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Improved Spatial Information Based Semisupervised
Classification of Remote Sensing Images

Neeta S. Kothari, Student Member, IEEE, Saroj K. Meher

, Senior Member, IEEE,

and Ganapati Panda, Senior Member, IEEE

Abstract—Motivation in the use of semisupervised learning
method is because of its ability to strategically explore and use
abundantly available unlabeled samples along with the limited
number of labeled samples, as seen in the remote sensing (RS)
imagery. In this direction, the present article proposes a semisu-
pervised classification model with spatial information based self-
learning methodology to classify land covers in RS images. The
model uses granular neural network (GNN) as the base classifier
because of its customizable network architecture that is func-
tionally interpretable and costs less computational complexity.
Architecture of GNN is governed by fuzzy if-then rules that are
generated from fuzzy granulation of input feature space. We have
used an improved spatial neighborhood learning method for better
understanding of data distribution in a semisupervised framework.
The method collects the information with collaborative opinions of
two independent information extraction approaches, i.e., based on
mutual neighborhood criteria and class map of unlabeled samples.
Superiority of the proposed model with existing methods are estab-
lished with different RS images in terms of various performance
measurement indexes.

Index Terms—Fuzzy granulation, granular neural network
(GNN), land cover classification, neural networks, pattern
recognition, remote sensing (RS), semisupervised learning.

NOMENCLATURE
,G_3, Similarity matrices.

n-dimensional sample/pattern/pixel.
M Loss function used for training the GNN.

Land U Number of labeled and unlabeled samples.
M and M, Component of M for L and U samples.
¢y, and py Actual and predicted class labels of [;.
V() Hinge loss function.

T(.) Regularization function.

u; and u; Pair of unlabeled samples.

Pu, and py, Predicted class label of u; and u;.
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SMy;u; Similarity matrix for u; and u;.

Pu Control parameter for 7°(.).

n Learning rate.

Dy, and gy, Classifier o/p and pseudoclass label for u.
C Total number of classes.

T. Total computation time.

DS, DB, and #  Performance measurement indexes.

I. INTRODUCTION

DVANCEMENT in the sensor technology has increased
A the information content of remote sensing (RS) images,
which can be useful to many applications, e.g., land resource
management, soil erosion, and biodiversity. Various types of
sensors are used to collect RS images that result in the gen-
eration of diverse data and eventually poses several challenges
for classification task. Scarcity of labeled samples is a major
concern for efficient land cover classification of RS data, with
supervised models. Although, collection of labeled samples is
time consuming and expensive, unlabeled samples are abun-
dantly available. For this reason, semisupervised learning (SSL)
based classification models are successfully being used in the
RS domain that explore and learn from both limited number of
labeled and large number of unlabeled samples.

In order to address the issue of limited labeled samples in RS
data and the best features for classification task, many research
works are being carried out using deep learning architectures [1],
[2] and tensor-based methods [3]. Recently, two review arti-
cles [4], [S] have described a general framework of deep learning
and its applications to RS data. The state-of-the-art deep learning
models for RS are regarded as special cases of SSL with various
deep networks and tuning tricks.

In another approach of dealing with limited labeled samples,
several research attempts have been made in the development
of efficient semisupervised classification models for RS im-
ages [6]-[12]. Among them, self-training [9] and co-training [7]
are the most popular approaches. With self-training, size of the
available training set is increased strategically with the selected
unlabeled samples, whereas co-training [7] and tri-training [10]
methods work with two and three different classifiers that are
trained simultaneously with separated feature subsets of the
labeled data, respectively. However, obtaining these feature
subsets that are conditionally independent and individually suf-
ficient is very difficult. These factors motivated us to use the
self-training method for the proposed classification model.
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With this reasoning, various self-learning classification mod-
els have been proposed, for example, support vector machines
(SVMs) [13], transductive SVMs (TSVMs) [13], Laplacian
SVMs (LapSVMs) [14], [15], graph-based methods [6], and
spatial-spectral information based semisupervised classification
(S?1SC) [16]. Although accuracies are good using these models,
they are computationally very expensive. In S2ISC method, the
most informative and confident unlabeled samples are selected
on the basis of neighborhood information, which are determined
collaboratively with spatial and spectral information [16]. This
method produces comparatively higher classification accuracy
than the methods, that utilizes only spectral information and
randomly selected unlabeled samples. In kernel methods, such
as SVM and TSVM, training is done by solving a convex
optimization problem (i.e., no local minima). These methods
can handle the high dimensionality of the samples and can take
care of noisy samples effectively. LapSVM is a semisupervised
extension of the SVM that performs well and provides improved
classification accuracy compared to the conventional SVM and
TSVM. However, kernel computation makes the SVM-based
methods computationally complex and, thus, may not handle a
large number of samples, e.g., RS images. Also, LapSVM uses a
functional form of Laplacian eigenmaps that leads to constrained
optimization issue.

Ratle et al. in [8] proposed a semisupervised self-learning
(SSSL) framework with NN (as the base classifier) to address
the above-mentioned issues associated with kernel methods,
and used an appropriate loss function instead of Laplacian
eigenmaps. The method can efficiently process a large number
of unlabeled samples. The properties associated with NN, such
as adaptivity, speed, fault tolerance, ruggedness, and optimality,
make the model more effective to classify large size RS image.
With these factors, SSSL. NN [8] outperformed other existing
SSSL methods [13]-[15]. To improve the SSSL NN further, Im
and Taylor [17] proposed an improved method called neighbor-
hood graph learning (NGL), which was implemented with NN
to obtain the neighborhood information. However, complexity
in the design of model’s architecture becomes a huge burden
for this model. In addition, this conventional NN behaves like a
black box for the developers. It is indeed difficult to interpret
the learned information and the way it has learned. This is
primarily due to the fact that the features in the upper layers
are typically used in complex ways compared to the lower
layers and it is hard to understand the relationship between
the representations learned at each layer. To mitigate these
issues, the present article proposes to design a computationally
efficient SSSL model using the framework described in [8], by
using granular neural network (GNN) [18] as the base classifier
instead of conventional NN. The model is further modified
and improved using efficient neighborhood information extrac-
tion method that exploits the unlabeled samples and utilizes
them for learning the base classifier. GNN is an interpretable,
transparent, and computationally cost-effective network with
better generalization ability compared to conventional NN [19],
[20].

Many research studies have been successfully carried out
based on the spatial neighborhood information [8], [17],
[21]-[23] of unlabeled samples to improve the performance of
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Fig. 1.  Schematic flow diagram of the proposed self-learning semisupervised
classification model.

semisupervised classification model. Ratle et al. [8] trained the
NN-based model in the framework of SSSL for the classification
of RS images and uses the spatial neighborhood information of
unlabeled samples. Ratle et al. [8] considered two samples a
and b as neighbors, if a is neighbor to b only. There is every
possibility that b may not be neighbor to a and, hence, the method
becomes an incomplete assessment of neighborhood informa-
tion. In this article, we have computed the complete/true spatial
neighborhood by checking neighboring criteria in both ways.
This criterion is more logical to put two samples in the same
class or in different classes. Additionally, we have computed
neighborhood information of samples with one more method,
i.e., based on the class labels of unlabeled samples, where the
predicted class map is obtained by a suitable classifier. This step
of computation provides one more layer of confidence in the
selection of unlabeled samples by the earlier method. Finally,
the collaborative spatial neighborhood information obtained by
these two methods are used to train the base classifier. Efficacy
of the proposed model have been verified in the classification of
two multispectral RS (MSRS) and two hyperspectral RS (HSRS)
images.

The contribution in this article is four-fold. The first one is the
characterization of spatial information with the mutual neighbor-
hood criterion of samples. The second one is the characterization
of spatial information with the class label of neighbors for the
considered sample. The third contribution is the collaborative
combination of spatial information obtained through the afore-
mentioned two operational steps. Finally, the use of GNN (as
the base classifier) in the learning process of the proposed model
that is designed with the adaptive fuzzy rules. Performance of
the model was compared with various state-of-the-art methods.

II. PROPOSED CLASSIFICATION MODEL

Using the generic framework of semisupervised self-learning
(SSSL) approach, we have proposed a classification model with
the functional block diagram shown in Fig. 1. The processing
steps of the training phase use both labeled and unlabeled
samples strategically to train the base classifier, as explained
in Block A of Fig. 1, whereas the operations in Block B are kept
similar to a generic SSSL model. While developing the proposed
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Fig. 2.  Generation of similarity matrix. (a) G_1. (b) G_2.

model, we extract the spatial neighborhood information of each
unlabeled sample and represent it in a similarity matrix (G_5).
G_5 is a collaborative neighborhood information of similarity
matrixes G_2 and GG_3 obtained through the mutual agreement
of neighborhood and class-map criterions, respectively. GNN
is used as the base classifier for the model that takes the fuzzy
granulated features as the input and process them. The architec-
ture of the GNN is then designed based on the extracted adaptive
fuzzy if-then rules obtained from the domain information of the
dataset. The detail descriptions of each step of operation for the
proposed SSSL GNN classifier are made in the following.

A. Similarity Matrix Generation

Spatial neighborhood information of each of the unlabeled
samples is extracted and the respective similarity matrix is
generated for the learning process of the semisupervised clas-
sification model. Elements of the similarity matrix are assigned
a value “1” for the two neighborhood samples and “0” for two
nonneighbors. Stepwise operations in the generation of these
different similarity matrixes are described in the following.

1) Similarity Matrix G_1: Ratle et al. in [8] have used a
similarity matrix (now onward we name itas G_1) in the learning
process of SSSL NN, which is generated through ()-nearest
neighbors of each unlabeled sample. Euclidean distance is used
to generate this matrix. Fig. 2(a) illustrates the elements of
the matrix GG_1 for an example dataset with eight unlabeled
samples U1, U2, U3, U4, U5, U6, U7, and US. In this example,
@ is taken as three that means for each sample, three nearest
samples (out of seven) are considered as neighbors and others
as nonneighbors. Accordingly, the element values of G_1 are
assigned. For example, only U2, U4, and U6 are the neighbors
to U7, and hence, the corresponding element values in G_1 are
1, as shown in Fig. 2(a).

2) Similarity Matrix G_2: It is logical to define the spa-
tial neighborhood between two samples from both of their
perspectives, instead of one to other only. In other words, two
samples a and b are considered neighbors only when each of
them is neighbor to other. This criteria of the neighborhood in
generating the matrix G_2 can be considered as the generalized
form of the criteria used in G_1, which considers one way
checking of the neighborhood. The similarity matrix G_1 is
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Fig. 3.  Generation of similarity matrix G_3.

revised according to the criteria of this mutual consent to obtain
the similarity matrix G_2. Fig. 2(b) depicts the similarity matrix
(G_2 generated for the same set of samples used in G_1. As
shown in Fig. 2(b), the 7th entry of the last row of G_1 (when U7
isneighbor to U8) is changed to “0” to generate its corresponding
entry of G_2 because U8 is found as nonneighbor to U7. With the
same logic, the element values of G_1 are changed to generate
the matrix G_2.

3) Similarity Matrix G_3: To generate the similarity matrix
G_3, spatial neighborhood information is obtained through the
class map of unlabeled samples. Initially, with a limited number
labeled samples, a classifier is trained and used to obtain the
labels of unlabeled samples. For this experimental study, &-NN
classifier is used but any other classifier can also be opted. Using
these labeled information, similarity matrix G_3 is generated,
where the samples with the same class label are considered
as neighbors and for different class labels, they are treated as
nonneighbors. For illustration purpose, generation of G_3 for a
dataset having eight unlabeled samples is depicted in Fig. 3.

4) Similarity Matrix G_4: Similarity matrix G_4 is gener-
ated by combining the spatial neighborhood information ob-
tained with G_1 and G_3. For this purpose, a logical AND
operation is performed on the element values of matrixes G_1
and G_3,ie.,G_4={G_1NG_3}.

5) Similarity Matrix G_5: With a logical AND operation on
the value of the elements of matrixes G_2 and G_3, similar-
ity matrix G_5 is generated, i.e., G_5 = {G_2N G_3}. This
similarity matrix is used for the SSSL method of the proposed
model.

B. Fuzzy Granulation of Input Features

The original input feature space is transformed into fuzzy
granulated feature space using three fuzzy sets [24]. The
generated fuzzy granules are characterized by linguistic
variables that correspond to fuzzy sets and possess the ability
to handle the impreciseness and uncertainty of the dataset. The
granulated information also provide a better interpretation of
the data content compared to the ungranulated or crisp input;
thereby enhancing the transparency of the input to a network.
In this article, we have used three linguistic properties, i.e., low,
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TABLE I
Fuzzy RULE EXTRACTION FOR A SAMPLE OF CLASS “HABITATION”

Feature Fuzzy Gr@nulation .
low medium high
F1 0.9537 | 0.1850 | 0.04627
F2 0.9589 | 0.3932 | 0.09832
F3 0.6898 0.9377 0.3391
F4 0.6671 0.9903 0.4330

medium, and high for fuzzy granulation of each input feature.
A sample F with n numeric features (F = F, Fy,....F},) can
be granulated using 7-type MFs [24].

After fuzzy granulation, n-dimensional numeric features
(F = Fy, Fy,....F,) are represented as (3 X n) dimensional
fuzzy granulated features. For example, the fuzzy granulation
of four features F'1, F2, F3, and F4 is illustrated in Table I using
three linguistic fuzzy variables low, medium, and high.

C. Fuzzyif — then Rule Generation

Fuzzy rule extraction aims to obtain the relationship between
fuzzy granulated inputs and the associated class labels of the
dataset. In this article, fuzzy variables are used to design the
fuzzy rules, and semisupervised GNNs are developed.

Sénchez and Trillas [25] explored measures of fuzziness to
give new dimension to fuzzy set theory. Fuzziness-based ac-
tive learning framework was proposed in [26] to enhance the
classification performance of hyperspectral image. In the recent
past, various methods of fuzzy if-then rule generation have been
proposed [19], [27], [28]. We have defined the fuzzy rules using
the method proposed in [19] because it exploits the domain
information in a simple way and requires fewer computations
that can be adopted for any dataset. Using this method, arule fora
class is generated by the fuzzy set having maximum membership
value for each feature of a sample vector or pixel. As an example,
the rule generation for a sample with four features is illustrated
in Table I. A sample/pixel is assigned as habitation land cover
class of an RS dataset, if the fuzzy set low of feature F1, low of
F2, medium of F3, and medium of F4 are considered, because
they have the maximum membership values (boldface values of
Table 1) across the three fuzzy granulated features and, thus,
these elements together implies habitation as the output class.
Using this strategy of rule generation, three sets of rules are
generated for each class of the dataset to design the GNN in this
article.

D. Proposed Semisupervised GN N Classification Model

Modeling process of the proposed semisupervised GNN has
adopted a mechanism to deal with both labeled and unlabeled
samples in a semisupervised framework. We have used the loss
function M to train the model using both labeled and unlabeled
samples of the dataset and is defined as

L U

1
M = sz(li’cli’pli)—i_puﬁ Z T(pul’puJ’SMuluJ)

i=1 ij=1

M1 M2

ey

where the components M1 and M2 are meant for L number of
labeled and U number of unlabeled samples, respectively. In the
subfunction M1, ¢;; and p;, are the actual and predicted class
labels of the sample I; € L.V (.) in M1 of (1) is the hinge loss
function. To strengthen the hypothesis in order to avoid possible
misguidance with the limited number of labeled samples, one
type of regularization function, i.e., T'(py,,Pu;, SMuy,u, ), is
used to process unlabeled samples through the subfunction M 2.
This regularization function 7'(.) is a modified form of the hinge
loss function that is computed for a pair of unlabeled samples
u; and w; with their corresponding predicted class label p,,
and p,,;, respectively. SM,,,,; (similarity matrix) characterizes
the spatial neighborhood relationship between these two sam-
ples. The effectiveness of this regularizer is controlled by an
empirically determined parameter p,,. Detail description of the
processing steps is discussed in the following.

1) Processing the Labeled Samples: The proposed semisu-
pervised model has used GNN as the base classifier and is
trained similar to NN using the back propagation learning al-
gorithm (BPA). The BPA requires an appropriate loss function
to compute the output error for processing each of the train-
ing samples. The most common loss function used in NN is
the squared function, which is mostly suitable for Gaussian
distributed dataset and this fact is also true in case of GNN.
However, if the dataset does not have Gaussian distribution, as in
the case of real-time classification problems, such as RS imagery,
then the use of hinge loss function is more relevant. Therefore,
we have used hinge loss function to compute the error of the
network and to process each labeled sample. We have followed
the principles of BPA to train the GNN. Hinge loss function
is already successfully applied in various kernel methods, such
as SVM, LapSVM, and TSVM. Also, Ratle et al. [8], Im and
Taylor [17], and Bishop [29] suggested that hinge loss function
for error computation in classification task of RS datasets is
more appropriate. To compute the error for a labeled sample I;
with actual and predicted class label ¢;, and p;,, respectively, the
hinge loss function is given as

v (lu Cl; ’plq,) = max {07 (1 - Clq‘,plz:)}' (2)

2) Processing the Unlabeled Samples: In the proposed
semisupervised framework, unlabeled samples are utilized in
the learning process based on their spatial neighborhood rela-
tionship. The similarity matrix G_5 represents the neighborhood
of unlabeled samples more precisely and accurately and is used
in the model to process the unlabeled samples pairwise. The
proposed model learns from a randomly picked neighboring
unlabeled samples followed by a pair of nonneighbors. The loss
function 7'(.) is defined for a pair of unlabeled samples is given
as [30]

T (puiapuj- ’ SMuiu])

_ {Zzg Hpuz _puj’ ’

max (O,m— |

, if SMy,,, =1

Pu; — puj H>2 ) if SM’U,-L’U,J =0
3)

ij
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Algorithm 1
1) Given:
= L number of labeled sample {l;,¢;, },i =1,2,...L,
where ¢y, is the class label for sample /;.
= U number of unlabeled sample {u, },
j=12...U.
2) Generate five similarity matrixes G_1, G_2, G_3, G_4,
and G_b5 of size U * U (Section II-A).
3) Train the semisupervised GNN
a) Randomly pick a labeled sample {/;, ¢, } and
optimize V' (I;, ¢1,, p1,) (2).
b) Pick a random pair of neighbors (based on G_5),
{u,} and {us} from U and optimize T'(py,., pu., 1)
4).
¢) Pick a random pair of non-neighbors (based on
G_5), {uy} and {u, } from U and optimize
T(Puy s Puy,0) (4).
Repeat the training steps (a to ¢) for all samples of L and U.

where p,, and p,; are the outputs of the classifier for the
unlabeled samples u; and u;, respectively. SMy,,,,; is the neigh-
borhood relationship between u; and u; obtained from the pair-
wise similarity matrix SM computed for all pairs of unlabeled
samples. The method is designed in such a manner that a pair
of samples with the corresponding element value of similarity
matrix “1” must be placed closely and separated for the value
“0.” With this logic, (3) maps similarly behaved unlabeled
samples closely and separates dissimilar samples by a distance
m. The loss function given in (3) can be reframed for the task of
binary classification as [8]

T (puL 7puj I SMuiuj)

Z” 77(+)V (u’ia Pu;s C)
with ¢ = sign (pu —|—puj) y Af SMyo; =1

Zq}j —U(_)V (ui7pu1‘ ) C)
with ¢ = sign (puj) , 1f SMyo; =0

“)

where V(.) is the hinge loss function and learning is carried
out with the learning rates () and n(~). The classifier learns
with the learning rate 77(+) for a neighboring pair (indicated
by SMmuj = 1) to put these samples in the same class. With
n(-) learning rate, the classifier learns to put nonneighboring
(indicated by SM,,,; = 0) samples in different classes. For
multiclass classification, (4) can be reformulated by computing
the hinge loss function to sum over the classes, i.e.

C
Vv (u,pu, Qu) = Z max (O> 1- Qu(c)pu(c)) (5)

c=1

where p,, and q,, are the classifier output and pseudoclass label
for the sample u, respectively, with total number of classes
C. qu(n) =1, if ¢, = ¢ and —1 otherwise. In this article, the
hinge loss function, as given in (5) for the multiclass case is
considered and the training of the model is carried out using
stepwise operations illustrated in Algorithm 1. Processing steps
of Algorithm 1 is similar to the method described in [8].

3) GNN Architecture: The architecture of GNN depends on
the number of granulated input feature, fuzzy if-then rules
and classes present in the dataset. The granulation operation
and fuzzy if~then rule generation process are carried out, as
discussed in Section II-B and II-C, respectively. The GNN used
for this article comprises three layers, i.e., input, hidden, and an
output layer. The granulated features are provided as the input to
the network and their numbers depend on the linguistic variables
used for granulation. In this article, we have considered three
linguistic variables low, medium, and high and accordingly each
feature is characterized into three granulated features. Thus, the
number of input nodes to the GNN is equal to (3xnumber of
features). The number of hidden-layer neurons is determined
by the number of fuzzy if-then rules used for the classes of
the dataset and each class is represented by one node of the
output layer. In the GNN, connections between the nodes of
input and hidden layer depend on the number of extracted rule.
The connections between input-layer nodes and hidden-layer
nodes are established only when the particular granulated input
feature is a part of the corresponding rule of hidden node, whose
consequence leads to a particular output class. In a similar
manner, hidden-layer node and output-layer node connections
are established only when particular hidden-layer node yields
the corresponding output class. Other than these, node-to-node
connections do not exist and, hence, GNN architecture is not
fully connected. This strategy of interconnections in GNN is
based on the maximum membership, which is derived from
fuzzy if-then rules and successfully used in [19]. This makes the
network more interpretable and transparent compared to a fully
connected NN. Similar to the training scheme of a conventional
multilayer perceptron NN, the rule-based GNN is trained using
the BPA.

III. PERFORMANCE MEASUREMENT INDEXES

To evaluate the performance of the proposed semisupervised
GNN classification model, various classification measurement
indexes, such as overall accuracy (OA), precision, recall, kappa
coefficient (KC), dispersion score (DS) [31], [31], computation
time (7¢), and clustering indexes, such as 3 [32], Davies—
Bouldin (DB) [33] are used. As per the definition, lower value
of DS and DB indexes are better, and for 3 index, it should be a
higher value. Computation time is the total time required for a
model to train and test the classifier. In this experimental study,
all the simulations are performed in MATLAB (Matrix Labo-
ratory) (version R2017a) environment in Intel core i7 machine
with 3.40 GHz processor speed and 64-b operating system.

IV. DATASET USED

Efficacy of the proposed classification model is verified using
two MSRS and two HSRS images obtained from different
sensors. MSRS images are considered here for the experiment
with completely and partially labeled datasets. Partially labeled
means ground truth of small number of pixels are only known. To
create a completely labeled database, fixed number of samples
from each land cover class are collected. To design and test the
model, each dataset is randomly partitioned into training and test
sets. To evaluate the performance of models using completely
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labeled datasets, indexes, such as OA, precision, recall, KC, and
DS are used, whereas DB and 3 indexes are used for partially
labeled datasets because class labels of all the samples/pixels of
the images are not known.

A. Multispectral RS Dataset

Out of two MSRS images, one dataset was obtained from
linear imaging self-scanning sensor (LISS)-II and other from
LISS-II sensor. For both the datasets, six major land cover
classes are considered; those are pond or fishery water, turbid
water, concrete area, habitation, vegetation, and open spaces.
Image obtained from LISS-II sensor is composed of four spectral
bands, i.e., blue band (band 1), green band (band 2), red band
(band 3), and near-infrared band (band 4) with a spatial resolu-
tion of 36.25 x 36.25 m and spectral variation over the wave-
length range of 0.45 — 0.86 ym. Image obtained from LISS-III
sensor is having spectral information over the wavelength range
of 0.52-1.7 pm and accommodate spatial resolution of 23.5 m.
It consists of four spectral bands, two from visible spectrum
(green and red) and two from the infrared spectrum (near infrared
and shortwave infrared). Two hundred samples are selected
randomly from each class of these datasets to form the databases
of 1200 samples.

B. Hyperspectral RS Dataset

Brief description of the two HSRS datasets Indian Pines
and Pavia University is made in the following.

1) PaviaUniversity and Indian Pines Data: This
dataset was obtained from reflective optics system imaging
spectrometer (ROSIS) sensor, which covers Pavia University
region of Italy. The Pavia University image is of 610 x 610
pixels, having spatial resolution of 1.3 m. The dataset has
103 spectral bands for nine land cover classes. We have
also considered the Indian Pines HSRS dataset, which is
commonly used in the analysis of classification algorithms.
Indian Pines image data comprises 145 x 145 pixels and is
labeled with 16 classes of ground cover. As per the suggestion
of the database designer, 20 noisy spectral bands that cover the
region of water absorption are removed from the available 220
bands.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Model Description

Performance of the proposed semisupervised fuzzy rule based
GNN classification model is evaluated using both partially and
completely labeled RS datasets. In order to design and validate
the model in SSSL framework, we have created the data samples
accordingly. For completely labeled datasets, the whole samples
are divided randomly into two equal parts, such as training
set (TR;) and testing set (TS;). For each of the sets, an equal
percentage of samples is taken from all the classes. In SSSL
framework, both labeled and unlabeled samples are required
during the training of model. Thus, the training set TR; obtained
from initial partition is again divided into two subsets. One
subset is assumed as labeled and the other as unlabeled. To

TABLE II
PERFORMANCE COMPARISON OF MODELS WITH LISS-II DATA

OA with % of labeled samples from TR;
Model| 10 | 20 [ 30 | 40 | 50 |AIl samples of| KC
TR; with NN
base classifier

For 50% labeled data
OAstd Tc

61.80(75.33(85.80(84.37(91.76
62.49]76.53|86.01{85.43|92.28
63.70(77.96(86.19(88.08{92.71
65.91]79.9986.37(88.33|93.90
66.80(83.18(89.14(89.01{95.56

0.9160]9.6716(15.758
0.9200[3.0659 [10.090
0.9240(2.9586(10.842
0.9320[2.7162[10.854
0.9560{0.8211(10.859

94.74

W] | W B —

perform the experiment, we have taken five different percent-
ages of labeled samples from TR;, such as 10%, 20%, 30%,
40%, and 50% and the rest 90%, 80%, 70%, 60%, and 50%
are assumed as unlabeled samples. However, in each round of
experiment, the trained model is evaluated with the same test
set TS;. For partially labeled datasets, all the aforementioned
collected labeled samples (TR;) are considered for the initial
training set to design the classifier. In the SSSL process, varying
number of unlabeled samples (i.e., the rest samples of the RS
image) are collected based on the candidate sample selection
criteria. The trained model is then tested on the whole samples
of the RS images for samplewise land cover classification. As the
class labels of all samples of RS image is not known, clustering
indexes are used to validate the model performance.

1) Model 1: Semisupervised NN with similarity matrix G_1
[8] (see Section II-Al).

2) Model 2: Semisupervised GNN with maximum member-
ship based adaptive rule generation (SSGNN-ARG) and
similarity matrix G_1 [8] (see Section II-A1).

3) Model 3: SSGNN-ARG with similarity matrix G_2 (see
Section I1-A2).

4) Model 4: SSGNN-ARG with similarity matrix G_4 (see
Section I1-A4).

5) Model 5: Proposed model of SSGNN-ARG with similarity
matrix G_5 (see Section II-A5).

All these models (Models 1-5) have used the SSSL Algo-
rithm 1 for training purpose. Because of the random initialization
of network parameters, and selection of labeled and unlabeled
samples, experimental results vary with each iteration, although
rest of the conditions are kept the same. This situation is handled
by repeating each set of experiment ten times keeping all the
conditions same and the average of them is taken as the final
result. With this ten-fold validation approach, the generalization
ability of the model is increased for improved performance.

B. Land Cover Classification of Multispectral RS Image

For LISS-II MSRS dataset only, complete critical analysis and
discussion of classification performance is presented because
similar trend of performance in terms of various performance
indexes was obtained with all the considered datasets.

1) IRS LISS-II Dataset:

a) With completely labeled samples: With five different clas-
sification models, LISS-II data are classified and corresponding
results in terms of OA, KC, OA,;4, and T are shown in Table II.
To train these models, five different percentages of labeled and
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unlabeled sample are considered. For 50% labeled data (i.e.,
obtained from TR;) only, Table II depicts the results of five
models, because similar trend of performance was observed for
the rest percentages. Model 1 has used similarity matrix G_1
in the learning process of the NN (the base classifier). Models
2-5 (proposed) employed GNN (see Section II-D3) as the base
classifier, though the neighborhood information used in these
models are different.

It can be observed from the results (see Table II) that for all
percentages of labeled samples, Model 2 with GNN performed
better than Model 1 with conventional NN. The claim for the
improvement of Model 2 over Model 1 is also supported by the
KC and OA,,;4 values shown for 50% of the labeled samples.
This clearly justifies the advantages of GNN. The advantages
includes: computational efficiency, simplicity, interpretability,
and domain knowledge association (because of the customizable
network with adaptive fuzzy rule generation). Computational
complexity of Model 2 is actually attributed to the architecture
of GNN, which is partially connected. These factors become
responsible for an interesting fact, i.e., Model 2 yielded better
classification accuracy than Model 1 and as well as with less
computational complexity.

In a comparative analysis of models with respect to the effect
of similarity matrix for spatial information extraction, Model 3
with G_2 (see Section II-A2) performed better than Model 2
with G_1 (see Section II-A1). For example, Model 3 yielded
OA value of 63.70 that is around 1% more than the OA value
obtained with Model 2, using 10% of initial training samples.
Similarly, for other percentages of training samples also, Model
3 performed relatively better than Model 2 and Model 1. The
results are also corroborated by the KC and OAg;4 values, as
shown in Table II for 50% of training samples. This analysis
shows the worth of considering G_2 that works with the mutual
criteria of neighborhood information extraction, unlike the one-
way criteria adopted in G_1.

As described in Section II-A3, we have developed the sim-
ilarity matrix GG_3 with the help of class map of unlabeled
samples. The information in G_3 is clubbed with both the
matrixes G_1 and G_2 using the logical AND operation to
develop the matrixes G_4 and G_5, respectively. In order to
justify the significance of G_4 and G_5, Models 4 and 5 are
developed, respectively, and applied on the LISS_II dataset, and
corresponding results are depicted in Table II. It is observed
that Model 4 achieved improved performance than Model 2 that
uses G'_1. Intuitively, it makes sense because Model 4 uses the
similarity matrix G_4, which is a strategic combination of infor-
mation present in G_1 and GG_3. This performance of Model 4 is
further improved through Model 5 (proposed model) using the
matrix G_5, which combines the information of G_2 and G_3.
Model 5 outperformed all the four models, and the performance
improvement can be seen from Table II. This analysis potentially
rationalizes the significance of mutual neighborhood criteria
obtained in G_2 and further improvement through the combined
information obtained in the proposed similarity matrix G_5. The
efficacy of the proposed model is also validated with KC and
OAstd'

In addition to the OA and KC indexes, performance of the
five models are analyzed in terms of computation time 7, as
shown in Table II. As expected, the Model 1 that uses NN as
the base classifier takes more time to compute because of its
fully connected architecture. On the other hand, GNN-based
models (Models 2-5) performed superior to Model 1 in terms
of accuracy and at the same time with less computation time,
because of the partial connectivity of the GNN. Model 5 and
Model 4 take similar amount of time but little more time than
Model 2 and Model 3 because of the computation incurred
during the design of similarity matrixes.

The experimental results shown in Table II also provides one
more critical angle of the superiority of the proposed semisu-
pervised model over the supervised model. In the experiment,
part of the whole training samples (TR;) is used as labeled and
rest part as unlabeled to train all models through a strategic
manner following the semisupervised principle. In an attempt to
analyze semisupervised models with their supervised version,
we have trained a conventional NN-based (used as base classifier
for Model 1) classification model with whole training samples
(TR;), with no unlabeled samples, and tested on the samples
of the test set TS;. Furthermore, its performance is compared
with all semisupervised models (Models 1-5) in terms of OA.
The OA obtained is 94.74% with the supervised NN model. The
accuracy is higher than the accuracy obtained with Models 1-4,
but less than the proposed model (Model 5). However, it is to be
noted that the supervised NN model has used 100%, whereas the
semisupervised models have used maximum of 50% of labeled
samples of TR;. In spite of this, the proposed Model 5 performed
better than the supervised NN model. This way of performance
comparison justifies that the proposed semisupervised classifi-
cation model performed superior to the supervised model, which
uses randomly selected training samples.

b) Performance of Model 5 with very few labeled samples: In
the aforementioned section, we have discussed the performance
of models trained with 10% of the total samples TR;, as the
initial size of labeled samples. Here, we have performed the
experiment with the proposed Model 5, using very few number
of initial training samples (equal number of samples are taken
from each class), such as 12, 30, etc., that are equal to 2%,
5% of TR;, respectively. In the semisupervised classification,
the subsequent training samples (till the size reaches to 50%
of TR;) are being added to the initial training samples, based
on model’s strategy. We have performed this experiment with
only Model 5, as similar trend of performance was observed
with rest models. Performances of Model 5 with final training
samples (i.e., equal to the size of 50% of TR;), for different sizes
of initial training samples, are tested with the same set (TS;) of
test samples, and corresponding results are depicted in Fig. 4.
It can be seen from the results shown in Fig. 4 that Model 5
provided higher classification accuracy, when the initial training
sample size is 10% of TR;. Keeping this result in mind, we have
shown the detail experimental results with 10% of initial training
sample size.

Superiority of the proposed model on the basis of performance
indexes, such as precision, recall, and DS is shown in Table III.
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TABLE VI
LISS-II IMAGE CLASSIFICATION
, B DB
%&r‘%l%féis Usnz%g%)p ecsd model IJmodel 2[model 5|model IJmodel 2[model 5

1200 0 4.59 4.84 3.70 3.36

1200 5000 473 | 496 | 540 | 3.57 2.04 1.86

1200 10,000 5 532 | 598 3.29 1.88 1.30
Fig. 5. LISS-II image classified using (a) Model 2 and (b) Model 5.

The base classifier of each model is trained with all of the
labeled samples 1200 (see Section IV-A) and strategically se-
lected fixed number of unlabeled samples (i.e., 5000 and 10 000)
from LISS-II RS image. The respective similarity matrixes are
used by the models, as described in Section II-A. The trained
models are then applied for samplewise land cover classification
of the whole image present in the considered area of RS. In this
scenario, the performances of the models are evaluated using DB
index and f index, and depicted in Table VI. The comparison is
shown between Models 1, 2, and 5 (proposed) because similar
trend of performance was obtained with Models 3 and 4. It
is observed with the values of DB index and [ index that
performances of all three models are improved with the increase
in unlabeled samples for training. Also, /3 value obtained with
the proposed model is the highest among the other two models
with both (5000 and 10 000) number of unlabeled samples. This
observation justifies that the proposed model selects and utilizes
the unlabeled samples in an efficient manner.

The classified LISS-II images by Models 2 and 5 with 1200
labeled and 5000 unlabeled samples are shown in Fig. 5(a) and
(b), respectively, for qualitative performance comparison. From
Fig. 5(b), it is observed that different land cover classes with
Model 5 are more discretely classified than the image shown in
Fig. 5(a) with Model 2. These results thus reveal the significance
of the proposed model (Model 5) that fulfills the purpose of
semisupervised model in the RS image classification.

2) IRS LISS-III Dataset

The classification performance results using all five models
(Models 1-5) for LISS-III dataset in terms of OA, KC, and OAqyq
are depicted in Table VII. The proposed model (Model 5) trained
with different percentages of labeled and unlabeled samples,
outperformed all four models, i.e., Models 1-4. Model 5, as
shown in Table VII, yielded an increase of around 2.5% in OA
over Model 1, which has used NN as the base classifier. This
improvement in classification performance clearly indicates the

TABLE VII
PERFORMANCE COMPARISON OF MODELS WITH LISS-IIT DATA

Model OA with different % of labeled data|For 50% labeled data
10 | 20 [ 30 | 40 50 KC OAga
1 159.79(73.21(85.87|88.71| 91.01  |0.8967 4.8734
2 161.99(79.49(85.94/91.01| 92.18 |0.8834 1.7723
3 163.36(80.83(86.61(91.94] 92.36 |0.8962 1.0361
4 164.33]82.35|87.09(93.04| 92.74  ]0.9002 1.0931
5 165.93(84.84(88.07|94.01| 93.39  |0.9088 1.0492

Fig. 6. LISS-III image classified using (a) Model 2 and (b) Model 5.

superiority of GNN over NN and the effect of improved ex-
tracted neighborhood information. The results also revealed that
Model 5 could produce better classification performance over
other GNN-based models (Models 2—4). The reason for this
improvement is the incorporation of improved neighborhood
information captured through the similarity matrix G_5. Similar
trend of performance in terms of various measurement indexes,
as discussed with LISS-II dataset, is also found true for this
dataset.

We have also classified the whole LISS-III image with par-
tially labeled samples. To train the semisupervised model, all
the labeled samples (i.e., 1200) of LISS-III dataset along with
a fixed number (5000 and 10 000) of strategically selected
unlabeled samples are taken for the training set. With 1200
labeled and 5000 unlabeled samples, the classification maps
of LISS-IIT image, obtained with Models 2 and 5, are shown
in Fig. 6(a) and (b), respectively. It can be observed visually
that the classified map of Model 5 is better and can segregate
discretely distinguishable regions compared to the map obtained
with Model 2. This observation corroborates the results obtained
in Table VII.

C. Land Cover Classification of Hyperspectral RS Image

1) Indian Pines Dataset From AVIRIS Sensor: Land cover
classification results of hyperspectral dataset (Indian Pines)
in terms of OA, KC, and OAgq are presented in Ta-
ble VIII. The proposed Model 5 yielded an increase in OA
values of 6% to 15% in the classification of land covers over
Model 1. It can be observed from Table VIII that the improve-
ment in OA vary with the number of labeled and unlabeled
samples taken for training. In Model 1, input to the conventional
NN is 200 bands of hyperspectral data (Indian Pines), this
high-dimensional input make the network architecture complex
and computationally inefficient. On the other hand, for Model
5 (proposed model), GNN is used as the base classifier, which
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TABLE VIII
PERFORMANCE COMPARISON OF MODELS WITH Indian Pines DATA
OBTAINED FROM AVIRIS SENSOR

OA for different % of For 50% labeled samples
Model| labeled samples from TR;

10 | 20 | 30 | 40 | 50 | KC OAgiq
1 160.12]63.22|66.74(68.90(72.04|0.6212 2.4412
2 |70.16(73.11{75.24|77.89|79.46(0.6700 2.0359
3 |72.20(74.55(77.43]|79.44/80.21|0.6899 1.1045
4 173.41{75.99|78.98(80.23(81.88|0.7002 1.5221
5 |75.82(78.03(80.21|82.20{84.03|0.7456 0.7922

TABLE IX
PERFORMANCE COMPARISON OF MODELS WITH Pavia University DATA
OBTAINED FROM ROSIS SENSOR

OA for different % of For 50% labeled samples
Model| labeled samples from TR;
10 [ 20 [ 30 | 40 | 50 | KC OAgiq
1 |78.19]78.78|80.16(81.68(83.13|0.611 3.59
2 |78.98|79.56|81.77(83.67(85.71|0.655 3.01
3 179.57(81.19(83.54|85.30{86.01]0.700 2.67
4 [80.86[82.55|85.03(85.99(87.54(0.709 1.95
5 [82.34[84.99(86.07(87.46(89.15(0.781 1.12

is computationally efficient, simple, and interpretable in terms
of architecture because of the partially connected network.
Also, improved neighborhood information obtained through the
similarity matrix G_5 is used in Model 5, which makes the
learning process better. In the same line of reasoning, the KC
value of Model 5 with 50% labeled is improved compared to
the rest models. This improvement is because of the similarity
matrix G_5. In addition, KC values of the proposed model are
also improved with the proposed model. Various performance
analysis of the proposed model (Model 5) discussed in the case
of LISS-II dataset is also held true for this dataset in various
scenarios (partially and completely labeled dataset) and with dif-
ferent measuring parameters. The advantage of using improved
neighborhood information in the form of similarity matrix G_5
and rule-based GNN as the base classifier are actually attributed
for the improved classification performance of the proposed
Model 5 with Indian Pines dataset.

2) Pavia University Data From ROSIS Sensor: Similar to
AVIRIS sensor based Indian Pines data, land cover classifi-
cation results of Pavia University data (i.e., obtained from
ROSIS sensor) in terms of OA, KC, and OAgq are illustrated
in Table IX. It is observed from the table that Model 5 with
the similarity matrix (G_5) yielded the highest classification
accuracy in terms OA compared to other models, those are
based on different similarity matrixes. The significance of G_5,
which is the collaborative contribution of information from the
matrixes G_2 and G_3, is clearly visible with this dataset. It
is also true for all illustrated percentages of labeled samples.
In addition, the performance in terms of KC value revealed the
similar trend. Various critical performance analysis of Model 5
discussed in the case of LISS-II dataset is also similar with this
dataset in terms of trend for various scenarios (partially and com-
pletely labeled dataset) and with different measuring indexes.
Advantage of using improved neighborhood information in the
form of similarity matrix G_5 and rule-based GNN as the base

classifier are actually attributed for the improved classification
performance of the proposed Model 5 with Pavia University
dataset.

VI. CONCLUSION

This article proposed an SSSL model to classify multispec-
tral and hyperspectral RS datasets. The proposed model used
the rule-based GNN as the base classifier, which had taken
the support through the extracted neighborhood information of
the unlabeled samples for SSSL. The quality of neighborhood
information was improved by using the collaborative opinion
of two independent neighborhood information extraction meth-
ods. With the first method mutual neighborhood information
of unlabeled samples was captured and the second method
discovered the neighborhood on the basis of class-map of un-
labeled samples. To take the advantages of both the methods,
mutual agreement was considered as the final neighborhood
information, which was used in the learning process of the base
classifier. The interconnections of GNN are partial in nature that
was established according to the adaptive fuzzy if-then rules.
We also realized the advantages of the base classifier, which
is computationally efficient, less complex, interpretable, and
manageable in comparison to conventional NN. The proposed
model justified its superiority on the basis of various perfor-
mance parameters in the classification of both multispectral and
hyperspectral RS datasets. Comparison of the proposed model
with other state-of-the-art methods and different candidate sam-
ple selection criteria was made. Along with these comparisons,
we also compared the model with a GNN-based model that
used the KRE method of rule extraction in designing the GNN
architecture. Experimentally, it was analyzed that the proposed
method required less computational time comparatively, and
at the same time yielded superior classification performance
compared to similar other methods.
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