral
limit.

1 Introduction

Even after the profound advancement in the Cosmic Micro-
wave Background (CMB) observations for nearly two decades,
Primordial Gravitational Waves (PGW) the so-called tensor
modes of perturbations still remain as the holy grail of early
universe cosmology. The latest bound on the amplitude of
two-point correlation function of tensor modes i.e tensor-to-
scalar ratio is r < 0.064 from Planck 2018 data [1]. All it
gives us is an impression that the signal strength of power
spectrum for PGW, if exists, would be really tiny, making it a
daunting task for next-generation CMB missions to detect it
some day. Despite this, from theoretical point of view, PGW
encodes crucial information about early universe cosmology.
PGW generated due to vacuum fluctuations during inflation
is directly related to inflationary energy scale. In absence
of any conclusive evidence of two-point function for PGW
until now, the community got curious about the three-point
function that reflects the non-Gaussian features of PGW, pri-
marily because it has potential to serve as an additional probe
of PGW. Over the last few years there has been some theoreti-
cal progress in this direction. In [2,3] the three-point function
for tensor modes is calculated for general single field slow

a e-mail: abhiatrkmrc@gmail.com (corresponding author)
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roll inflationary models. This analysis is further generalized
in [4,5].

For a recent review the reader can refer to [6]. These anal-
ysis are for tensor modes generated by vacuum fluctuations.
However, it has been pointed out in a previous article by the
present authors [5] in a model-independent framework based
on EFT of inflation, and also by others following particular
models, that the amplitude of bispectrum generated by vac-
uum fluctuations is generically small.

Apart from vacuum fluctuations, PGW can also be gen-
erated by some sources that may be present during the early
epoch. While some of these sources can affect the powerspec-
trum of PGW non-trivially, one can also investigate for non-
Gaussian features of PGW which has different momentum
dependence for different sources and hence can distinguish
among different sources and vacuum. Of late this revelation
has served as a strong motivation to explore non-Gaussian
statistics of PGW from possible sources. Subsequently, the
possibilities of producing comparatively large signal using
different sources have been investigated to some extent, for
example, using axion as a source [7,8], or using extra spin
particles during inflation [9].

The current observations are unable to detect any signif-
icant signal of tensor non-Gaussianities. Latest constraints
on the amplitude of three-point function with 1σ error are
f TN L = 600±1500 from WMAP [10] and f TN L = 800±1100
from Planck 2018 [11] for equilateral momentum configura-
tion and on the amplitude for tensor–scalar–scalar three point
function are f T SS

N L = 84±49 at 68% C.L. [12]. Nonetheless,
the methodology for bispectrum estimation is established
by adding B-mode polarization information [6]. Upcom-
ing CMB mission LiteBIRD [13,14] targets to improve the
results by three orders of magnitude. CMB-S4 [15] may
improve the tensor–scalar–scalar cross correlation result by
an order of magnitude. The dedicated gravitational waves
detector LISA [16] can directly probe the bispectrum of grav-
itational waves. Future missions like Advanced LIGO [17],
BBO [18] will work with improved sensitivity towards the
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detection of tensor non-Gaussianity. So it is important to
do a theoretical analysis on generic aspects of tensor non-
Gaussian statistics and interpret the constraints in the light
of upcoming observations.

In this article we intend to take up our previous model-
independent analysis [5] based on EFT of inflation and extend
it to possible sources. We want to explore if it is possible to
enhance the bispectrum of PGW due to (p)reheating process.
To this end we will make use of the EFT of inflation [19]
and EFT of (p)reheating [20]. As in the case of our previous
analysis [5], the present analysis depends solely on the EFT
parameters and different choice of these parameters leads to
different models.

In particular, we would be interested in proposing expres-
sions for non-linearity parameter fN L from the model inde-
pendent framework of EFT.

2 EFT, Graviton Lagrangian and (p)reheating

As mentioned, since our intention is to analyze the scenario
in a more or less model independent framework, we make use
of the EFT of inflation following our previous analysis [5],
that was originally developed in [19,21]. In this approach,
the inflaton field φ is a scalar under all diffeomorphisms but
δφ breaks the time diffeomorphism. Using this symmetry of
the system and unitary gauge where δφ = 0, the Lagrangian
can be written as [19]

S =
∫

d4x
√−g

[
1

2
M2

pl R − Λ(t) − c(t)g00

+1

2
M2(t)

4(g00 + 1)2 − M̄1(t)3

2
(g00 + 1)δKμ

μ

− M̄2(t)2

2
δKμ2

μ − M̄3(t)2

2
δK ν

μδKμ
ν +M3(t)4

3! (g00+1)3

− M̄4(t)3

3! (g00 + 1)2δKμ
μ − M̄5(t)2

3! (g00 + 1)δKμ2
μ

− M̄6(t)2

3! (g00 + 1)δK ν
μδKμ

ν − M̄7(t)

3! δKμ3
μ

− M̄8(t)

3! δKμ
μδK ρ

ν δK ν
ρ − M̄9(t)

3! δK ν
μδK ρ

ν δKμ
ρ + · · ·

]
.

(1)

The dots at the end of the Lagrangian represent higher
order fluctuation terms. As pointed out in [19], this is purely
gravitational Lagrangian where R is the Einstein curvature
term, g00 is the time-time component of the metric tensor,
K ν

μ is the extrinsic curvature, Λ(t), c(t), Mi and M̄i are the
parameters of the theory where parameters Λ(t) and c(t)
can be fixed by background evolution. The parameters Mi

and M̄i can in general be time dependent but in our analysis

we consider them as constants as the time dependence of
these parameters is slow roll suppressed. In (1) the scalar
perturbation is not explicit but can be reintroduced using
Stückleberg trick.

In Unitary gauge the perturbed metric can be written as,
gi j (t, x) = a2(t)[(1 + 2ζ(t, x))δi j + γi j (t, x)], where a(t)
is scale factor, ζ(t, x) is scalar perturbation and γi j (t, x) is
tensor perturbation which is transverse and traceless satisfy-
ing, γi i = 0 and ∂ jγi j = 0. In terms of γi j the Lagrangian
(1) takes the form

ST3 =
∫

d4x
√−g

[
M2

pl

8

(
γ̇ 2
i j − (∂kγi j )

2

a2

)
− M̄2

3

8
γ̇ 2
i j

−M2
pl

8

(
2γikγ jl − γi jγkl

) ∂k∂lγi j

a2 − M̄9

3! γ̇i j γ̇ jk γ̇ki

]
,

(2)

where a dot on the operators denotes derivative with respect
to time. The propagation speed of tensor fluctuation gets

modified as c2
γ = M2

pl

M2
pl−M̄2

3
due to the presence of M̄3

parameter.
Equation (2) is the most general third order Lagrangian

for single field inflation. It has been shown that the term
proportional to M̄9 along with the Einstein term contribute
to tensor bispectrum [5]. For our present investigation, our
intention is to add, on top of this, the EFT of (p)reheating
that was developed in [20]. Here, apart from the inflaton
fluctuation, one more degree of freedom is considered. This
approach also assumes that the background breaks the time
diffeomorphism spontaneously and the construction of the
Lagrangian is similar as [19]. For (p)reheat field χ it can be
written as,

Sχ =
∫

d4x
√−g

[
−α1(t)

2
gμν∂μχ∂νχ + α2(t)

2
(∂0χ)2

−α3(t)

2
χ2 + α4χ∂0χ

]
. (3)

Here αi ’s are parameters of the theory. With time repara-
metrization invariance, parameter α4 has been set to zero
[20]. Note that the (p)reheat particles also have non-trivial
propagation speed

c2
χ = α1

α1 + α2
. (4)

In our analysis we consider α1 and α2 to be time independent
and hence the propagation speed is also time independent.

123



Eur. Phys. J. C (2020) 80 :1158 Page 3 of 8 1158

3 Two-point correlation function

With (p)reheating particles as source with energy-momen-
tum tensor Tab(x, t) the equation of motion for γi j (x, t) is
given by,

γ
′′
i j (x, τ )−2

a′

a
γ ′
i j (x, τ )+c2

γ Δγi j (x, τ ) = 2

M2
p
Πab

i j Tab(x, τ ).

(5)

Here ′ denotes derivative with respect to conformal time τ ,
and Πab

i j is the transverse traceless projection tensor. Written
explicitly,

Πab
i j = Πa

i Πb
j − 1

2
Πi jΠ

ab, with Πi j = δi j − ∂i∂ j

Δ
. (6)

So the transverse traceless part of energy momentum tensor
becomes

Πab
i j Tab = −α1Π

ab
i j ∂aχ∂bχ. (7)

Taking Fourier transform the solution for Eq. (5) can be
obtained by Green’s function method,

γi j (k, τ ) = 2

M2
p

∫
dτ ′Gk(τ, τ

′)Πab
i j Tab(k, τ

′), (8)

where the expression for Green’s function Gk(τ, τ
′) is given

by,

Gk(τ, τ
′) = 1

c3
γ k

3τ ′2
[
(1 + c2

γ k
2ττ ′) sin cγ k(τ − τ ′)

+cγ k(τ
′ − τ) cos cγ k(τ − τ ′)

]
Θ(τ − τ ′)].

(9)

It is worthwhile to mention that in (9) the non trivial propaga-
tion speed of tensor fluctuation plays a crucial role in deter-
mining the Green’s function and hence the powerspectrum.
This will be obvious from the following analysis. In what fol-
lows we employ the method of [22] to calculate the two-point
correlation function for our setup of nontrivial contribution
from the EFT parameters.

Using this Green’s function the power spectrum for tensor
modes sourced by (p)reheat field turns out to be

〈
γi j (k, τ )γ i j (k, τ ′)

〉

= α2
1

2π3M4
p

∫
dτ ′

a(τ ′)2 Gk(τ, τ
′)

×
∫

dτ ′′

a(τ ′′)2 Gk(τ, τ
′′)Πab

i j (k)Πcd
i j (k′)

×
∫

d3 pd3 p′ pa(kb − pb)p
′
c(k

′
d − p′

d)

× 〈χ(p, τ ′)χ(k − p, τ ′)χ(p′, τ ′′)χ(k′ − p′, τ ′′)
〉
.

(10)

In order to evaluate the correlation functions we need to
analyze the dynamics of χ particles. Varying (3) with respect
to χ one arrives at the following equation of parametric oscil-
lator

χ ′′
c (k, τ ) + ω2(k, τ )χc(k, τ ) = 0, (11)

where, χc = aχ(α1 +α2) and the frequency of the oscillator
is given by

ω2(k, τ ) = k2c2
χ + a2(τ )

α3(t)

α1 + α2
− a′′

a
. (12)

This clearly shows the nontrivial modifications to the fre-
quency that arises due to the EFT of (p)reheating.

Consequently, the solution for (11) becomes

χc = 1√
2ω

(
α(k, τ )e−i

∫ τ
ω + β(k, τ )ei

∫ τ
ω
)

, (13)

where α and β are the Bogolyubov coefficients.
To proceed further, we need to find explicit time depen-

dence of ω(k, τ ) i,e we need to find the functional form of
α3(t)

α1+α2
. In order to do that we have to remember that there are

two important energy scales in the theory: the cosmological
time H−1, H being the Hubble parameter and the time scale
associated with the frequency of oscillations (ωosc) of infla-
ton at the end of inflation. This corresponds to a hierarchy
of scales [20]. At high energies E > ωosc > H the time
translation is unbroken. When E < ωosc the time transla-
tion symmetry is broken as discrete symmetry and at even
lower energy E < H < ωosc cosmological expansion breaks
time translation symmetry. As a consequence the background
Hubble parameter can be written as a sum of slowly time
dependent function and an oscillatory function [20,23],

H(t) = Hsr (t) + Hosc(t)P(ωosct), (14)

where, Hsr (t) and Hosc(t) are slowly time dependent func-
tions and P(ωosct) is some periodic function. Now the
parameters of EFT of (p)reheating can be written as a func-
tion of Hubble parameter and its derivatives [20] and hence
will be periodic in nature. If we expand the periodic function
α3(t)

α1+α2
with frequency ωα3 around its minimum t0 then it can

be written as,

α3(t)

α1 + α2
∝ ω2

α3
(t − t0)

2 + · · · (15)
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In general the frequency ωα3 can be different than ωosc

and the dots represent higher order terms in the expansion.
In our analysis we consider upto second order in time expan-
sion. Physically the parameter α3(t) describes the interaction
between inflaton and χ particles. So our choice in (15) can
be written in an alternative way in terms of inflaton field,

α3(t)

α1 + α2
= g2

2
(φ − φ0)

2, (16)

where, φ0 = φ(t = t0) and considering de-sitter back-
ground and with slow roll approximation we can assume
that, φ(t) = φ̇0t where φ̇0 is constant, so t0 present in (15)
can be written as, t0 = φ0

φ̇0
. The parameter choice of (16)

is consistent with the background evolution and symmetry.
With these parameter choices of EFT of inflation and EFT of
(p)reheating we are able to analyze the production of PGW
due to (p)reheating from a fairly general class of inflation-
ary models and a class of (p)reheating models where the
propagation speed of produced particle is non-trivial and the
interaction between inflaton and the (p)reheating particles is
described by (15) and (16).

With the parameter choice of (16), non-adiabatic condition
leads to a constraint g >> H2

φ̇0
, and with this constraint we

can neglect the expansion of universe and can consider H
as a constant in time [22]. With these approximations the
Bogolyubov coefficients turn out to be

α(k, τ > τ0) =
√

1 + e
−c2

χ k2H2τ2
0

gφ̇0 eiαk , (17)

and

β(k, τ > τ0) = ie
−c2

χ k2H2τ2
0

2gφ̇0 , (18)

whereαk = Arg

(
Γ

(
1/2 + i

−c2
χ k

2H2τ 2
0

2gφ̇0

))
+−c2

χ k
2H2τ 2

0

2gφ̇0
(1−

log
−c2

χ k
2H2τ 2

0

2gφ̇0
).

With these initial conditions, we will now work in the
non-relativistic limit as the Bogolyubov coefficients contain
exponential momentum suppression, for which ω(|k− p|)−
ω(p) = 0 and ω2 = g2φ̇0

2

H4τ 2

[
ln
(

τ0
τ

)]2.
Consequently, the two-point correlation function looks

〈
γi j (k, τ )γ i j (k′, τ )

〉

= α2
1

(α1 + α2)2

δ(k + k′)
8π3M4

p

∫
d3 p

(
p2 − p.k

k2

)2

×
∫

dτ ′

a(τ ′)2

GK (τ, τ ′)√
ωp(τ ′)ωk−p(τ ′)

×
∫

dτ ′′

a(τ ′′)2

GK (τ, τ ′′)√
ωp(τ ′′)ωk−p(τ ′′)

× (2|β(p)|4 + 2|α(p)|2|β(p)|2). (19)

The τ → 0 limit of the above Green’s function is given

by, Gk(0, τ ′) = cγ kτ ′ cos(cγ kτ ′)−sin(cγ kτ ′)
c3
γ k

3τ ′2 . Hence, upon per-

forming the p and τ integration we get,

〈
γi j (k, τ )γ i j (k′, τ )

〉

= δ(k + k′)
4π5M4

p

H

c6
γ k

6c3
χ

(gφ̇0)
3/2

τ 3
0

(
1 + 1

4
√

2

)

× (cγ kτ0 cos(cγ kτ0) − sin(cγ kτ0)
)2
(

ln

√
gφ̇0

H

)2

.

(20)

The role of non-trivial propagation speed cγ and cχ are now
crystal-clear from (20). They can be used to tune the signal
strength of the two-point function. For example, it can be
enhanced in the limit cγ → 0 or cχ → 0 or cγ , cχ → 0. So,
it is expected that they will play crucial role in determining the
signal strength of three-point correlation functions as well.
However, we will concentrate on this in the next section.

The total power spectrum for tensor modes reads

PT (k) = 2H2

M2
Pcγ π2

⎡
⎣1+ H2

M2
pπ

3c5
γ c

3
χ

(gφ̇0)3/2

H3

(
1+ 1

4
√

2

)

×
(
cγ kτ0 cos(cγ kτ0)− sin(cγ kτ0)

)2
k3τ3

0

(
ln

√
gφ̇0

H

)2
⎤
⎦ . (21)

It can be verified that the function (cγ kτ0 cos(cγ kτ0)−sin(cγ kτ0))
2

c3
γ k

3τ 3
0

gets maximum value at cγ kτ0 = 2.46. In order to com-
pare with the existing results in the literature, we take the
same representative values for the parameter as in [22]:
g = 1, H = 1013 GeV/c2, Mp = 2.48 × 1018 GeV/c2 and
φ̇0 = √

2εHMp where, ε = 0.005. As a result, the tensor
power spectrum becomes

PT (k) = 2H2

M2
Pcγ π2

[
1 + 6.75 × 10−6 1

c2
γ c

3
χ

]
. (22)

In the existing literature (e.g., [22]), the second term in the
parenthesis was generically small. However, in the present
analysis, it can be significantly large due to nontrivial speed
of propagation. For example, if the second term is of order
of one, the signal strength of two point correlation function
of PGW due to (p)reheating can be of the same order of the
vacuum contribution. Figure 1 demonstrates the comparative
values of the two speed of propagation in order to achieve
this.
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Fig. 1 The correlation between cγ and cχ for large contribution of
reheating sourced two point correlation function

Let us explain it with a particular example. If we take a
representative value for the tensor-to-scalar ratio as r ≈ 0.06
that is close to the upper bound set by the latest Planck 2018
data [1], then for cγ = 1, cχ ≈ 0.02 the second term will be
O(1). However, the signal strength of two point correlation
function due to (p)reheating particles can be much larger than
the signal strength due to vacuum fluctuations if cγ and cχ

become smaller than the above mentioned limit. Also we have
noted earlier that the signal strength gets maximum contri-
bution for cγ kτ0 = 2.46, so the peak frequency of the signal
will be dependent on cγ . The peak frequency will be higher
for a smaller cγ . So the detectability of the signal is depen-
dent on the EFT parameters and as explained above there
lies a region in the parameter space where the signal strength
becomes strong with peak frequency determined by cγ . This
can be of interest for the upcoming gravitational wave (GW)
missions such as the Einstein telescope [25] which will oper-
ate in the high frequency limit where the GW signal strength
produced from (p)reheating gets peaked.

The reason for the enhancement of the signal is that for
cχ < 1 the resonance band become broadened and there is an
enhancement in particle production as discussed in [20]. On
the other hand according to [24] small propagation speed of
tensor fluctuation is also responsible for large signal because
non canonical inflationary case is responsible for a saw-tooth
like profile of inflaton which moves the system to broad para-
metric resonance and significant particle production occurs.
Note that in the above analysis we did not consider the non-
adiabatic scenario as it is shown in [22] that this regime pro-
duces same result as the adiabatic regime.

4 Three-point correlation function

Having convinced ourselves about the role of the non-trivial
propagation speed on the signal strength, let us now move
forward to calculate the three-point function for (p)reheating-
sourced gravitational waves. The expression for three-point
function is given by

〈γ s1(k1)γ
s2(k2)γ

s3(k3)〉

=
(

−2α1

2π2M2
p

)3 ∫
dτ1dτ2dτ3

a(τ1)2a(τ2)2a(τ3)2

× es1
i1 j1

es2
i2 j2

es3
i3 j3

Πab
i1 j1(k1)Π

cd
i2 j2(k2)

× Π
e f
i3 j3

(k3)p1a p1b p2c p2d p3e p3 f

× 〈χ(p1, τ1)χ(k1 − p1, τ1)χ(p2, τ2)

χ(k2 − p2, τ2)χ(p3, τ3)χ(k3 − p3, τ3)〉, (23)

where si are helicity indices and esii j are polarization ten-
sors. To fix the representation of polarization tensors we
take a particular ki basis and consider that this basis is
lying on (x, y) plane. In doing so we will not lose any
generality because of the momentum conserving δ func-
tion. In what follows we will choose the representation
adapted in [26]: k1 = k1(1, 0, 0), k2 = k2(cos θ1, sin θ1, 0),
k3 = k3(cos θ2, sin θ2, 0) where

cos θ1 = k2
3 − k2

1 − k2
2

2k1k2
,

sin θ1 =
√

2k2
1k

2
2 + 2k2

2k
2
3 + 2k2

1k
2
3 − k4

1 − k4
2 − k4

3

2k1k2
,

cos θ2 = k2
2 − k2

1 − k2
3

2k1k3
,

sin θ2 = −
√

2k2
1k

2
2 + 2k2

2k
2
3 + 2k2

1k
2
3 − k4

1 − k4
2 − k4

3

2k1k3
.

With this choice the polarization tensors can be written as,

es1(k1) =
⎛
⎝0 0 0

0 1 is1

0 is1 −1

⎞
⎠ , (24)

es2(k2) =
⎛
⎝ sin2 θ1 − sin θ1 cos θ1 −is2 sin θ1

− sin θ1 cos θ1 cos2 θ1 is2 cos θ1

−is2 sin θ1 is2 cos θ1 −1

⎞
⎠ ,

(25)

es2(k3) =
⎛
⎝ sin2 θ2 − sin θ2 cos θ2 −is2 sin θ2

− sin θ2 cos θ2 cos2 θ2 is2 cos θ2

−is2 sin θ2 is2 cos θ2 −1

⎞
⎠ .

(26)
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Consequently, the total three-point function gives us,

〈γ s1(k1)γ
s2(k2)γ

s3(k3)〉total = 〈γ s1(k1)γ
s2(k2)γ

s3(k3)〉vac

+ 〈γ s1(k1)γ
s2(k2)γ

s3(k3)〉so,

(27)

where the subscripts “vac” and “so” stand for “vacuum” and
“source” (here, (p)reheating) respectively and these abbrevi-
ations would be used in the rest of the article.

As already mentioned, the vacuum solution has been
explored at length in a previous article by the present authors
[5] and is given as,

〈γ s1(k1)γ
s2(k2)γ

s3(k3)〉vac = (2π)3δ(3)(k1 + k2 + k3)

× F(s1k1, s2k2, s3k3)

×
(

64H4

c2
γ M

4
pl

A(k1, k2, k3)(s1k1 + s2k2 + s3k3)
2

k3
1k

3
2k

3
3

+4M̄9H5

M6
pl

1

k1k2k3

1

(k1 + k2 + k3)3

)
, (28)

where A(k1, k2, k3) = K
16

(
1 − 1

k3

∑
i 	= j k

2
i k j − 4k1k2k3

K 3

)
with K = k1 + k2 + k3, and F(x, y, z) = − 1

64x2y2z2 (x +
y + z)3(x + y − z)(x − y + z)(y + z − x).

We will calculate the contribution from source term here.
In evaluating the three-point function, we will use the same
approximation of adiabatic regime as in the case of two-point
function. By employing this approximation, the source part
of the three-point function takes the form

〈γ s1(k1)γ
s2(k2)γ

s3(k3)〉so

= −
(

2

(2πMp)2

)3 α3
1

(α1 + α2)3

× H12τ 6
0

g3φ̇3
0k

3
1k

3
2k

3
3c

9
γ

(
ln

√
gφ̇0

H

)3

(Ak + Bk)

×
3∏

i=1

(
cγ kiτ0 cos(cγ kiτ0) − sin(cγ kiτ0)

)
, (29)

where the terms Ak and Bk have very tedious expressions.
For completeness, we summaries them below:

Ak = (gφ̇0)
7
2

124416c9
χ H

9π3τ 9
0

(
k4

1 + (k2
2 − k2

3)2 − 2k2
1(k2

2 + k2
3)
)

k2
1k

2
2k

2
3

×
(
−3(81

√
2 + 16

√
3)
)

πτ 2
0 H

2c2
χ

×
{
k4

1 + k2
1(6k2

2 − 2k2
3) + (k2

2 − k2
3)2 + 4k3

1k2s1s2

+4k1k2(k
2
2 − k2

3)2s1s2

}
+ 5 perms, (30)

Fig. 2 The bispectra is plotted as a function of k1
k2

and k3
k2

Bk = (gφ̇0)
7
2

124416c9
χ H

9π3τ 9
0

(
k4

1+(k2
2−k2

3)2−2k2
1(k2

2+k2
3)
)

k2
1k

2
2k

2
3

gφ̇

× 2(243
√

2 + 32
√

3)(k2
1 + k2

2 + k2
3 + 2(2k1k2s1s2

+ 2k1k3s1s3 + 2k2k3s2s3)). (31)

Note that Bk is the sum of all six permutations.
As mentioned, the resulting three-point function (27) is

the sumtotal of (28) and (29).
Let us now critically investigate for the results thus

obtained. To do so, we will have the following observations.
First, from the expression of Ak and Bk we can see that they
can be written as,

Ak = C(c2
χ f (k)), (32)

Bk = C(gφ̇g(k)). (33)

Where C = 1
124416c8

χ H
8π3τ 8

0

√
gφ̇

c2
χ H

2τ 2
0
(gφ̇)3 and f (k) and

g(k) encodes all the momentum dependence and relevant
prefactors. It is evident from the above expression that for a
small cχ we can neglect Ak and only Bk contributes to the
three point function.

Secondly, the term
(
cγ kiτ0 cos(cγ kiτ0) − sin(cγ kiτ0)

)
can be expanded for small cγ and upto third order in cγ can
be written as, (cγ kiτ0)

3. In order to extract out the momen-
tum dependence of the bispectra from complicated functional
form of Bk we are working in a limit where we can keep up
to c3

γ term and can neglect c2
χ term.

The resultant contributions have been pictorially depicted
in Fig. 2. The figure shows the momentum dependence of the
bispectra as a function of k1

k2
and k3

k2
. The essential conclusion

that can be readily obtained from the above figure is that
for k1

k2
→ 0 and 0.755 < k3

k2
≤ 1 we get large amplitude

for the bispectra. This shows that intermediate momentum
configurations other than squeezed limit and equilateral limit
can contribute significantly to the signal.
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Also we get positive contribution for squeezed and equilat-
eral limit and much larger amplitude for the bispectra which
cannot be achieved in case of vacuum.

This was the primary goal of the present article. We shall
elaborate more on this in the following section.

5 Estimation of fNL

We are now in a position to calculate the expressions for the
nonlinearity parameter fN L . In what follows we shall make
use of the same definition of the non-linearity parameter as
adopted in [5], namely, 6

5 fN L = 〈γ γ γ 〉
Pζ (k1)+Pζ (k2)+Pζ (k3)

, where
Pζ (k) is the scalar powerspectrum and can be written as,

Pζ (k) = 2π
k3

H2

8πM2
pl cs

(
k
k∗

)(ns−1)

with ns and cs being the

spectral tilt and sound speed of scalar perturbations respec-
tively. Also, the tensor modes generated due to vacuum fluc-
tuation would in any case be small, the templates for which
have already been proposed in the previous article [5]. Hence,
in this article we would be interested only about the three-
point function due to source term 〈γ s1(k1)γ

s2(k2)γ
s3(k3)〉so

in formulating the templates. As has been pointed out, we
are interested about any significant enhancement of signal.
Hence, we would consider the scenario where the three-
point function due to source term would have been dominant
contribution to 〈γ s1(k1)γ

s2(k2)γ
s3(k3)〉total in Eq. (27) and

would investigate if this is achievable with the parameters
under consideration.

Like the vacuum solution, in the case of equilateral limit
k1 = k2 = k3 we have two independent non-linearity param-
eters. They are given by

f +++,eq
N L = f −−−,eq

N L =
1945.07gφ̇0

(
ln
√
gφ̇0
H

)3

M2
pc7

γ c
3
χ k

3
1τ3

0

× (cγ k1τ0 cos(cγ k1τ0) − sin(cγ k1τ0)
)3

×
(
csε

cγ

)2
√
gφ̇0

H
(k1/k∗)−2(ns−1) , (34)

f +−+,eq
N L = f ++−,eq

N L = f −+−,eq
Nl

= f −−+,eq
N L = f +−−,eq

N L = f −++,eq
N L

=
216.12gφ̇0

(
ln
√
gφ̇0
H

)3
(cγ k1τ0 cos(cγ k1τ0)− sin(cγ k1τ0))3

M2
pc7

γ c
3
χ k

3
1τ3

0

×
(
csε

cγ

)2
√
gφ̇0

H
(k1/k∗)−2(ns−1) . (35)

Consequently, for the squeezed limit, we get the following
non-linearity parameters

f +++,sq
N L = f −−−,sq

N L = f +−−,sq
N L = f −++,sq

N L =
k1→0

×
3457.89gφ̇

(
ln

√
gφ̇
H

)3

M2
pc

7
γ c

3
χk

3
2τ 3

0

3∏
i=1

× (cγ kiτ0 cos(cγ kiτ0) − sin(cγ kiτ0)
)

×
(
csε

cγ

)2
√
gφ̇

H
(k2/k∗)−2(ns−1) . (36)

We can see from the above expressions of fN L that a small
propagation speed of either tensor fluctuations or preheat-
ing particles can lead to a large amplitude for tensor bispec-
trum. The non-Gaussian signal produced from (p)reheating
can not be observed in CMB scales but can be observable in
GW interferometers. However current interferometers still
do not probe the scales where the signal can be detectable.
But we should note that as the signal can be large for param-
eter combination mentioned above, the next iterations of the
interferometers which can probe higher frequencies can have
a chance to detect them.

Here we consider CMB constraints on squeezed limit and
equilateral limit bispectra [6,27,28] to show the difference in
magnitude of equilateral and squeezed limit and to demon-
strate how the constraint on cχ changes, though one should
remember that CMB constraint may not be applicable to the
derived fN L . As we have stated earlier, from (p)reheating the
two point function is peaked at cγ kiτ0 = 2.46 and for cγ = 1
and cχ = 0.02 the signal strength becomes of the same order
of vacuum contribution. For squeezed limit fN L where one
momentum is smaller than the other two momenta, we con-
sider that

klarge
ksmall

≈ 10. The constraint on squeezed limit from
Planck is 290 ± 180 [28]. Using the above approximations
and the upper limit of observational value of f +++,sq

N L = 470
we get cχ > 0.2. Using the new constraint on cχ we can esti-
mate the f +++,eq

N L = 0.3 (k1/k∗)0.071. Here we have used the
best fit value for ns = 0.9645 from Planck 2018 [1]. From
these estimations we can see that for cγ = 1 and small cχ

squeezed limit bispectrum is much larger than equilateral
limit for PGW produced from (p)reheating. This nature is
also visible in Fig 2, but there we used an approximation
such that we can keep terms upto c3

χ and neglect terms pro-
portional to cχ . So for small cχ squeezed limit will always
be larger than the equilateral limit independent of whether
cγ is small or unity.

Of course, these numerical estimations are not too accurate
as we have considered the coupling constant to beO(1)which
may not be strictly valid.

Also one have to use the late time GW detectors’ constraint
on fN L to analyze the scenario. In this work we refrain from
commenting about the detectability of the signal by upcom-
ing GW missions rather our target was to demonstrate that
using EFT in inflation and (p)reheating, large signal for tenor
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non-Gaussianities can be produced due to the presence of non
trivial propagation speed of χ particles and tensor modes.

The bottomline of the above analysis is that we can have
an enhanced tensor non-Gaussian signal from (p)reheating
with non-trivial propagation speed cχ .

Also, particle production from non-canonical inflation
with cγ < 1 can enhance the tensor non-Gaussian signal
further. A rather conservative statement would be that, the
non-Gaussian signal produced from (p)reheating can fall well
within the reach of next generation GW missions. As men-
tioned earlier Einstein telescope will operate on the relevant
frequency range to detect preheating produced GW signal
[25], and this non-trivial non-Gaussian property of PGW can
be of relevance for this kind of observations. However, an
actual comparison with the sensitivity of upcoming GW mis-
sions can only confirm this.

6 Conclusion

In this article we have presented a way to enhance the signal
for tensor three-point function sourced by (p)reheating. Our
analysis is based on EFT of inflation and (p)reheating, so we
were able to analyze a large class of models where the inter-
action between inflaton and (p)reheating particle is described
by the choice of the EFT parameter α3. Using EFT we have
been able to deal with a non standard case for (p)reheating
for which the propagation speed of (p)reheat particle χ is
different from unity. We have demonstrated that tuning this
non-trivial propagation speed of (p)reheating particles along
with the propagation speed of tensor fluctuation one can actu-
ally enhance the signal of tensor non-Gaussianities which
was not achievable in the vacuum as well as in the standard
(p)reheating analysis. We have further been able to propose
templates for the non-linearity parameter fN L for these class
of models and found that, like the source-free case, here also
squeezed limit bispectrum is stronger than equilateral limit.
As a result, possibility of detection in future mission of the
squeezed limit is higher along with the momentum range
described in Section IV. An actual comparison with the sen-
sitivity of upcoming GW missions is beyond the scope of
present article. We hope to address this issue with forecasts
on couple of next-generation surveys in near future.
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