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A B S T R A C T

Gene expression analysis plays a significant role for providing molecular insights in cancer. Various genetic and
epigenetic factors (being dealt under multi-omics) affect gene expression giving rise to cancer phenotypes. A
recent growth in understanding of multi-omics seems to provide a resource for integration in interdisciplinary
biology since they altogether can draw the comprehensive picture of an organism's developmental and disease
biology in cancers. Such large scale multi-omics data can be obtained from public consortium like The Cancer
Genome Atlas (TCGA) and several other platforms. Integrating these multi-omics data from varied platforms is
still challenging due to high noise and sensitivity of the platforms used. Currently, a robust integrative predictive
model to estimate gene expression from these genetic and epigenetic data is lacking. In this study, we have
developed a deep learning-based predictive model using Deep Denoising Auto-encoder (DDAE) and Multi-layer
Perceptron (MLP) that can quantitatively capture how genetic and epigenetic alterations correlate with direc-
tionality of gene expression for liver hepatocellular carcinoma (LIHC). The DDAE used in the study has been
trained to extract significant features from the input omics data to estimate the gene expression. These features
have then been used for back-propagation learning by the multilayer perceptron for the task of regression and
classification. We have benchmarked the proposed model against state-of-the-art regression models. Finally, the
deep learning-based integration model has been evaluated for its disease classification capability, where an
accuracy of 95.1% has been obtained.

1. Introduction

Gene expression (GE) profiling allows capturing the genetic and
epigenetic alterations that an organism undergoes under various bio-
logical conditions during its lifetime. Changes in it lead to different
phenotypic traits. GE is affected by several factors including genetic
factors like copy number variation or copy number alteration (CNV/
CNA), DNA mutations and epigenetic factors like DNA methylation
(DNAm) or histone modifications. Until recently, genetic and epigenetic
changes have been considered separate events in cancer. However,
recent studies have shown that they interweave together during tumor
growth and progression [1]. Growing evidences have also shown epi-
genetic changes leading to genetic mutations and vice versa. DNAm
occurring around promoters are believed to be linked with CNV and GE
changes to understand the complex mechanisms behind cancer devel-
opment and progression [2,3]. Thus, both genetic and epigenetic events

may lead to abnormal gene expression. Methylation of CpG islands in
cancer cells often leads to silencing (hyper-methylation) or activation
(hypo-methylation) of gene expression due to blockage in the promoter
regions (regions facilitating gene transcription), thereby restricting
transcription factors to bind to the regions [4]. CNV, on the other hand,
may also lead to the activation of certain oncogenes or silencing of
tumor suppressor genes in cancer whereby an entire protein coding
sequence in a given DNA can be either deleted or duplicated, thus af-
fecting gene expression. Such changes may ultimately lead to more or
less production of downstream protein leading to tumor phenotype
[5–7].

Hepatocellular carcinoma (HCC) is one among the leading causes of
cancer in the world. Patients with chronic liver diseases like fatty liver
and cirrhosis are primarily affected by HCC. Recent research has shown
that altered DNAm and CNV are two of those early events that take
place during the pre-neoplastic phase of HCC, and are important in
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classifying regenerative modules into distinct classes [8,9]. Hence, the
role of genetic and epigenetic events in HCC needs attention. Although
being linked with high mortality rates, HCC is relatively understudied
and the problem of identification of biomarkers for the prognosis of
liver hepatocellular carcinoma (LIHC) still needs to be addressed.

Recent years have shown an explosion of data due to Next
Generation Sequencing (NGS) technology. This has led to the pro-
duction of large paient specific data cohorts of various multi-omics
types, including genomic, transcriptomic, epigenomic, proteomic,
metabolomic, fluxomic, lipidomic, ionomic along with the corre-
sponding clinical information, much of which have been accumulated
in the international consortiums like TCGA (now moved to GDC) and
ICGC. Encyclopedia of DNA Elements (ENCODE) project [10] is an-
other such effort that annotates and maps functional elements across
the genome. With the growth of multi-omics data, newer unexplored
avenues have opened up that was lacking earlier by exploiting in-
dividual omic layer data to understand tumor biology. An integrative
analysis of such multi-omics data can play a significant role in tumor
diagnosis since they are reticular in nature, and can exhaustively
portray the molecular variations that an organism undergoes during
various stages of carcinogenesis.

Several efforts to integrate omics data from different modality in
HCC patients have identified subtype characteristics associated with
poorer prognosis and potential therapeutic targets [11]. Ecomics, a
well-annotated and normalized multi-omics conspectus for E. coli, and
Multi-Omics Model and Analytics (MOMA) platform built to learn from
Ecomics, allow integration of four omics layers to design genome-wide
models [12]. miRNA and mRNA expression data for pancreatic cancer
have been integrated using machine learning models to evaluate single
and multi-biomarkers for their diagnostic performance [13]. Penalized
regression methods have been used to integrate omics data from three
platforms to identify genes associated with both SNPs and CpGs [14]. A
novel Multiple Kernel Learning (MKL) method has been used in [15] for
prediction of prognosis of Gliobastoma Multiforme (GBM) by in-
tegrating histopathological images with multi-omics data. MKL-based
methods have also been used to integrate genomic data with patholo-
gical images to predict clinical outcomes for breast cancer patients
[16].

Integrative clustering methods of multi-omics datasets have been
used profoundly to classify cancers based on molecular alterations [17].
Integration of omics platforms is not trivial as it involves preparing data
from heterogeneous sources derived from various equipment and ex-
perimental settings. The present state-of-the-art pre-processing techni-
ques including normalization, imputation and quality evaluation have
been reviewed in [18]. DIABLO [19], on the other hand, is a multi-
variate dimension reduction method for multi-omics data, which is
capable of identifying novel molecular signatures. The review articles in
[20,21] discuss various challenges in integrating such multi-modal data
with robust statistical precision.

An inherent feature of multi-omics data layers is that they con-
tribute towards establishing a complex, non-linear structure. On a si-
milar note, a deep neural network (DNN) architecture also resembles
such layered non-linearity, where output values are computed se-
quentially, layer after layer. This allows complex useful features to be
learnt in an unsupervised manner by combining multiple simpler fea-
tures following a layered abstraction. Deep learning (DL) based-in-
tegration methods on TCGA data have been used earlier to identify
survival subgroups linked with poor prognosis and major signaling
pathways [22,23], finding influence of driver genes on phenotypes
[24]. A multimodal DL model, employed for prediction of prognosis of
breast cancer by integrating genomic and clinical data, has shown
better performance than usual methods not integrating omics data [25].
A random forest model integrating CNV, DNAm, microRNA and tran-
scription factors (TFs) has been used to predict gene expression for
Liver HCC patients [26]. A micro-array based DL model D-GEX [27] has
been shown to outperform linear regression models in predicting GE of

landmark genes. TCGA DNAm data and specific histone ChIP-seq data
have been integrated to predict GE in lung cancer using ReliefF for
feature selection and random forest for classification [28]. Another DL
model using deep auto-encoders and multi-layer perceptrons (MLP) has
been used in [29] to predict GE using genetic variants on yeast dataset.
This MLP-SAE model has been shown to outperform commonly used
standard models like Lasso and Random Forest. Nevertheless, research
is limited as no robust DL model exists that takes into account the effect
of both genetic and epigenetic perturbations while predicting non-
linear GE function [30], giving better characterization of the disease.
Multiple other efforts have already shown the impact of DNAm on GE
[31]. A similar investigation has been carried out to estimate GE based
on DNAm profiles for breast cancer using a L1-regularized regression
model [32].

Thus, current exponential growth of varied NGS technologies and
compelling evidence as cited above have already provided enough clue
towards genomic and epigenomic factors influencing or guiding gene
expression in a tissue-specific manner giving rise to diverse phenotypic
traits. Single omics analysis using either CNV or DNAm data to predict
gene expression has already been carried out in [33–35]. However, with
growing evidence, we are arriving at a point of realization that gene
regulation in cancer phenotypes is not entirely driven or influenced by a
single factor. Taking a cue from all these published evidence, here we
have tried to estimate gene expression in LIHC as a function of DNAm
and CNV at protein-coding regions.

In order to perform the task of estimating gene expression, we have
developed a DL regression model based on multi-omics integration. We
have used deep denoising auto-encoder (DDAE) for feature extraction
and multi-layer perceptron (MLP) for regression. Auto-encoders have
found significant usage in feature extraction and dimension reduction
in recent years [36–38]. In the present study, we have intended to ex-
tract features enough to explore the relationship between genomic
(CNV) and epigenomic (DNAm) information in regulating gene ex-
pression at higher dimensions. The proposed predictive model filters
signals from noise contributed via both these genomic and epigenomic
platforms, understands the non-linear relationships among the input
features, and finally captures the influence of these relationships to
extract information encoded in mRNA expression for paired sets of
patient samples. It may be mentioned here that current LIHC TCGA
studies involving multi-omics integration have often been limited by
sample size as outlined in [11]. In this work, we have used 404 paired
samples. The DDAE-MLP model has shown comparable performance
against state-of-the-art regression methods.

2. Materials and methods

This section explains the methods used for data acquisition, pre-
processing and the deep learning-based methodology used in this work
to estimate gene expression from DNAm and CNV data.

2.1. Data acquisition

TCGA multi-omics data for Liver Hepatocellular Carcinoma (LIHC)
from TCGA portal (now moved to Genomic Data Commons https://
gdc.cancer.gov/) have been used in this work. The R package
TCGA-assembler (v2.0.5) [39] has been used to obtain DNAm, CNV and
RNA-seq data for LIHC. The number of samples for each omics type and
their corresponding assays is listed in Table 1:

2.2. Pre-processing

For the DNAm data, we have calculated the average methylation
values by mapping CpG islands within 1500 bps from the transcription
start site (TSS) (both DNAse hypersensitive and hyposensitive). For all
three omics data, the common samples (patient Identifiers) have been
identified. Each omics data has been reduced to the common samples
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only. As a pre-processing step, for all three omics data, we have per-
formed the following, as suggested in literature [40]. First, the genes
which have more than 20% missing values across all samples (patients)
have been removed. Secondly, the samples which have more than 20%
missing values across all features (genes) have been removed. These
steps resulted in 404 common samples. The package sklearn.prepro-
cessing.Imputer (Sckit-learn) [41] has then been used to impute the
remaining missing values using the mean across all features (genes).
Finally, each omics data has been normalized and scaled in [0,1] range
using sklearn.preprocessing.MinMaxScalar (Sckit-learn) package [41].
Additionally, in order to remove features with zero or relatively low
expression values, we have calculated the rowsum for each feature and
removed the first quantile for RNA-seq data. The dimensions of the fi-
nally pre-processed omics data are listed below in Table 2.

2.3. Deep learning-based methodology

In this article, we have developed a deep learning regression model
for multi-omics integration that uses a DDAE network for feature ex-
traction and dimensionality reduction, and a MLP network for regres-
sion. First, we have built a deep learning-based regression model for
estimating gene expression from DNA methylation and copy number
variation profiles. Finally, we have performed classification of tumor
and normal samples based on the features extracted using the deep
learning framework to validate the proposed model. The overall
workflow of the deep learning-based regression model showing all ex-
periments carried out in this work has been depicted in Fig. 1.

Auto-encoders (AEs) have been found to have profound usage in
applications involving feature extraction and dimensionality reduction
as mentioned in Section 1. Both Principal Component Analysis (PCA)
and Auto-encoders are unsupervised techniques which aim at mini-
mizing the reconstruction loss. Auto-encoders can theoretically perform
better than PCA as they do not have any restriction on linearity. In a
recent work [42], even for special cases like highly unbalanced data-
sets, auto-encoders have performed better than PCA. Similarly, another
investigation highlights that auto-encoder yields better result compared
to linear PCA on specialized tasks like anomaly detection without
needing the computational overhead of Kernel PCA [43]. In [44], the
authors have revealed the capability of AEs to find repetitive structures
as compared to other methods including PCA and Linear Discriminant
Analysis (LDA). The facts discussed above have motivated us to use AE
based feature representation and reduction over PCA for the current
work.

2.3.1. DDAE-MLP model for estimating gene expression from DNA
methylation and copy number variation data

In this work, we have attempted to establish the fact that GE al-
terations can be captured by integrating a genetic factor like CNV and
epigenetic factor like DNAm. Here, we have modelled the problem of

estimating gene expression in two ways. In one approach, DNAm data
and CNV data have been scaled and stacked together to form the in-
tegrated input for the DDAE network. The DDAE network has been used
to extract significant features from the integrated data. DDAE model
consists of an input layer, an output layer and two auto-encoders in
between. The DDAE model has been trained using stochastic gradient
descent algorithm with MSE as the loss function.

After training, the reduced features have been extracted from the
bottleneck layer of the DDAE. These features have served as the input
for the MLP-based regression model. The output of the regression layer
has the same number of neurons as the number of target variables
(genes) in the RNA-seq data. MLP-regression model consists of three
hidden layers with ReLU activation function. The output of the re-
gression model uses linear activations. MLP has been trained with an
‘adam’ optimizer using MSE as the loss function. The architecture of the
DDAE network and the MLP-based regressor network have been shown
in Figs. S1 and S2 (in Supplementary Material) respectively. The block
diagram of the DDAE-MLP model used in this work for estimating gene
expression has been depicted in Fig. S3 (in Supplementary Material).

The second approach is to build a DDAE for each source DNAm and
CNV first, and then concatenate the extracted features to get the input
for the regression layer. However, this method has not produced any
better result as compared to the method mentioned above. ‘DDAE-MLP
individual’ represents the results obtained from the second modelling
approach in Fig. S4 (in Supplementary Material).

2.3.1.1. Feature extraction using deep denoising auto-encoder. The
features from the input data (DNAm and CNV stacked together) have
been extracted using a DDAE network. An auto-encoder [45] is a non-
recurrent, feed-forward neural network that consists of an input layer,
one or more hidden layer(s) and an output layer. The number of
neurons in the output layer is the same as that in the input layer since
the output is an approximate reconstruction of the original input. An
auto-encoder network typically employs two functions: an encoder

Table 1
Number of samples and their corresponding assays for each omics type.

Omics type #Samples Assay Access level Platform

DNA methylation 429 Infinium HumanMethylation450 BeadChip 3 methylation_450
CNV 424 Affymetrix SNP Array 6.0 3 cna_cnv.hg19
RNA-Seq 761 Illumina HiSeq 3 gene.normalized_RNA-seq

Table 2
Dimension for each omics type after pre-processing.

Omics type Number of samples Number of features (genes)

DNA methylation 404 18,996
CNV 404 23,604
RNA-seq 404 15,397

Fig. 1. Overall workflow of the deep learning-based regression model.
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function y= u(x) and a decoder function z= v(y). The output x′ of an
auto-encoder is simply a reconstruction of the original input such that
x′ = v(u(x)). The number of neurons in the hidden layer is kept smaller
than the number of neurons in the input layer in order to improve
generalization capability, and hence the dimensionality of the input
data is reduced.

The input to the DDAE network is the combined data having 404
samples and 18996 (from DNAm) and 23604 (from CNV) making a total
of 42600 (say n) features. The auto-encoder thus transforms an input x ε
ℜn, through a series of hidden layers to x′ ε ℜn such that x′ ≈ x. We
have used ReLU (Rectified Linear Units) activation function for each
hidden/output node following McCulloch-Pitts model of neuron. An
auto-encoder is trained to minimize the reconstruction error ‖x− x′‖2.
We have used a denoising auto-encoder [46] where the input data is
first corrupted by adding noise elements to it and the corrupted input x
is fed to the input layer of the auto-encoder. That is, instead of simply
copying the input, the denoising auto-encoder must undo this corrup-
tion, thereby implicitly learning useful features from the internal
structure of data. In order to limit over-fitting, we have introduced a L1
regularization penalty term αact on the node activities and a L2 reg-
ularization penalty term αweight on the weight vector wi. The objective
function thus becomes,

= + +
=

>loss Fx z x z x w( , ) ( ( ) ),
i

l

act i weight i
2

1
1

2

(1)

where l is the number of layers in the auto-encoder and z is the output
of the auto-encoder taking x as its input. It is to be noted that x is the
corrupted version of given input sample x. =>F f f fx( )l l l1 1 1 is the
composed function that defines the the reconstruction x′ for an auto-
encoder with l layers and fi(x) = max (0,xs) where xs is the weighted
sum of inputs to a neuron following McCulloch-Pitts model of neuron.

The DDAE network consists of an input layer, an output layer and
two auto-encoders in between, with encoding dimensions 500 and 200
respectively. The input layer takes the pre-processed DNAm and CNV
combined together as input data, the output layer produces a re-
construction of the input. The values of αact and αweight have been set to
0.0001 and 0.001 respectively. The DDAE has been trained for 25
epochs with a stochastic gradient descent algorithm using Mean
Squared Error (MSE) as the loss function.

2.3.1.2. Multi-output regression using multilayer perceptron. Once the
DDAE network is trained, the reduced (m) features have been
extracted from the bottleneck layer (here, m = 200). These features
have been fed as input to the MLP-based regression model.

An MLP is a feedforward artificial neural network consisting of an
input layer, one or more hidden layers and an output layer. Each layer
of neurons (nodes) is fully connected with the next layer of neurons.
The nodes in the hidden layer and the output layer are driven by a
non-linear activation function. It is a supervised algorithm that maps
an input x ε ℜn to an output z ε ℜm, where, n is the input dimension
and m is the output dimension. Given, a target t for a set of features,
the multilayer perceptron can learn a non-linear estimator for re-
gression.

In the model, the output layer of the regression model has the same
number of neurons as the number of target variables in the RNA-seq
data. We have used ReLU activation function in the intermediate layers.
The output layer of the regression model uses linear activations. The
backpropagation algorithm [47] has been used to train the MLP.

Let the error in the ith output node for the training data be denoted
by errori = ti − oi, where ti is the target value and oi is the actual output
of the ith neuron. The error in the entire output is thus given by:

=E error1
2 i

i
2

(2)

The node weights are then corrected to minimize the error using the

gradient descent rule. We have modelled the task of estimating gene
expression from DNA methylation and copy number variation data as a
multi-output regression (also known as multi-target or multi-variate
regression) problem, where we have predicted multiple real-valued
responses simultaneously. The features extracted from the bottleneck
layer of the DDAE network have been used as the training dataset D
having s instances x1, x2, ⋯, xs, where each instance xi is characterized
by an input vector of k descriptive variables xi = [xi1,xi2,⋯,xik]T and
an output vector of t target variables ti = [ti1, ti2⋯, tit]T, k being the
number of extracted features (here, m) extracted from the input data
and t being the number of genes in the RNA-seq data respectively.

The MLP-regression model uses two hidden layers and has been
trained with an ‘adam’ optimizer for 50 epochs using MSE as the loss
function. Overfitting in a deep neural network can be prevented using
dropout, a mechanism to randomly drop off some units (neurons) in the
visible and hidden layers. We have used a dropout of 20% at the input
layer and 50% at the hidden layers as suggested in literature [48]. The
results obtained using no dropout, 20% dropout in all layers, and using
20% dropout at the input layer and 50% dropout at the hidden layer
have been benchmarked against other classical regression methods.
This is provided in Section 3.

2.3.2. Other methods for comparison
In order to compare the results obtained from the proposed DDAE-

MLP model, we have chosen six benchmark regression models, based on
Linear regression, Lasso, Ridge, Random forest (RF), k-Nearest
Neighbors (k-NN) and Support Vector Regression (SVR). Lasso linear
model uses a L1 penalty term for regularization and adds sparsity to the
coefficients. Ridge regularization technique, on the other hand, uses a
L2 penalty term on the size of the coefficients [49]. Both these models
are used often interchangeably as prediction models, and are capable of
making estimations that are closely correlated with true values.
Random forest (also known as Random decision forest) [50] is an en-
semble method used for learning with a regression or classification
outlook and is known to produce good prediction accuracy. k-NN is
another non-paramteric method in which estimations are done con-
sidering the k-closest training examples [51]. SVR [52], on the other
hand, uses Support Vector Machines for regression and is often used as
a benchmark method. Therefore, we have compared results obtained by
DDAE-MLP with that of these six models.

To build a robust model, we have divided the dataset into two
partitions: train and test. The train dataset has been used for training
the model, while the test dataset has been used to evaluate the trained
model. To evaluate and compare results from different models, we have
used MSE and R2 values. The MSE for a prediction model is given by:

=
=

MSE
n

y y1 ( ) ,
i

n

i i
1

2

(3)

where yi and yi are the observed and the predicted values respectively,
and n is the number of samples. The R2 statistic (also known as coef-
ficient of determination), provides a measure of fit. It gives a ratio of
variance explained, and hence it always has a value between 0 and 1.
Most importantly, it is independent of the scale of Y.

=
=

RSS y y( ) ,
i

n

i i
1

2

(4)

where RSS is the residual sum of squares.
To calculate R2, we use the formula:

= =R TSS RSS
TSS

RSS
TSS

1 ,2
(5)

where =TSS y y( )i
2 is the total sum of squares, = =y yn i

n
i

1
1 being

the mean of the observed data.
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2.3.3. Evaluating DDAE extracted features by supervised classification
An auto-encoder usually extracts significant features by minimizing

the reconstruction loss. The effectiveness of these extracted features
needs to be evaluated. Studies show that measuring the reconstruction
loss for data can be an effective way to evaluate auto-encoder-extracted
features for unsupervised learning problems, whereas, computing the
classification accuracy can be used for supervised learning problems
[53,54]. Consequently, in this experiment, the DDAE-extracted features
have been evaluated by training a classifier on these features and then
validating the model on test set. The classifier used here is a MLP-based
classifier. A train-test split of 80 − 20% has been used. In the test set,
69 samples were from cancer patients and 12 of them were from
healthy patients. The features extracted from the bottleneck layer of the
DDAE network have been used as the input to the MLP-based classifier.
The classification performed on the DDAE-extracted features has shown
promising results as shown in Section 3.

3. Results

This section shows results obtained from the proposed regression
model for estimating Gene Expression values from DNA Methylation
and Copy Number Variation data against those obtained from bench-
mark regression methods.

3.1. Estimating gene expression values from DNA methylation and copy
number variation profiles

In this work, we have developed a deep learning-based regression
model to predict RNA-seq values from DNA methylation and copy
number variation profiles. The features extracted from the integrated
DNA methylation and copy number variation data form the input to the
regression model. The plot for true gene expression values vs. predicted
gene expression values across all samples is shown in Fig. S5 (in

Supplementary Material).
Fig. 2 shows a zoomed view, a plot for 100 randomly selected genes

obtained using the benchmark regression methods, whereas, Fig. 3
shows similar plot for the proposed DDAE-MLP based method. We have
observed that actual and predicted values show similar up-down reg-
ulation patterns for genes, showing similar peak and trough points. This
is significant in cases where exact gene expression values are not known
and only up-down regulation trends are to be compared. The average of
true gene expression values across all samples also show a positive
correlation with the average of predicted gene expression values across
all samples, with a R2 value of 0.968 and a correlation coefficient of
0.983, as illustrated in Fig. S6 (in Supplementary Material).

When compared to other standard regression models based on
Linear regression, Lasso, Ridge, k-NN, RF and SVR, the proposed DDAE-
MLP model has shown either better or closely comparable results. In
order to reduce computational complexity, PCA has been used first,
followed by RF and SVR separately. Experiments to estimate MSE and
R2 values with different hyper-parameter settings for the penalized
regression techniques, have been conducted. The results have been
compared with that obtained using the proposed DDAE-MLP model
both with and without dropout. The MSE plot for the DDAE-MLP model
compared to all other benchmark models, ranked on negative loga-
rithmic scale of MSE, has been shown in Fig. 4. The proposed DDAE-
MLP model, with 20% dropout has topped the chart, followed by Ridge
and other methods. Fig. 5 shows the geom-bar graph comparing the R2

values obtained by different methods and the DDAE-MLP method pro-
duces an R2 value very close to the best result.

3.2. Classification of tumor vs. normal samples using DDAE extracted
features

We have further tested the effectiveness of the features extracted
from DNA methylation and copy number variation data by performing

Fig. 2. Actual and predicted gene expression values for 100 randomly selected genes for benchmark methods.
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classification of tumor and normal samples. Among 404 samples, the
number of normal and cancer samples were 45 and 359 respectively. A
train-test split of 80 − 20% has been used on the TCGA data before
they have been fed into the DDAE network. Out of 81 samples in the
test dataset, 69 were cancer and 12 were normal. The features ex-
tracted by the DDAE have shown good classification performance with
an accuracy of 95.1%. Here, 12 out of 12 normal samples and 65 out of
69 tumor samples have been classified correctly. The precision, recall
and F1-score values have been found to be 0.96, 0.95 and 0.95 re-
spectively.

4. Discussion and conclusion

In this work, we have explored the impact of both genomic and
epigenomic features on gene expression regulation using a deep
learning-based regression model. The model has established the fact
that the integrated features can be used to predict gene expression
patterns and also serves as a promising platform for multi-omics in-
tegration. The model also captures the directional regulation of the
predicted gene expression.

TCGA provides us with tremendous resources of high-quality cancer
molecular data but we are still often limited by sample size while using

Fig. 3. Actual and predicted gene expression values for 100 randomly selected genes for the proposed DDAE-MLP method.

Fig. 4. MSE plot for the DDAE-MLP method compared with other benchmark methods, ranked based on neglog(MSE).
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deep learning based strategies for multi-omics integration. In this cur-
rent scope of work, we have used 404 matched samples having all three
DNAm, CNV and RNA-seq. A lot can be leveraged if we can use samples
from archival tissue BioBanks like formalin-fixed (FF) and paraffin-
embedded (FFPE) samples. This enables us to increase the sample size
and also add more input features to the model. In future, we would like
to extend this work on clinical samples from Tissue BioBanks having
genomic (CNV) and epigenomic (DNAm) in order to estimate gene
expression by comparing directly with true gene expression data
available in those paired samples. In the case of denatured mRNA or no
availability, estimated gene expression from DNAm and CNV can be
correlated with high-quality TCGA mRNA data. Multiple literature
evidence has often pointed out the potential limitations for usage of FF/
FFPE datasets due to sampling quality/degradation of material asso-
ciated as outlined in [55,56] leading to poor quality gene-expression
readouts, limiting downstream analysis or any mechanistic under-
standing.

Our current DDAE-MLP based regression method also accounts for
stochasticity, nonlinear properties, signal-to-noise, heterogeneity en-
ough from the given input features to infer gene expression close to its
true values. This model can be useful if there are large CNV and/or
methylation data for patients with tumor where we cannot have gene
expression values since the mRNA data are not available or not of high
quality. We could still estimate gene expression values that would be
enough to classify diseases, their progression and mechanism. This
would let us tackle issues arising out of poor or low quality mRNA data
in the process. Thus it provides us with an advantage to design and test
future integrative multi-omics, multi-platform studies using datasets
from multiple cohorts for patients with genomic and epigenomic data.
This would not only increase our pool of matched samples but also
provide us with a better mechanistic characterization of the disease.
Thus, DDAE-MLP has been able to find gene expression surrogates de-
rived from DNAm and CNV without having real RNA-seq expression,
and has produced better, in some cases, at least as good a result as
obtained by benchmark regression methods. The features extracted
from DNAm and CNV have also led to good tumor/normal classification
performance.

As an extension of the work, we have also tried to estimate CNV as a
function of DNAm, in a separate experiment. The methodology used for
estimating CNV and the corresponding results have been explained in
Section S1 and Section S2 (in Supplementary Material) respectively.

Currently there are some limitations in this study. One of the lim-
itations is the absence of the compute time and infrastructure resource
comparison used in running all the models during the benchmark
process. In the current scope of work, our promoter regions are con-
fined within 1500 bps up and downstream of TSS. All the CpG islands
are also confined within this window-size. CNVs can often extend be-
yond this region. This precise selection window could be a second
limitation. We have not used any synthetic simulation data as a sur-
rogate data-type for any training or test purposes. This could potentially
be a third limitation. However, our primary goal was to capture realistic
non-linear features from the real multi-omics data-sets and benchmark
the various regression models which is often missed in synthetic data
creation based on pre-specified metrics. Hence, we have discounted the
usage of synthetic datasets in this scope of work. We are also currently
limited to only single cancer type at our end in this scope of work. We
would like to extend the utility of this work across other cancer types in
future, to evaluate the robustness of the proposed DDAE-MLP method.
We would also like to extend the future investigations to delineate top
predicted gene expression features and molecular pathways from the
same. This could aid in identification of molecular sub-stratification of
patient cohorts. This work can also be extended to study the effect of
histone modifications on gene expressions. All these integration taken
together would thus serve as a potential platform to better delineate the
gene regulatory framework of the disease and enhance our under-
standing of the phenotype.

Data and Code Availability

The source codes have been implemented in Python 3 and
are freely available at https://github.com/vd4mmind/
multiOmicsIntegration. The data used in this study can be
downloaded from https://zenodo.org/record/3712496#.
XnBlS5NKjGI.

Fig. 5. R2 value for DDAE-MLP method compared with other benchmark methods, ranked based on R2 value.
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