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1. Introduction

1.1. Background of the problem

We analyze the classical social choice problem of choosing an alternative from a set of feasi-
ble alternatives based on preferences of individuals in a society. Such a procedure is known as a 
deterministic social choice function (DSCF). Some desirable properties of a DSCF are unanimity
and strategy-proofness. The classic Gibbard (1973)-Satterthwaite (1975) impossibility theorem 
states that if there are at least three alternatives and the preferences of the individuals are unre-
stricted, then every unanimous and strategy-proof DSCF is dictatorial.

Although unanimity and strategy-proofness are desirable properties of a DSCF, the assump-
tion of an unrestricted domain made in Gibbard-Satterthwaite Theorem is quite strong. Not only 
do there exist many political and economic scenarios where preferences of individuals satisfy nat-
ural restrictions such as single-peakedness, single-dippedness, single-crossingness, Euclidean, 
etc., but also the conclusion of Gibbard-Satterthwaite Theorem does not apply to such restricted 
domains.

The study of single-peaked domains can be traced back to Black (1948) where he shows that a 
Condorcet winner exists on such domains. Later, Moulin (1980) shows that a DSCF on a single-
peaked domain is unanimous and strategy-proof if and only if it is a min-max rule. Peremans and 
Storcken (1999) show that a DSCF on a single-dipped domain is unanimous and strategy-proof 
if and only if it is a monotone rule between the left-most and the right-most alternatives. Saporiti 
(2014) shows that a DSCF on a single-crossing domain is unanimous and strategy-proof if and 
only if it is an augmented representative voter scheme. A domain is Euclidean if its alternatives 
are elements of Euclidean space and its preferences are based on Euclidean distances. Lahiri 
et al. (2017) and Öztürk et al. (2014) characterize the unanimous and strategy-proof DSCFs on 
Euclidean domains.

The horizon of social choice theory has been expanded by the concept of random social choice 
functions (RSCF). An RSCF assigns a probability distribution over the alternatives at every pref-
erence profile. The importance of RSCFs over DSCFs is well-established in the literature (see, 
for example, Ehlers et al. (2002), Peters et al. (2014)).

The study of RSCFs dates back to Gibbard (1977) where he shows that an RSCF on the 
unrestricted domain is unanimous and strategy-proof if and only if it is a random dictatorial
rule. For the case of continuous alternatives, Ehlers et al. (2002) characterize unanimous and 
strategy-proof RSCFs on maximal single-peaked domains, and Border and Jordan (1983) and 
Dutta et al. (2002) characterize unanimous and strategy-proof DSCFs and RSCFs, respectively, 
on multi-dimensional single-peaked domains. Barberà and Jackson (1994) characterize efficient 
and strategy-proof DSCFs on multi-dimensional single-peaked domains with cardinal prefer-
ences when the range is one-dimensional. Later, Peters et al. (2014) show that every unanimous 
and strategy-proof RSCF on maximal single-peaked domain is a convex combination of min-
max rules. Pycia and Ünver (2015) establish a similar result by using the theory of totally 
unimodular matrices from combinatorial integer programming. Recently, Peters et al. (2017)
and Roy and Sadhukhan (2019) characterize unanimous and strategy-proof RSCFs on single-
dipped domains and Euclidean domains, respectively. However, to the best of our knowledge, 
unanimous and strategy-proof RSCFs on domains such as single-crossing, multi-peaked, inter-
mediate (Grandmont (1978)), and single-peaked on trees with top-set along a path have not yet 
been characterized in the literature.
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1.2. Our motivation and contribution

Our main motivation of this paper is to present one unified characterization of unanimous and 
strategy-proof RSCFs that summarizes all existing results for both DSCFs and RSCFs and allows 
for new ones. We intend to do this under minimal assumption on the domains.

We show that a large class of restricted domains can be modelled by using the concept of 
betweenness (Nehring and Puppe (2007a), Nehring and Puppe (2007b)). Given a prior order over 
the alternatives, a preference satisfies the betweenness property with respect to an alternative a
if, whenever a lies in-between (with respect to the prior order) the top-ranked alternative of the 
preference and some other alternative b, a is preferred to b. A domain satisfies the betweenness 
property with respect to an alternative if each preference in it satisfies the property with respect 
to that alternative. Consider the set of alternatives that appear as top-ranked for some preference 
in the domain. Assume the betweenness property is satisfied for each such alternatives. Then, the 
domain is called generalized intermediate.

We show that in case of finitely many alternatives, an RSCF is unanimous and strategy-proof 
on a minimally rich generalized intermediate domain if and only if it is a convex combination of 
the tops-restricted min-max rules. A min-max rule is tops-restricted if all its parameters belong 
to the top-set of the domain. We establish that all restricted domains that we have discussed so 
far, namely single-peaked, single-crossing, single-dipped, tree-single-peaked with top-set along 
a path, Euclidean, multi-peaked, and intermediate are special cases of generalized intermediate 
domains. Finally, we consider domains consisting of weak preferences where indifference can 
occur only at the top position. Single-plateaued domain is an important example of such domain. 
We provide a class of unanimous and strategy-proof RSCFs on these domains. Berga (1998) pro-
vides a characterization of plateau-only and strategy-proof DSCFs on single-plateaued domains; 
we show that a similar characterization for plateau-only and strategy-proof RSCFs does not hold.

Our result strengthens existing results for DSCFs by dropping the maximality assumption 
to minimal richness. Note that in a social choice problem with m alternatives, the number of 
preferences in the maximal single-peaked or single-dipped domain is 2m−1 and in a maximal 
single-crossing domain is (m(m − 1)/2) + 1, whereas that number can range from 2m − 2 to 
2m−1 in a minimally rich single-peaked domain, from 2 to 2m−1 in a minimally rich single-
dipped domain, and from 2m∗ − 2 to (m(m − 1)/2) + 1 in a minimally rich single-crossing 
domain, where m∗ is the cardinality of the top-set of the domain.

It follows from our results that minimally-rich generalized intermediate domains satisfy both 
tops-only property and deterministic extreme point property. Chatterji and Zeng (2018) provide 
a sufficient condition on a domain that guarantees tops-onlyness for the unanimous and strategy-
proof RSCFs on it, however minimally-rich generalized intermediate domains do not satisfy 
their condition. A domain is said to satisfy the deterministic extreme point (DEP) property if 
every unanimous and strategy-proof RSCF on the domain is a convex combination of unanimous 
and strategy-proof DSCFs on it. This property can be utilized in finding the optimal RSCFs for 
a society. Gershkov et al. (2013) characterize the optimal DSCFs on single-crossing domains. 
Therefore, by means of the DEP property of single-crossing domains, one can extend their result 
to the case of RSCFs.

1.3. Organization of the paper

The rest of the paper is organized as follows: Section 2 introduces the model and basic defini-
tions. Section 3 presents our main result characterizing unanimous and strategy-proof RSCFs on 
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minimally rich generalized intermediate domains. Section 4 contains some applications of our 
results. Section 5 analyzes unanimous and strategy-proof RSCFs on domains with weak prefer-
ences. Finally, Section 6 concludes the paper. The Appendix gathers all omitted proofs.

2. Preliminaries

Let N = {1, . . . , n} be a finite set of agents. Except where otherwise mentioned, n ≥ 2. Let 
A = {a1, . . . , am} be a finite set of alternatives with a prior ordering ≺ given by a1 ≺ · · · ≺ am. 
Whenever we write minimum or maximum of a subset of A, we mean it with respect to the 
ordering ≺. By a � b, we mean a = b or a ≺ b. For a, b ∈ A, we define [a, b] = {c | either a �
c � b or b � c � a} as the set of alternatives that lie in-between a and b, and for B ⊆ A, we 
define [a, b]B = [a, b] ∩ B as the alternatives in B that lie in the interval [a, b]. For notational 
convenience, whenever it is clear from the context, we do not use braces for singleton sets, for 
instance we denote a set {i} by i.

2.1. Domain of preferences

A complete, reflexive, antisymmetric, and transitive binary relation (also called a linear order) 
over A is called a preference. We denote by L(A) the set of all preferences over A. For P ∈L(A)

and distinct a, b ∈ A, aPb is interpreted as “a is strictly preferred to b according to P ”. For 
P ∈ L(A) and 1 ≤ k ≤ m, by rk(P ) we denote the k-th ranked alternative in P , i.e., rk(P ) = a

if and only if |{b ∈ A | bPa}| = k. Since we refer to the top-ranked alternative of a preference 
P very frequently, we use a simpler notation, τ(P ), for that. For P ∈ D and a ∈ A, the upper 
contour set of a at P , denoted by U(a, P), is defined as the set of alternatives that are as good 
as a in P , i.e., U(a, P) = {b ∈ A | bPa}.1 By P a , we denote a preference with a as the top-
ranked alternative, that is, P a is such that τ(P a) = a. Similarly, by P a,b, we denote a preference 
with a as the top-ranked and b as the second-top-ranked alternatives, that is, P a,b is such that 
τ(P a,b) = a and r2(P

a,b) = b. For ease of presentation, sometimes we write P ≡ P a,b to mean 
τ(P ) = a and r2(P ) = b.

We denote by D ⊆ L(A) a set of admissible preferences (henceforth, will be called a do-
main). For a ∈ A, let Da = {P ∈ D | τ(P ) = a} denote the preferences in D that have a as the 
top-ranked alternative. For a domain D , the top-set of D , denoted by τ(D), is the set of alterna-
tives that appear as a top-ranked alternative in some preference in D , that is, τ(D) = ∪P∈Dτ(P ). 
Whenever we write τ(D) = {b1, . . . , bk}, we assume without loss of generality that the indexa-
tion is such that b1 ≺ · · · ≺ bk . A domain D is regular if τ(D) = A.

A preference profile, denoted by PN = (P1, . . . , Pn), is an element of Dn = D × · · · × D that 
represents a collection of preferences one for each agent.

For P ∈ L(A) and B ⊆ A, the restriction of P to B , P |B ∈ L(B) is defined as follows: for 
all a, b ∈ B , aP |Bb if and only if aPb. For D ⊆ L(A), PN ∈ Dn, and B ⊆ A, we define the 
restriction of the domain D to B as D |B = {P |B | P ∈ D}, and the restriction of the profile PN

to B as PN |B = (P1|B, . . . , Pn|B).

2.1.1. Properties of a domain
In this section, we introduce a few properties of a domain. First, we introduce the concept of 

a single-peaked domain. A preference is single-peaked if it decreases as one goes far away (with 

1 Observe that a ∈ U(a, P) by reflexivity.
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respect to the ordering ≺) in any particular direction from its peak (top-ranked alternative). More 
formally, a preference P is single-peaked if for all a, b ∈ A, [τ(P ) � a ≺ b or b ≺ a � τ(P )]
implies aPb. A domain is single-peaked if each preference in it is single-peaked, and is maximal 
single-peaked if it contains all single-peaked preferences. For B ⊆ A, a domain D of preferences 
is a single-peaked domain restricted to B if D |B is a single-peaked domain.

A preference P satisfies the betweenness property with respect to an alternative a if for all 
b ∈ A \ a, a ∈ [τ(P ), b] implies aPb. A domain D satisfies the betweenness property with 
respect to an alternative a if each preference P ∈ D satisfies the property with respect to a.

Note that the betweenness property of a preference with respect to an alternative a does not
put any restriction on the relative ordering of two alternatives if (i) both of them are different 
from a, or (ii) one of them lies in-between the top-ranked alternative of that preference and a, 
and the other one is a itself, or (iii) one of them is a and the other one lies in the other side of the 
top-ranked alternative. A domain D is generalized intermediate if it satisfies the betweenness 
property with respect to each alternative in τ(D).

Remark 2.1. Note that the generalized intermediate property does not impose any restriction on 
the relative ordering of the alternatives outside the top-set of a domain. Furthermore, if a domain 
D satisfies this property, then D |τ(D) is single-peaked, which in particular implies that a regular 
domain is single-peaked if and only if it is generalized intermediate.

Note that a maximal generalized intermediate domain requires quite a few preferences to be 
present in the domain. In view of this, we require a minimal set of preferences to be present in 
a generalized intermediate domain. Our minimal requirement ensures that for two alternatives 
that are consecutive in the top-set of a domain,2 there are two different preferences which (i) 
rank those two alternatives in the top-two positions, and (ii) agree on the ranking of the other 
alternatives.3

To ease our presentation, for two preferences P and P ′ in D , we write P ∼ P ′ if τ(P ) =
r2(P

′), r2(P ) = τ(P ′), and rl(P ) = rl(P
′) for all l ≥ 3, that is, P and P ′ differ only on the 

ranking of the top two alternatives. Recall that throughout this paper, whenever we write τ(D) =
{b1, . . . , bk} for a domain D , we assume b1 ≺ · · · ≺ bk .

A domain D with τ(D) = {b1, . . . , bk} satisfies the minimal richness property if for all 
bj , bj+1 ∈ τ(D), there are P ∈ Dbj and P ′ ∈ Dbj+1 such that P ∼ P ′. Below, we provide an 
example of a generalized intermediate domain satisfying the minimal richness property.

Example 1. Let the set of alternatives be A = {a1, . . . , a10} with prior order a1 ≺ · · · ≺ a10. 
Consider the domain D = {P1, . . . , P8} given in Table 1.

Note that τ(D) = {a3, a4, a7, a9}. To see that D is a generalized intermediate domain, con-
sider, for instance, the preference P3. We show that P3 satisfies the betweenness property with 
respect to each alternative in {a3, a4, a7, a9}. Consider a7. Observe that τ(P3) = a4 and a7P3aj

for all j ∈ {8, 9, 10}. So, P3 satisfies the betweenness property with respect to a7. Similarly, it 
can be checked that P3 satisfies the betweenness property with respect to a3 and a9. It is left to 
the reader to verify that the other preferences in D satisfy the betweenness property with respect 

2 We say two alternatives are “consecutive in the top-set” if (i) they are in the top-set of the domain, and (ii) there 
is no alternative in the top-set of the domain that lies strictly in-between (with respect to the prior order ≺) those two 
alternatives.

3 This property is known as top-connectedness in the literature (Monjardet (2009), Sato (2013), Cho (2016)).
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Table 1
The domain in Example 1.

P1 P2 P3 P4 P5 P6 P7 P8
a3 a3 a4 a4 a7 a7 a9 a9
a1 a4 a3 a7 a4 a9 a7 a10
a4 a1 a1 a3 a3 a10 a10 a7
a2 a6 a6 a8 a8 a4 a4 a8
a6 a7 a7 a6 a6 a3 a3 a6
a7 a5 a5 a2 a2 a1 a1 a4
a5 a9 a9 a9 a9 a2 a2 a3
a8 a2 a2 a10 a10 a5 a5 a5
a9 a10 a10 a5 a5 a6 a6 a1
a10 a8 a8 a1 a1 a8 a8 a2

Fig. 1. A graphic illustration of the preference P5 given in Table 1.

to {a3, a4, a7, a9} and that it is minimally rich. In Fig. 1, we present a pictorial description of the 
preference P5 ∈ D . �

2.2. Social choice functions and their properties

In this section, we define social choice functions and discuss a few properties of those. By �A, 
we denote the set of probability distributions over A. A random social choice function (RSCF)
is a function ϕ : Dn → �A that assigns a probability distribution over A at every preference 
profile. For a ∈ A and PN ∈ Dn, we denote by ϕa(PN) the probability of a at the outcome ϕ(PN), 
and for B ⊆ A, we define ϕB(PN) = ∑

a∈B ϕa(PN) as the total probability of the alternatives in 
B at ϕ(PN).

An RSCF is a deterministic social choice function (DSCF) if it selects a degenerate proba-
bility distribution at every preference profile. More formally, an RSCF ϕ : Dn → �A is a DSCF 
if ϕa(PN) ∈ {0, 1} for all a ∈ A and all PN ∈ Dn.

For later reference we include the following (trivial) observation.

Remark 2.2. For all L, L′ ∈ �A and all P ∈L(A), if LU(x,P ) ≥ L′
U(x,P ) and L′

U(x,P ) ≥ LU(x,P )

for all x ∈ A, then L = L′.

We now introduce some properties of an RSCF that are standard in the literature. An RSCF 
ϕ : Dn → �A is unanimous if for all a ∈ A and all PN ∈ Dn, [τ(Pi) = a for all i ∈ N ] ⇒
[ϕa(PN) = 1]. An RSCF ϕ : Dn → �A is strategy-proof if for all i ∈ N , all PN ∈ Dn, all 

6



S. Roy and S. Sadhukhan Journal of Economic Theory 197 (2021) 105131

Table 2
Parameters of the TM rule in Example 2.

β β∅ β1 β2 β3 β{1,2} β{1,3} β{2,3} β{1,2,3}
a9 a8 a9 a7 a4 a5 a2 a2

P ′
i ∈ D , and all x ∈ A, ϕU(x,Pi)(Pi, P−i ) ≥ ϕU(x,Pi )(P

′
i , P−i ).4 The concepts of unanimity and 

strategy-proofness for DSCFs are special cases of the corresponding ones for RSCFs. Two pro-
files PN, P ′

N ∈ Dn are tops-equivalent if each agent has the same top-ranked alternative in 
those two profiles, that is, τ(Pi) = τ(P ′

i ) for all i ∈ N . An RSCF ϕ : Dn → �A is tops-only
if ϕ(PN) = ϕ(P ′

N) for all tops-equivalent PN, P ′
N ∈ Dn. An RSCF ϕ : Dn → �A is uncompro-

mising if ϕB(PN) = ϕB(P ′
i , P−i ) for all i ∈ N , all PN ∈ Dn, all P ′

i ∈ D , and all B ⊆ A such 
that B ∩ [τ(Pi), τ(P ′

i )] = ∅. In words, uncompromisingness says that if an agent moves his peak 
(top-ranked alternative) from an alternative a to another alternative b, then the probability as-
signed by an RSCF to each alternative outside the interval [a, b] will remain unchanged. Note 
that an uncompromising RSCF is tops-only by definition.

2.2.1. A class of social choice functions
Moulin (1980) introduces the concept of min-max rules with respect to a collection of param-

eters. Tops-restricted min-max rules are special cases of these rules where the parameters must 
come from the top-set of the domain.

A DSCF f : Dn → A is a tops-restricted min-max (TM) rule if for all S ⊆ N , there ex-
ists βS ∈ τ(D) satisfying the conditions that β∅ = max(τ (D)), βN = min(τ (D)), and βT �
βS for all S ⊆ T such that

f (PN) = min
S⊆N

[
max
i∈S

{τ(Pi), βS}
]

.

If τ(D) = A, then a TM rule is called a min-max rule. In what follows, we present an example 
of a TM rule.

Example 2. Let A = {a1, . . . , a10} and N = {1, 2, 3}. Consider a domain D with τ(D) =
{a2, a3, a4, a5, a7, a8, a9}. Consider the TM rule, say f , with respect to the parameters given 
in Table 2.

Let (a5, a3, a8) denote a profile where a5, a3 and a8 are the top-ranked alternatives of agents 
1, 2 and 3, respectively. The outcome of f at this profile is determined as follows.

f (PN) = min
S⊆{1,2,3}

[
max
i∈S

{τ(Pi), βS}]
= min

[
max{β∅},max{τ(P1), β1},max{τ(P2), β2},max{τ(P3), β3},
max{τ(P1), τ (P2), β{1,2}},max{τ(P1), τ (P3), β{1,3}},
max{τ(P2), τ (P3), β{2,3}},max{τ(P1), τ (P2), τ (P3), β{1,2,3}}

]
= min

[
a9, a8, a9, a8, a5, a8, a8, a8

]
= a5. �

4 Our notion of strategy-proofness (which is introduced in Gibbard (1977)) is based on first order stochastic domi-
nance. Informally speaking, strategy-proofness ensures that the outcome an(y) agent can obtain by misreporting his/her 
preference will be first order stochastically dominated by the original/sincere outcome.
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Note that the outcome of a TM rule f always lies in the top-set of the corresponding domain, 
i.e., f (PN) ∈ τ(D) for all PN ∈ Dn. Our next remark says that a TM rule on a domain can be 
seen as a min-max rule on the domain obtained by restricting it to its top-set. It further says that 
the former is strategy-proof if and only if latter is.

Remark 2.3. Let f : Dn → A be a TM rule. Define f̂ : (D |τ(D))
n → τ(D) such that 

f̂ (PN |τ(D)) = f (PN).5 Then, f is strategy-proof if and only if f̂ is strategy-proof.

For DSCFs f j , j = 1, . . . , k and nonnegative numbers λj , j = 1, . . . , k, summing to 1, we 
define the RSCF ϕ = ∑k

j=1 λjf j as ϕa(PN) = ∑k
j=1 λjf

j
a (PN) for all PN ∈ Dn and all a ∈ A. 

We call ϕ a convex combination of the DSCFs f j . So, at every profile, ϕ assigns probability λj

to the outcome of f j for all j = 1, . . . , k.
An RSCF ϕ : Dn → �A is a tops-restricted random min-max (TRM) rule if ϕ can be 

written as a convex combination of some TM rules on Dn.6 If τ(D) = A, then a TRM rule 
ϕ : Dn → �A is a random min-max rule.

3. Results

3.1. Unanimous and strategy-proof RSCFs on generalized intermediate domains

In this subsection, we present our main result characterizing the unanimous and strategy-proof 
RSCFs on the minimally rich generalized intermediate domains.

Theorem 1. Let D be a minimally rich generalized intermediate domain. Then, an RSCF ϕ :
Dn → �A is unanimous and strategy-proof if and only if it is a TRM rule.

The proof of this theorem is relegated to Appendix A. We provide a brief sketch of it here. 
The if part of the theorem follows from Moulin (1980). To see this, first note the following two 
facts: (i) every minimally rich generalized intermediate domain D restricted to its top-set τ(D)

is a subset of the maximal single-peaked domain over τ(D), and (ii) every TRM rule on Dn is a 
random min-max rule on Dn|τ(D). In view of these observations, it is enough to show that every 
random min-max rule is unanimous and strategy-proof on D |τ(D). From Moulin (1980), every 

5 This is well-defined since by the definition of a TM rule, f is tops-only and f (PN ) ∈ τ(D) for all PN ∈ Dn .
6 A TRM rule can be directly defined as follows. Let τ(D) = {b1, . . . , bk}. An RSCF ϕ : Dn → �A is a TRM rule 

if there exists a lottery βS ∈ �τ(D) for each S ⊆ N , referred to as a probabilistic ballot, such that the following three 
conditions are satisfied:

(i) (Regularity condition) βN = eb1 and β∅ = ebk
.

(ii) (Monotonicity condition) For all S, T ⊆ N with S ⊂ T , we have

βT [b1, bl ] ≥ βS [b1, bl ] for all l = 1,2, . . . , k.

(iii) For all PN ∈ Dn and ak ∈ A, we have

ϕak
(PN ) = βS (ak,PN )[a1, ak] − βS (ak−1,PN )[a1, ak−1], where

S (ak,PN ) = {i ∈ N | τ(Pi) � ak} and βS (a0,PN )[a1, a0] ≡ 0.

8
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min-max rule on D |τ(D) is unanimous and strategy-proof, and since every random min-max rule 
is a convex combination of min-max rules, such rules are also unanimous and strategy-proof on 
D |τ(D).

We prove the only-if part of the theorem in the following two steps. In the first step, we prove 
a proposition that states that every unanimous and strategy-proof RSCF on a minimally rich 
generalized intermediate domain is uncompromising and assigns probability 1 to the top-set of 
the domain. We prove this proposition by using the method of induction on the number of agents. 
We start with the base case n = 1. The proposition follows trivially for this case. Assuming that 
the proposition holds for all cases where the number of agents is less than n, we proceed to 
prove it for n agents. First, we consider the set of profiles where agents 1 and 2 have the same 
preferences. We show that the restriction of ϕ to this set induces a unanimous and strategy-proof 
RSCF on Dn−1, and claim by means of the induction hypothesis that the proposition holds (in a 
suitable sense) on this set of profiles. Next, we show that the same holds for the profiles where 
agents 1 and 2 have the same top-ranked alternatives (instead of having the same preferences). 
Finally, in order to prove the proposition for profiles where agents 1 and 2 have arbitrary top-
ranked alternatives, we use another level of induction on the “distance” between the top-ranked 
alternatives of agents 1 and 2. The distance between two alternatives bj , bj+l ∈ τ(D) is defined 
as l. Assuming that the proposition holds for the profiles where the said distance is less than 
some l̂, we prove the proposition for the profiles where it is l̂. By induction, this completes the 
proof of the proposition.

For a clearer picture, we explain the first step of the proof by means of an example. Suppose 
that N = {1, 2, 3} and A = {a1, . . . , a10}. Let D be a minimally rich generalized intermediate 
domain with τ(D) = {a1, a4, a5, a8, a9}. Note that if we had one agent, then trivially every unan-
imous and strategy-proof RSCF on D would be uncompromising and would assign probability 1 
to the alternatives in {a1, a4, a5, a8, a10} at every profile. Suppose (as the induction hypothesis) 
that the same holds if we had two agents. Consider all the preference profiles PN , where agents 
1 and 2 have the same preferences. We look at the restriction of a unanimous and strategy-proof 
RSCF ϕ on these profiles. Since agents 1 and 2 have the same preferences for all these pro-
files, they can be treated as one agent and ϕ can be seen as an RSCF for two agents. By some 
elementary arguments, one can show that ϕ, when seen as a two-agent RSCF, is unanimous 
and strategy-proof. So, by the induction hypothesis, ϕ satisfies uncompromisingness and assigns 
probability 1 to the set {a1, a4, a5, a8, a9} for all these profiles. Next, we let the preferences of 
agents 1 and 2 differ beyond their top-ranked alternatives and extend our proposition to those 
profiles. We use Remark 2.2 to complete this step. Finally, we proceed to prove the proposi-
tion when agents 1 and 2 have arbitrary preferences. Here, we use another level of induction. 
Suppose (as the induction hypothesis) that the proposition holds over the profiles for which the 
top-ranked alternatives of agents 1 and 2 are at distance 1, that is, their top-ranked alternatives 
are either {a1, a4} or {a4, a5} or {a5, a8} or {a8, a9}. We show as the induction step that the same 
holds over the profiles for which their top-ranked alternatives are at distance 2, that is, they are 
either {a1, a5} or {a4, a8} or {a5, a9}. We prove this as a general step of the induction, and thereby 
cover all profiles in D3. The details of the arguments needed to show this step is quite technical, 
so we do not discuss it here.

In the second step, we show that every uncompromising RSCF on Dn is a random min-max 
rule. We use results from Ehlers et al. (2002) and Peters et al. (2014) to prove this. Finally, we 
argue that if a random min-max rule assigns positive probability only to the alternatives in the 
top-set of the domain, then it is a TRM rule. This completes the proof of the only-if part of the 
theorem.

9
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Remark 3.1. Since every TRM rule is tops-only, it follows from our result that unanimity and 
strategy-proofness together guarantee tops-onlyness for the RSCFs on minimally rich general-
ized intermediate domains. Chatterji and Zeng (2018) provide a sufficient condition for a domain 
to be tops-only for RSCFs.7 However, minimally rich generalized intermediate domains do not 
satisfy their condition.

Remark 3.2. A domain D satisfies the deterministic extreme point (DEP) property if every unan-
imous and strategy-proof RSCF on Dn can be written as a convex combination of unanimous and 
strategy-proof DSCFs on Dn. It follows from Theorem 1 that minimally rich generalized inter-
mediate domains satisfy deterministic extreme point property.

Remark 3.3. Barberà and Moreno (2011) introduce the notion of top-monotonicity. It can be 
verified that if every preference in a domain satisfies the betweenness property, then the corre-
sponding preference profile will satisfy the top-monotonicity property. Therefore, it follows from 
Barberà and Moreno (2011) that generalized intermediateness guarantees the existence of voting 
equilibria, not only under the majority rule but also for the wide class of voting rules analyzed by 
Austen-Smith and Banks (2000). Moreover, these equilibria are closely connected to an extended 
notion of the median voter.

Remark 3.4. It can be verified that minimally rich generalized intermediate domains are semi-
lattice single-peaked, and hence by Proposition 3 of Chatterji and Massó (2018), it follows that 
they admit unanimous, anonymous, tops-only, and strategy-proof DSCFs.

4. Applications

In this section, we demonstrate the applicability of our results by showing that a class of 
domains of practical importance are generalized intermediate.

4.1. Single-peaked domains

Ehlers et al. (2002) characterize the unanimous and strategy-proof RSCFs on the maximal 
single-peaked domain as fixed-probabilistic-ballots rules, and Peters et al. (2014) show that such 
an RSCF is a convex combination of the min-max rules. Theorem 1 improves these results by 
relaxing the maximality assumption. Note that the number of preferences in the maximal single-
peaked domain is 2m−1, whereas that in a minimally rich single-peaked domain can range from 
2m − 2 to 2m−1.

4.2. Single-crossing domains

In this subsection, we introduce the concept of single-crossing domains and show that every 
single-crossing domain is generalized intermediate. Saporiti (2014) characterizes all unanimous 
and strategy-proof DSCFs on maximal single-crossing domains. Carroll (2012) considers a 
slightly more general class of single-crossing domains called successive single-crossing domains 
in the context of local strategy-proofness with transfers. We show that all these domains are spe-
cial cases of minimally rich generalized intermediate domains.

7 A domain is tops-only if every unanimous and strategy-proof RSCF on it is tops-only.
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A domain D is single-crossing if there is an ordering � over D such that for all a, b ∈ A

and all P, P ′ ∈ D , [a ≺ b, P � P ′, and bPa] =⇒ bP ′a. In words, a single-crossing domain 
is one for which the preferences can be ordered in a way such that every pair of alternatives 
switches their relative ranking at most once along that ordering. A single-crossing domain D̄
is maximal if there does not exist another single-crossing domain that is a strict superset of 
D̄ . Note that a maximal single-crossing domain with m alternatives contains m(m − 1)/2 + 1
preferences.8 A domain D is successive single-crossing if there is a maximal single-crossing 
domain D̄ with respect to some ordering � and two preferences P ′, P ′′ ∈ D̄ with P ′ � P ′′ such 
that D = {P ∈ D̄ | P ′ � P � P ′′}.9

In the following example, we present a maximal single-crossing domain and a successive 
single-crossing domain with 5 alternatives.

Example 3. Let the set of alternatives be A ={a1, a2, a3, a4, a5} with the prior order a1≺· · ·≺a5. 
The domain D̄ = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5,

a4a2a3a5a1, a4a3a2a5a1, a4a3a5a2a1, a4a5a3a2a1, a5a4a3a2a1} is a maximal single-crossing 
domain with respect to the ordering � given by a1a2a3a4a5 � a2a1a3a4a5 � a2a3a1a4a5 �
a2a3a4a1a5 � a2a4a3a1a5 � a4a2a3a1a5 � a4a2a3a5a1 � a4a3a2a5a1 � a4a3a5a2a1 � a4a5a3a2a1 �
a5a4a3a2a1 since every pair of alternatives change their relative ordering at most once along 
this ordering. Note that the cardinality of A is 5 and that of D̄ is 5(5 − 1)/2 + 1 = 11. The 
domain D = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5} is a 
successive single-crossing domain since it contains all the preferences in-between a1a2a3a4a5
and a4a2a3a1a5 in the maximal single-crossing domain D̄ . �

In the following lemmas, we show that every single-crossing domain is a generalized in-
termediate domain, and every successive single-crossing domain is a minimally rich general 
intermediate domain.

Lemma 1. Every single-crossing domain is a generalized intermediate domain.

Proof. Let D be a single-crossing domain with an ordering � over the preferences. We show 
that D is a generalized intermediate domain. Suppose not and assume without loss of generality 
that there exist a ∈ A, br , bs ∈ τ(D) and P br ∈ D such that br ≺ bs ≺ a and aP br bs . Consider 
P bs ∈ D . Since brP

br bs , bsP
bs br , and br ≺ bs , it follows from the definition of a single-crossing 

domain that P br � P bs . By means of our assumption that bs ≺ a and aP br bs , P br � P bs implies 
aP bs bs . However, this is a contradiction since τ(P bs ) = bs . This completes the proof. �

Lemma 2. Every successive single-crossing domain is a minimally rich single-crossing domain.

Proof. It is enough to show that every successive single-crossing domain is minimally rich. Let 
D be a successive single-crossing domain. Then, by the definition of a successive single-crossing 
domain, there is a maximal single-crossing domain D̄ with respect to some ordering � such that 

D = {P ∈ D̄ | P̃ � P � ˜̃
P } for some P̃ , ˜̃P ∈ D̄ with P̃ � ˜̃

P . Suppose τ(D) = {b1, . . . , bk}. 
We show that for all j = 1, 2, . . . , k − 1, there are P ∈ Dbj and P ′ ∈ Dbj+1 such that P ∼ P ′. 

8 For details see Saporiti (2009).
9 By P � P ′ , we mean either P = P ′ or P � P ′ .
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Consider bj , bj+1 ∈ τ(D) and consider P̄ ∈ Dbj and P̂ ∈ Dbj+1 . Since bj P̄ bj+1, bj+1P̂ bj , and 
bj ≺ bj+1, it follows from the definition of a single-crossing domain that P̄ � P̂ . Using a similar 
argument, we obtain P bl � P̄ for all l < j , and P bl > P̂ for all l > j +1. Therefore, there must be 
P ∈ Dbj and P ′ ∈ Dbj+1 that are consecutive in the ordering �, that is, P ∈ Dbj and P ′ ∈ Dbj+1

are such that there is no P ′′ ∈ D with P � P ′′ � P ′. We show P ∼ P ′. Suppose not. Let a be 
the alternative which is ranked just above bj+1 in P , that is, aPbj+1 and there is no x ∈ A with 
aPxPbj+1. Consider the preference P ′′ that is obtained by switching the alternatives a and bj+1

in P . We show P ′′ /∈ D̄ . In particular, we show that both P ′′ �P and P ′ �P ′′ are impossible. This 
is sufficient since P and P ′ are consecutive in the ordering �. Suppose P ′′ � P . Since aPbj+1, 
P � P ′, and bj+1P

′a, by the single-crossing property of D̄ , it must be that a ≺ bj+1. However, 
because bj+1P

′′a and aPbj+1, this contradicts P ′′ � P . Now, suppose P ′ � P ′′. Since P � P ′, 
there must be a pair of alternatives c, d with c ≺ d such that cPd and dP ′c. Moreover, because 
P ′ and P ′′ are different, it must be that {c, d} �= {a, bj+l}. Since c ≺ d , dP ′c, and P ′ � P ′′, by 
the single-crossing property of D̄ , we have dP ′′c. However, by the construction of P ′′, we have 
cP ′′d , which is a contradiction. Thus, we have P ′′ /∈ D̄ . This implies D̄ ∪P ′′ is a single-crossing 
domain with respect to the ordering �′ over D̄ ∪ P ′′, where �′ is obtained by placing P ′′ in-
between P and P ′ in the ordering �, i.e., �′ coincides with � over D̄ and P �′ P ′′ �′ P ′. This 
contradicts the fact that D̄ is a maximal single-crossing domain. Therefore, P ∼ P ′ and D is 
minimally rich. This completes the proof of the lemma. �

4.3. Single-dipped domains

In this subsection, we introduce the concept of single-dipped domains and show that they are 
generalized intermediate. A preference P is single-dipped if it has a unique minimal element 
d(P ), the dip of P , such that for all a, b ∈ A, [d(P ) � a ≺ b or b ≺ a � d(P )] ⇒ bPa. A 
domain is single-dipped if each preference in it is single-dipped.

It is straightforward that a minimally rich single-dipped domain is a minimally rich gener-
alized intermediate domain. Note that the number of preferences in the maximal single-dipped 
domain is 2m−1, while that in a minimally rich single-dipped domain can range from 2 to 2m−1.

It is worth mentioning that any unanimous and strategy-proof RSCF on a minimally rich 
single-dipped domain can give positive probability to two particular (the boundary ones) alter-
natives.

4.4. Single-peaked domains on trees with top-set along a path

A domain is tree-single-peaked if the alternatives are located on a tree and agents’ preferences 
fall as one moves away from his/her top-ranked alternative along any path. Schummer and Vohra 
(2002) characterize the tops-only, unanimous and strategy-proof DSCFs on tree-single-peaked 
domains. Under the additional restriction that the top-set of the domain lie along a path, our 
result improves their one in two ways: first, by allowing for random rules, and second, by relaxing 
tops-onlyness.

We introduce a graph structure over the set of alternatives. A collection G ⊆ {{a, b} | a, b ∈ A,

a �= b} is an undirected graph over A. The elements of G are edges. A path in G from a node 
a1 to another ak is a sequence of distinct nodes 〈a1, . . . , ak〉 such that {ai, ai+1} ∈ G for all 
i = 1, . . . , k − 1. Note that a path cannot have a cycle by definition.

A graph over A is a tree, denoted by T , if for all a, b ∈ A, there exists a unique path from 
a to b. Since such a path is unique in a tree, for ease of presentation we denote it by [a, b]. A 
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Fig. 2. An example of a tree. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

preference P is single-peaked on T if for all distinct x, y ∈ A with y �= τ(P ), x ∈ [τ(P ), y] =⇒
xPy. A domain is single-peaked on T if each preference in it is single-peaked on T .

Let T be a tree over A and let D be a single-peaked domain on T . Suppose τ(D) =
{b1, . . . , bk}. We call D a single-peaked domain with top-set along a path if 〈b1, . . . , bk〉 is a 
path in T . In Fig. 2, we present a tree in which a path is marked with red. A single-peaked do-
main with respect to this tree with top-set along the red path can be constructed by taking those 
single-peaked preferences that have top-ranked alternatives in that path.

The following lemma says that a single-peaked domain on a tree with top-set along a path is 
a minimally rich generalized intermediate domain.

Lemma 3. Let D be a single-peaked domain on a tree T with top-set along a path in T . Then, 
D is a minimally rich generalized intermediate domain.

Proof. Let T be a tree and let π = 〈b1, . . . , bk〉 be a path in it. Let D be a single-peaked domain 
on T with τ(D) = {b1, . . . , bk}. Consider a linear order ≺ on A such that

• b1 ≺ · · · ≺ bk , and
• for all a ∈ A \ {b1, . . . , bk}, a ≺ bl if and only if the projection of a on π is bj for some 

j ≤ l.10

Note that the linear order ≺ defined above is not unique since it does not specify the relative 
ordering of two alternatives that are outside the path π but have the same projection. We show 
that D is a minimally rich generalized intermediate domain with respect to ≺. Since D is single-
peaked on T and {bl, bl+1} is an edge in T for all l ∈ {1, . . . , k − 1}, we can always find two 
preferences P and P ′ such that τ(P ) = r2(P

′) = bl , r2(P ) = τ(P ′) = bl+1, and rl(P ) = rl(P
′)

for all l ≥ 3. Therefore, D is minimally rich.
Now, we show that D is generalized intermediate. Consider br and bs with br ≺ bs . To show 

D is generalized intermediate, it is enough to show that for all P with τ(P ) = br , we have 

10 By the projection of an alternative a ∈ A on a path π in a tree T , we mean the alternative b ∈ π that is closest (with 
respect to graph distance) to a, i.e., b ∈ π is such that |[a, b]| ≤ |[a, c]| for all c ∈ π .
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bsPa for all a with bs ≺ a. Assume for contradiction that there exist P ∈ D and a ∈ A with 
τ(P ) = br and bs ≺ a such that aPbs . If a ∈ {bs+1, . . . , bk}, then by means of the fact that T is 
a tree, we have bs ∈ [br , a]. However, by single-peakedness of P , this implies bsPa, which is a 
contradiction to aPbs . Now, suppose a ∈ A \ {bs+1, . . . , bk}. Since bs ≺ a, by the definition of 
≺, there exists bl ∈ {bs+1, . . . , bk} such that the projection of a on π is bl . By the definition of 
projection and by single-peakedness of P , we have blP a. Moreover, since bs ∈ [br , bl] it follows 
that bsPbl , which in turn implies bsPa. However, this is a contradiction to aPbs . Thus, for all P
with τ(P ) = br , we have bsPa for all a with bs ≺ a. This proves D is a generalized intermediate 
domain. �

4.5. Multi-peaked domains

In many practical scenarios in Economics and Political Science, preferences of individuals 
often exhibit multi-peakedness as opposed to single-peakedness. As the name suggests, multi-
peaked preferences admit multiple (local) ideal points in a unidimensional policy space. We 
discuss a few settings where it is plausible to assume that individuals have multi-peaked prefer-
ences.

• Preference for “Do Something” in Politics: Davis et al. (1970) and Egan (2014) consider 
policy (decision) problems such as choosing alternate tax regimes, lowering health care costs, 
responding to foreign competition, reducing national debt, etc. They show that such a problem 
is perceived to be poorly addressed by the status-quo policy, and consequently some individ-
uals prefer both liberal and conservative policies to the moderate status quo one. Clearly, such 
a preference will have two peaks, one on the left of the status quo and another one on the right 
of it.

• Multi-stage Voting System: Shepsle (1979), Denzau and Mackay (1981), Enelow and Hinich 
(1983) deal with multi-stage voting system where individuals vote on a set of issues where 
each issue can be thought of as a unidimensional spectrum and voting is distributed over 
several stages considering one issue at a time. In such a model, preference of an individual 
over the present issue can be affected by his/her prediction of the outcome of future issues. In 
other words, such a preference is not separable across issues. They show that preferences of 
individuals in such scenarios exhibit multi-peaked property.

• Provision of Public Goods with Outside Options: Barzel (1973), Stiglitz (1974), and Bearse 
et al. (2001) consider the problem of setting the level of tax rates to provide public funding 
in the education sector, and Ireland (1990) and Epple and Romano (1996) consider the same 
problem in the health insurance market. They show that preferences of individuals exhibit 
multi-peaked property due to the presence of outside options (i.e., the public good is also 
available in a competitive market as a private good).

• Provision of Excludable Public Goods: Fernandez and Rogerson (1995) and Anderberg 
(1999) consider public good provision models such as health insurance, educational subsi-
dies, pensions, etc., where a government provides the public good to a particular section of 
individuals and shows that individuals’ preferences in such scenarios exhibit multi-peaked 
property.

We now present a formal definition of multi-peaked domains and show that they are special 
cases of generalized intermediate domains. To ease our presentation, for two alternatives a and 
b, we denote by (a, b) the set [a, b] \ {a, b}.

14
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Fig. 3. A multi-peaked preference.

Let b1 ≺ · · · ≺ bk be such that (bl, bl+1) �= ∅ for all 1 ≤ l < k. Then, a preference P is multi-
peaked with peak-set {b1, . . . , bk} if (i) P |[a1,b1] and P |[bk,am] are single-dipped with dips at a1
and am, respectively, (ii) for all 1 ≤ l < k, P |[bl ,bl+1] is single-dipped with a dip in (bl, bl+1), 
and (iii) P |{b1,...,bk} is single-peaked. A domain D is multi-peaked if it contains all multi-peaked 
preferences with peak-set τ(D).

In words, for a multi-peaked preference there are several (local) peaks such that the preference 
behaves like a single-dipped one between every two consecutive peaks and like a single-peaked 
one over the peaks. In Fig. 3, we present a pictorial description of a multi-peaked prefer-
ence.

Lemma 4. Every multi-peaked domain is a minimally rich generalized intermediate domain.

Proof. Let D be a multi-peaked domain. Suppose τ(D) = {b1, . . . , bk} with b1 ≺ . . . ≺ bk . By 
the definition of D , for all bl, bl+1 ∈ τ(D), there are preferences P, P ′ ∈ D such that τ(P ) = bl , 
τ(P ′) = bl+1 and P ∼ P ′. This shows D is minimally rich. Now, we prove D is a generalized 
intermediate domain. Consider br and bs where br ≺ bs . We show that for all P with τ(P ) = br , 
we have bsPa for all a ∈ A with bs ≺ a. Consider P ∈ D with τ(P ) = br and consider a ∈ A

with bs ≺ a. Since bs ≺ a there exists bl with bs � bl such that a ∈ [bl, bl+1]. By the definition 
of multi-peaked domains, we have bsPbl and blP a, which implies bsPa. This proves that D is 
a generalized intermediate domain. �

Remark 4.1. Note that for both applications 4.4 and 4.5, the top-set of the domain is (exoge-
nously) known to the designer. Domains with exogenously given characteristics are not new to 
the literature, for instance Alcalde-Unzu and Vorsatz (2018) consider domains where the top-
ranked alternative of each agent is known to the designer and Pramanik and Sen (2016) consider 
domains where the indifference classes are known to the designer.

4.6. Euclidean domains

Roy and Sadhukhan (2019) consider Euclidean domains and show that every unanimous and 
strategy-proof RSCF on such domains is a random min-max rule.

For ease of presentation, we assume that the set of alternatives are (finitely many) elements of 
the interval [0, 1].11 In particular, we assume 0 = a1 < · · · < am = 1. Suppose that the individ-
uals are located at arbitrary locations in [0, 1] and they derive their preferences using Euclidean 

11 With abuse of notation, we denote by [0, 1] the set of all real numbers in-between 0 and 1.
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distances of the alternatives from their own locations. We call such preferences Euclidean. A 
preference P is Euclidean if there is x ∈ [0, 1], called the location of P , such that for all alterna-
tives a, b ∈ A, |x − a| < |x − b| implies aPb. A domain is Euclidean if it contains all Euclidean 
preferences.

Lemma 5. Every Euclidean domain is a minimally rich generalized intermediate domain.

Proof. Let D be a Euclidean domain. Then, by definition, it is regular single-peaked, and by 
Remark 2.1, it is generalized intermediate. It remains to show that D is minimally rich. Consider 
ar and ar+1 for some r ∈ {1, . . . , m − 1}. By the definition of Euclidean domain, there are two 
preferences P and P ′ in D with location ar+ar+1

2 such that τ(P ) = r2(P
′) = ar , r2(P ) = τ(P ′) =

ar+1, and rl(P ) = rl(P
′) for l ≥ 3. This completes the proof of the lemma. �

4.7. Intermediate domain

Grandmont (1978) introduces the concept of intermediate domains and shows that under some 
conditions on the distribution of voters over preferences, majority rule is transitive on these 
domains. However, to the best of our knowledge, no characterization of unanimous and strategy-
proof RSCFs on these domains is available in the literature. Under a mild condition on these 
domains (mainly to avoid non-transitive preferences), we show that these domains are special 
cases of generalized intermediate domains, and consequently, we provide a characterization of 
unanimous and strategy-proof RSCFs on those.

Throughout this section, we denote by X an open convex subset of the Euclidean space E2, 
and whenever we refer to a line, we mean a line in X (that is, a collection of points in X that 
constitute a line).

A preference P is between two preferences P1 and P2, denoted by P ∈ (P1, P2), if for all 
a, b ∈ A, aP1b and aP2b imply aPb. A domain {Px}x∈X satisfies the intermediate property if 
for every x′ and x′′ ∈ X, x ∈ (x′, x′′) implies Px ∈ (Px′ , Px′′).12

Grandmont (1978) provides a characterization of the intermediate domains where preferences 
are allowed to be weak (i.e., can have indifferences) and non-transitive. In the following lemma, 
we modify his/her result for the situation where preferences are strict and transitive (i.e., linear 
orders).

Lemma 6. Let a domain {Px}x∈X satisfy the intermediate property. Then, for every pair of alter-
natives (a, b), exactly one of the following statements must hold:

(i) aPxb for all x ∈ X.
(ii) bPxa for all x ∈ X.

(iii) There exist q = (q1, q2) ∈ E2; (q1, q2) �= (0, 0) and κ ∈ R such that for all (x1, x2) ∈ X, 
aPxb implies q1x1 + q2x2 ≥ κ and bPxa implies q1x1 + q2x2 ≤ κ .

Proof. Suppose that both (i) and (ii) do not hold. We show that then (iii) must hold. Consider 
a, b ∈ A. Let A1 = {x ∈ X | aPxb} and A2 = {x ∈ X | bPxa}. By our assumption that both (i) 
and (ii) do not hold, it follows that both A1 and A2 are non-empty. Moreover, by definition, A1

12 With slight abuse of notation, by x ∈ (x′, x′′), we mean x = λx′ + (1 − λ)x′′ for some real number λ ∈ (0, 1).
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Table 3
The domain in Example 4.

P1 P2 P3 P4 P5 P6 P7 P8 P9
a a b b b b b c c

b b a a c c c b b

c c c c a e e e e

d e d e e a d a d

e d e d d d a d a

and A2 are disjoint, and by the intermediate property, both A1 and A2 are convex. Therefore, by 
Hyperplane separation theorem (Rockafellar (1970), Theorem 11.3), there exist q = (q1, q2) ∈
E2; (q1, q2) �= (0, 0) and κ ∈R such that for all (x1, x2) ∈ X, aPxb implies q1x1 + q2x2 ≥ κ and 
bPxa implies q1x1 + q2x2 ≤ κ . This completes the proof of the lemma. �

Note that for a domain satisfying the intermediate property and for a pair of alternatives (a, b)

that satisfies (iii) in Lemma 6, the object ((q1, q2), κ) identifies the line: q1x1 + q2x2 = κ . We 
denote such a line by l(a, b). Lemma 6 implies that a is preferred to b on one side of this line, and 
b is preferred to a on the other side.13 Since such a line separates the preferences with respect to 
a and b, we call it the separating line for a and b. In what follows, we introduce the concept of 
strict intermediate property.

Definition 4.1. A domain {Px}x∈X satisfies the strict intermediate property if

(i) there are no three distinct separating lines of the domain that pass through a common 
point, that is, for all three distinct (unordered) pairs (x1, y1), (x2, y2), and (x3, y3), we 
have l(x1, y1) ∩ l(x2, y2) ∩ l(x3, y3) = ∅,14 and

(ii) there exists a line l that intersects with all the separating lines of the domain, that is, for all 
pairs x, y ∈ A satisfying (iii) in Lemma 6, we have l ∩ l(x, y) �= ∅.

We provide an example of a domain that satisfies the strict intermediate property. It is worth 
noting from this example that (i) strictness is indeed a mild condition, and (ii) the strict interme-
diate property does not imply the single-crossing property.

Example 4. Let X be the open set in Fig. 4 and let {Px}x∈X = {abcde, abced, bacde, baced,

bcaed, bcead, bceda, cbead, cbeda} be a domain satisfying intermediate property (Table 3).
For each pair of alternatives, the separating line is indicated in the figure. Note that for the pairs 
(b, d), (b, c), etc., there are no separating lines. Further note that Px is constant over all points x
that are enclosed by some separating lines of the domain (this follows from Lemma 6). Such Pxs 
are mentioned in the respective region in Fig. 4.

Clearly, the domain {Px}x∈X satisfies strict intermediate property since no three separating 
lines pass through a common point and the line l (marked with red) intersects with all these lines. 
It is left to the reader to verify that the domain {Px}x∈X is not a single-crossing domain. �

13 There is no restriction on the relative preference over a and b for the preferences Px when x lies on this line.
14 By distinct (unordered pairs), we mean that {xi , yi } �= {xj , yj } for all i, j ∈ {1, 2, 3} with i �= j .
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Fig. 4. The set of separating lines of the domain in Example 4.

It is worth noting that the domain in Example 4 is a minimally rich generalized intermediate 
domain. Our next lemma shows that this fact is true in general.

Lemma 7. Every domain {Px}x∈X satisfying strict intermediate property is a generalized inter-
mediate domain.

The proof of this lemma is relegated to Appendix B.

5. The case of indifference at the top

In this section, we investigate the structure of the unanimous and strategy-proof RSCFs when 
indifference can occur at the top position. A particular class of these domains are known as 
single-plateaued domains. Importance of such domains is well-established in the literature (see 
Berga (1998) for more details).

A weak preference is a transitive and complete binary relation. For a weak preference R, we 
denote its indifference part by I and strict part by P . We denote the set of top-ranked alternatives 
in R by τ(R) and call it the plateau of R. In this section, we consider weak preferences R such 
that the size of the plateau can be at most two and the rest part of the preference is strict, that is, 
|τ(R)| ≤ 2 and aIb if and only if a, b ∈ τ(R). We denote a collection of such preferences by sD .

For a domain sD , we define τ( sD) = {x | x ∈ τ(R) for some R ∈ sD} as the set of alternatives 
that appear in the plateau of some preference in sD . Following our terminology for the case of 
strict preferences, we write the elements of τ( sD) as {b1, . . . , bk}, where b1 ≺ · · · ≺ bk .

An RSCF ϕ : sDn → �A is unanimous if for all RN ∈ sDn, ∩i∈Nτ(Ri) �= ∅ implies 
ϕ∩i∈Nτ(Ri)(RN) = 1. An RSCF ϕ : sDn → �A is strategy-proof if for all i ∈ N , all RN ∈ sDn, 
all R′

i ∈ sD , and all x ∈ A, ϕU(x,Ri)(RN) ≥ ϕU(x,Ri)(R
′
i , R−i ).15

15 For a weak preference R and an alternative a, U(a, R) = {b ∈ A|bRa}.
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A tie-breaking of a preference R ∈ sD is defined as a strict preference P̂ such that for all 
a, b ∈ A, aPb implies aP̂ b. In other words, if R is strict, then its tie-breaking is R itself, and 
if |τ(R)| = 2, then in a tie-breaking the top two alternatives appear as the first and the second 
ranked alternatives, and rest of the preference remains the same. A domain sD satisfies the tie-
braking property if each preference R in it has a tie-breaking present in it.

We define the suitable version of the betweenness property for weak preferences. A prefer-
ence R satisfies the betweenness property with respect to an alternative a if for all b ∈ A \ a

with b /∈ τ(R), a ∈ [x, b] for some x ∈ τ(R) implies aPb. A domain sD satisfies the between-
ness property with respect to an alternative a if each preference R ∈ sD satisfies the property 
with respect to a. A domain sD is generalized intermediate if it satisfies the betweenness 
property with respect each alternative in τ( sD). Note that this means that for each R ∈ sD with 
|τ(R)| = 2, τ(R) can only be of the form {bt , bt+1} for some t ∈ {1, . . . , k − 1} (that is, it can-
not be like {bs, bt } where t − s ≥ 2). We use the same definition for minimal richness as in the 
case of strict preferences, that is, sD satisfies minimal richness if its strict preferences satisfy the 
same.

Our next theorem says that every unanimous and strategy-proof RSCF on a minimally rich 
generalized intermediate domain satisfying the tie-breaking property is tops-restricted, that is, 
the top-set of the domain gets probability 1 at all profiles.

Theorem 2. Let sD be a minimally rich generalized intermediate domain satisfying the tie-
breaking property and let ϕ : sD → �A be a unanimous and strategy-proof RSCF. Then 
ϕτ( sD)(RN) = 1 for all RN ∈ sDn.

The proof of this theorem is relegated to Appendix C.
In what follows, we analyze the structure of unanimous and strategy-proof RSCFs on sD . 

With slight abuse of terminology, we define a tie-breaking mapping of an agent i ∈ N as πi :
sDn → A such that πi(RN) ∈ τ(Ri) for all RN ∈ sDn. For a collection of tie-breaking mappings 
πππ = (πi)i∈N and a profile RN , we write πππ(RN) to denote the profile (π1(RN), . . . , πn(RN)). A 
collection of tie-breaking mappings πππ is called unanimous and strategy-proof if each πi in it is 
unanimous and strategy-proof.

We now define a new class of RSCFs by composing a TRM rule with a collection of tie-
breaking mappings. Let ϕ be any arbitrary TRM rule and πππ be an arbitrary collection of unan-
imous and strategy-proof tie-breaking mappings. Since ϕ is tops-only, it can be viewed as a 
function from An to �A. Define the composition of ϕ and πππ as the RSCF sϕ : sDn → �A defined 
as sϕ(RN) = ϕ(πππ(RN)) for all RN ∈ sDn. Our next theorem says that every composition of a 
TRM rule and a unanimous and strategy-proof collection of tie-braking mappings is unanimous 
and strategy-proof on a minimally rich generalized intermediate domain.

Theorem 3. Let sD be a minimally rich generalized intermediate domain. Then, for any TRM rule 
ϕ and any collection of unanimous and strategy-proof tie-breaking mappings πππ , the composition 
of ϕ and πππ is unanimous and strategy-proof.

The proof of this theorem is relegated to Appendix D.
The natural question arises as to what happens with the converse of Theorem 3. Berga (1998)

shows that if we replace unanimity by plateau-onlyness, then converse of Theorem 3 holds for 
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Table 4
The RSCF in Example 5.

1\2 a1a2a3 a2a1a3 a2a3a1 a3a2a1 [a3a2]a1

a1a2a3 (1,0,0) (0.3,0.7,0) (0.3,0.7,0) (0.3,0.4,0.3) (0.3,0.7,0)

a2a1a3 (0.2,0.8,0) (0,1,0) (0,1,0) (0,0.7,0.3) (0,1,0)

a2a3a1 (0.2,0.8,0) (0,1,0) (0,1,0) (0,0.7,0.3) (0,1,0)

a3a2a1 (0.2,0.4,0.4) (0,0.6,0.4) (0,0.6,0.4) (0,0,1) (0,0,1)

[a2a3]a1 (0.2,0.8,0) (0,1,0) (0,1,0) (0,0,1) (0,0.5,0.5)

deterministic rules.16 In what follows, we provide an example of a unanimous and strategy-proof 
RSCF that cannot not be written as a composition as in Theorem 3, which in particular means 
that the converse of Theorem 3 is not true. Furthermore, it can be verified that the RSCF in the 
example is also plateau-only, which says that the converse of Theorem 3 does not hold even 
under plateau-onlyness.

Example 5. Let A = {a1, a2, a3} and N = {1, 2}. Consider the domain sD = {a1a2a3, a2a1a3,

a2a3a1, a3a2a1, [a3a2]a1}. Here, for instance, by [a3a2]a1 we denote the preference R such 
that τ(R) = {a2, a3}, and the second ranked alternative is a1. Consider the RSCF ϕ given 
in Table 4. It can be verified that this rule is unanimous and strategy-proof. It is plateau-
only too. We argue that this rule cannot be written as a composition of a TRM rule and a 
collection of unanimous and strategy-proof tie-breaking mappings. Assume for contradiction 
this rule is a composition of a TRM rule and a collection of unanimous and strategy-proof 
tie-breaking mappings. By the definition of a TRM rule, we can deduce the following facts 
about its parameters: β1 = ϕ(a1a2a3, a3a2a1) and β2 = ϕ(a3a2a1, a1a2a3), which implies 
β1 = (0.3, 0.4, 0.3) and β2 = (0.2, 0.4, 0.4). Consider the profile ([a3a2]a1, [a3a2]a1). By una-
nimity, πi([a3a2]a1, [a3a2]a1) ∈ {a2, a3} for all i = 1, 2. Since ϕa2([a3a2]a1, [a3a2]a1) > 0 and 
ϕa3([a3a2]a1, [a3a2]a1) > 0, it must be that π1([a3a2]a1, [a3a2]a1) �= π2([a3a2]a1, [a3a2]a1). 
Suppose π1([a3a2]a1, [a3a2]a1) = a2 and π2([a3a2]a1, [a3a2]a1) = a3. But this means
ϕ([a3a2]a1, [a3a2]a1) = (0, 0.3, 0.7), which is a contradiction as ϕ([a3a2]a1, [a3a2]a1) =
(0, 0.5, 0.5). A similar contradiction as before emerges by considering the opposite case: 
π1([a3a2]a1, [a3a2]a1) = a3 and π2([a3a2]a1, [a3a2]a1) = a2. This shows that ϕ can not be 
written as a composition of a TRM rule and a collection of unanimous and strategy-proof tie-
breaking mappings. �

It is worth noting from Example 5 that the structure of unanimous (plateau-only) and strategy-
proof RSCFs on single-plateaued domains is fairly complicated. This is particularly because 
unanimity (plateau-onlyness) and strategy-proofness do not uniquely determine the outcomes at 
profiles that involve plateaus. For instance, in Example 5, any vector of the form (0, δ, 1 − δ), 
where δ ∈ [0, 1], can be the outcome at the profile ([a2a3]a1, [a3a2]a1) (maintaining una-
nimity (plateau-onlyness) and strategy-proofness). We leave the problem of characterizing all 
unanimous (plateau-only) and strategy-proof rules on single-plateaued domains for future re-
search.

16 An RSCF ϕ : sDn → �A is plateau-only if for all RN , R′
N

such that τ(Ri) = τ(R′
i
) for all i ∈ N , we have ϕ(RN) =

ϕ(R′
N

).
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6. Conclusion

In this paper, we have shown that in case of finitely many alternatives, an RSCF on a min-
imally rich generalized intermediate domain is unanimous and strategy-proof if and only if it 
can be written as a convex combination of the tops-restricted min-max rules. As applications 
of our result, we have obtained a characterization of the unanimous and strategy-proof RSCFs 
on restricted domains such as single-peaked, single-crossing, single-dipped, single-peaked on 
a tree with top-set along a path, Euclidean, multi-peaked, and intermediate domain (Grandmont 
(1978)). We have also analyzed the structure of unanimous and strategy-proof RSCFs on domains 
containing weak preferences for which indifference can occur only at the top two positions.

To our understanding, our results apply to all well-known restricted domains in one dimension. 
An interesting problem would be to see to what extent one can enlarge a generalized interme-
diate domain ensuring the existence of a non-random-dictatorial, unanimous, and strategy-proof 
(not necessarily tops-restricted random min-max) random rule. This will give some idea of the 
robustness of the generalized intermediate domains as possibility domains. Another interesting 
problem would be to explore the generalized intermediate domains for multiple dimensions. We 
leave all these problems for future research.

Appendix A. Proof of Theorem 1

First, we prove a proposition that constitutes a major step in this proof.

Proposition 1. Let D be a minimally rich generalized intermediate domain and let ϕ : Dn → �A

be a unanimous and strategy-proof RSCF. Then,

(i) ϕτ(D)(PN) = 1 for all PN ∈ Dn, and
(ii) ϕ is uncompromising.

We prove a sequence of lemmas which we will use in the proof of Proposition 1. The fol-
lowing lemma establishes that a generalized intermediate domain restricted to its top-set is 
single-peaked.

Lemma 8. Let D be a generalized intermediate domain. Then, D |τ(D) is single-peaked.

Proof. Let D be a generalized intermediate domain with τ(D) = {b1, . . . , bk}. We show that 
D |τ(D) is single-peaked. Without loss of generality, assume by contradiction that there exists 
P ∈ D such that τ(P ) = bj and bl′Pbl for some l, l′ with l′ < l < j . This means P violates 
the betweenness property with respect to bl , which is a contradiction since D is a generalized 
intermediate domain and bl ∈ τ(D). This completes the proof of the lemma. �

In what follows, we prove a technical lemma that we use repeatedly in the proof of Propo-
sition 1. We use the following notation in this lemma: for X, Y ⊆ A and a preference P , XPY

means xPy for all x ∈ X and y ∈ Y .

Lemma 9. Let D be a domain and let ϕ : Dn → �A be a strategy-proof RSCF. Let PN ∈ Dn, 
P ′

i ∈ D , and B, C ⊆ A be such that BPiC, BP ′
i C, and Pi |C = P ′

i |C . Suppose ϕC(PN) =
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ϕC(P ′
i , P−i ) and ϕa(PN) = ϕa(P

′
i , P−i ) for all a /∈ B ∪ C. Then, ϕa(PN) = ϕa(P

′
i , P−i ) for 

all a ∈ C.

Proof. First note that since ϕC(PN) = ϕC(P ′
i , P−i ) and ϕa(PN) = ϕa(P

′
i , P−i ) for all a /∈ B ∪

C, ϕB(PN) = ϕB(P ′
i , P−i ). Suppose b ∈ C is such that ϕb(PN) �= ϕb(P

′
i , P−i ) and ϕa(PN) =

ϕa(P
′
i , P−i ) for all a ∈ C with aPib. In other words, b is the maximal element of C according 

to Pi that violates the assertion of the lemma. Without loss of generality, assume that ϕb(PN) <
ϕb(P

′
i , P−i ). Since BPiC, ϕB(PN) = ϕB(P ′

i , P−i ), and ϕa(PN) = ϕa(P
′
i , P−i ) for all a /∈ B with 

aPib, it follows that ϕU(b,Pi)(PN) < ϕU(b,Pi )(P
′
i , P−i ). This implies agent i manipulates at PN

via P ′
i , which is a contradiction. This completes the proof of the lemma. �

Proof of Proposition 1

Now, we are ready to complete the proof of Proposition 1.

Proof. We prove this proposition by using induction on the number of agents. Let D be a gen-
eralized intermediate domain with τ(D) = {b1, . . . , bk}.

Let |N | = 1 and let ϕ : D → �A be a unanimous and strategy-proof RSCF. Then, by unanim-
ity, ϕτ(D)(PN) = 1 for all PN ∈ D , and hence ϕ satisfies uncompromisingness.

Assume that the proposition holds for all sets with k < n agents. We prove it for n agents. 
Let |N | = n and let ϕ : Dn → �A be a unanimous and strategy-proof RSCF. Suppose N∗ =
N \ {1}. Define the RSCF g : Dn−1 → �A for the set of voters N∗ as follows: for all PN∗ =
(P2, P3, . . . , Pn) ∈ Dn−1,

g(P2,P3, . . . ,Pn) = ϕ(P2,P2,P3,P4, . . . ,Pn).

Evidently, g is a well-defined RSCF satisfying unanimity and strategy-proofness (see Lemma 
3 in Sen (2011) for a detailed argument). Hence, by the induction hypothesis, gτ(D)(PN∗) = 1 for 
all PN∗ ∈ Dn−1 and g satisfies uncompromisingness. In terms of ϕ, this implies ϕτ(D)(PN) = 1
for all PN ∈ Dn with P1 = P2.

We complete the proof of Proposition 1 by using the following lemmas. In the next lemma, 
we show that ϕτ(D)(PN) = 1 and ϕ is tops-only over all profiles PN where agents 1 and 2 have 
the same top alternative.

Lemma 10. Let PN, P ′
N ∈ Dn be two tops-equivalent profiles such that P1, P2 ∈ Dbj for some 

bj ∈ τ(D). Then, ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P ′
N).

Proof. Note that since g is uncompromising, g satisfies tops-onlyness. Because g is tops-only 
and P1, P2 ∈ Dbj , we have g(P1, P−{1,2}) = g(P2, P−{1,2}), and hence ϕ(P1, P1, P−{1,2}) =
ϕ(P2, P2, P−{1,2}). We show ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2}). Using strategy-proofness 
of ϕ for agent 2, we have ϕU(x,P1)(P1, P1, P−{1,2}) ≥ ϕU(x,P1)(P1, P2, P−{1,2}) for all x ∈ A, 
and using that for agent 1, we have ϕU(x,P1)(P1, P2, P−{1,2}) ≥ ϕU(x,P1)(P2, P2, P−{1,2}) for 
all x ∈ A. Since ϕ(P1, P1, P−{1,2}) = ϕ(P2, P2, P−{1,2}), it follows from Remark 2.2 that 
ϕ(P1, P1, P−{1,2}) = ϕ(P1, P2, P−{1,2}). Using a similar logic, we have ϕ(P ′

1, P
′
1, P

′−{1,2}) =
ϕ(P ′

1, P
′
2, P

′−{1,2}). Because g is tops-only and PN, P ′
N are tops-equivalent, we have g(P1,

P−{1,2}) = g(P ′
1, P

′−{1,2}). This implies ϕ(P1, P1, P−{1,2}) = ϕ(P ′
1, P

′
1, P

′−{1,2}), and hence 
ϕ(P1, P2, P−{1,2}) = ϕ(P ′

1, P
′
2, P

′−{1,2}). Moreover, as ϕτ(D)(P1, P1, P−{1,2}) = 1, it follows that 
ϕτ(D)(P1, P2, P−{1,2}) = 1. This completes the proof of the lemma. �
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Lemma 11. Let 1 ≤ j ≤ j + l ≤ k and let PN, P ′
N ∈ Dn be such that P1, P2 ∈ Dbj and P ′

1, P
′
2 ∈

Dbj+l , and τ(Pi) = τ(P ′
i ) for all i �= 1, 2. Then, ϕb(PN) = ϕb(P

′
N) for all b /∈ [bj , bj+l]τ(D).

Proof. By uncompromisingness of g and the fact that gτ(D)(PN∗) = 1 for all PN∗ ∈ Dn−1, 
we have gb(P1, P−{1,2}) = gb(P

′
1, P−{1,2}) for all b /∈ [bj , bj+l]τ(D). Moreover, since g is tops-

only and τ(Pi) = τ(P ′
i ) for all i ∈ {3, 4, . . . , n}, we have g(P ′

1, P−{1,2}) = g(P ′
1, P

′−{1,2}). By the 
definition of g, g(P1, P−{1,2}) = ϕ(P1, P1, P−{1,2}) and g(P ′

1, P−{1,2}) = ϕ(P ′
1, P

′
1, P−{1,2}). As 

τ(P1) = τ(P2) and τ(P ′
1) = τ(P ′

2), Lemma 10 implies ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2})
and ϕ(P ′

1, P
′
2, P

′−{1,2}) = ϕ(P ′
1, P

′
1, P

′−{1,2}). Combining all these observations, we have ϕb(P1,

P2, P−{1,2}) = ϕb(P
′
1, P

′
2, P

′−{1,2}) for all b /∈ [bj , bj+l]τ(D). This completes the proof of the 
lemma. �

Lemma 12. Let 1 ≤ j ≤ j + l ≤ k and let PN, P ′
N ∈ Dn be such that P1, P2, P ′

1 ∈ Dbj and 
P ′

2 ∈ Dbj+l , and τ(Pi) = τ(P ′
i ) for all i �= 1, 2. Then, ϕc(PN) = ϕc(P

′
N) for all c /∈ U(bj+l , P ′

1) ∩
U(bj , P ′

2).

Proof. By Lemma 10, ϕ(P1, P2, P−{1,2}) = ϕ(P ′
1, P

′
1, P

′−{1,2}). Hence, it suffices to show that 
ϕc(P

′
1, P

′
1, P

′−{1,2}) = ϕc(P
′
1, P

′
2, P

′−{1,2}) for c /∈ U(bj+l , P ′
1) ∩ U(bj , P ′

2). We prove this for 
c /∈ U(bj+l , P ′

1), the proof of the same when c /∈ U(bj , P ′
2) follows from symmetric argument.

Consider c /∈ U(bj+l , P ′
1). By strategy-proofness of ϕ,

ϕU(c,P ′
1)

(P ′
1,P

′
1,P

′−{1,2}) ≥ ϕU(c,P ′
1)

(P ′
1,P

′
2,P

′−{1,2}) ≥ ϕU(c,P ′
1)

(P ′
2,P

′
2,P

′−{1,2}).

Moreover, by Lemma 11, ϕb(P
′
1, P

′
1, P

′−{1,2}) = ϕb(P
′
2, P

′
2, P

′−{1,2}) for all b /∈ [bj , bj+l]τ(D), 
and hence ϕB(P ′

1, P
′
1, P

′−{1,2}) = ϕB(P ′
2, P

′
2, P

′−{1,2}) for all B ⊆ A such that [bj , bj+l]τ(D) ⊆
B . Since c /∈ U(bj+l , P ′

1) and τ(P ′
1) = bj , by the definition of a generalized interme-

diate domain, we have [bj , bj+l]τ(D) ⊆ U(c, P ′
1), and hence ϕU(c,P ′

1)
(P ′

1, P
′
1, P

′−{1,2}) =
ϕU(c,P ′

1)
(P ′

2, P
′
2, P

′−{1,2}). Thus, we have

ϕU(c,P ′
1)

(P ′
1,P

′
1,P

′−{1,2}) = ϕU(c,P ′
1)

(P ′
1,P

′
2,P

′−{1,2}). (1)

Suppose that d ∈ A is ranked just above c in P ′
1. Then, [bj , bj+l]τ(D) ⊆ U(d, P ′

1), and hence

ϕU(d,P ′
1)

(P ′
1,P

′
1,P

′−{1,2}) = ϕU(d,P ′
1)

(P ′
1,P

′
2,P

′−{1,2}). (2)

Subtracting (2) from (1), we have ϕc(P
′
1, P

′
1, P

′−{1,2}) = ϕc(P
′
1, P

′
2, P

′−{1,2}), which completes 
the proof of the lemma. �

Recall that for two preferences P and P ′, we write P ∼ P ′ to mean τ(P ) = r2(P
′), r2(P ) =

τ(P ′), and rl(P ) = rl(P
′) for all l > 2.

Lemma 13. Let P bj ,bj+1 , P bj+1,bj ∈ D be such that P bj ,bj+1 ∼ P bj+1,bj . Then, for all i ∈ N and 
all P−i ∈ Dn−1,

[ϕτ(D)(P
bj ,bj+1 ,P−i ) = 1] =⇒ [ϕτ(D)(P

bj+1,bj ,P−i ) = 1].

Proof. As P bj ,bj+1 ∼ P bj+1,bj , by strategy-proofness, ϕa(P
bj ,bj+1 , P−i ) = ϕa(P

bj+1,bj , P−i )

for all a /∈ {bj , bj+1}. Thus ϕτ(D)(P
bj ,bj+1 , P−i ) = 1 implies ϕτ(D)(P

bj+1,bj , P−i ) = 1. This 
completes the proof of the lemma. �
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To simplify notations for the following lemma, for j < l, we define the distance from bl to 
bj , denoted by bl − bj , as l − j .

Lemma 14. The RSCF ϕ is tops-only and ϕτ(D)(PN) = 1 for all PN ∈ Dn.17

Proof. We prove this lemma by using induction on the distance between the top-ranked alterna-
tives of agents 1 and 2.

Consider l such that 0 ≤ l ≤ k − 1. Suppose ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P̃N) for all 
tops-equivalent profiles PN, P̃N ∈ Dn with |τ(P2) − τ(P1)| ≤ l. We show ϕτ(D)(P

′
N) = 1 and 

ϕ(P ′
N) = ϕ(P̃ ′

N) for all tops-equivalent profiles P ′
N, P̃ ′

N ∈ Dn with |τ(P ′
2) − τ(P ′

1)| = l + 1.
Let PN and P ′

N be such that P1, P ′
1 ∈ Dbj , P2 ∈ Dbj+l , P ′

2 ∈ Dbj+l+1 , and τ(Pi) = τ(P ′
i ) for 

all i �= 1, 2. Further, let P̄1 ≡ P bj ,bj+1 , P̂1 ≡ P bj+1,bj , P̂2 ≡ P bj+l ,bj+l+1 , and P̄2 ≡ P bj+l+1,bj+l

be such that P̄u ∼ P̂u for all u = 1, 2. Note that such preferences exist by the definition 
of a minimally rich generalized intermediate domain. By the induction hypothesis, ϕ(PN) =
ϕ(P ′

1, P̂2, P ′−{1,2}). We prove the following claims.

Claim 1. ϕτ(D)(P̄1, P̄2, P ′−{1,2}) = 1 and ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P ′
1, P̄2, P ′−{1,2}) = ϕ(P̄1, P ′

2,

P ′−{1,2}).
By the induction hypothesis, ϕτ(D)(P

′
1, P̂2, P ′−{1,2}) = 1 and ϕ(PN) = ϕ(P̄1, P̂2, P ′−{1,2}) =

ϕ(P ′
1, P̂2, P ′−{1,2}). Let P ′′

1 ∈ {P ′
1, P̄1}. By Lemma 12,

ϕc(P
′′
1 ,P ′′

1 ,P ′−{1,2}) = ϕc(P
′′
1 , P̂2,P

′−{1,2}) for all c /∈ U(bj+l , P
′′
1 ) ∩ U(bj , P̂2), (3)

and

ϕc(P
′′
1 ,P ′′

1 ,P ′−{1,2}) = ϕc(P
′′
1 , P̄2,P

′−{1,2}) for all c /∈ U(bj+l+1,P
′′
1 ) ∩ U(bj , P̄2). (4)

As τ(P̂2) − τ(P ′′
1 ) ≤ l, it follows from the induction hypothesis that ϕτ(D)(P

′′
1 , P ′′

1 , P ′−{1,2}) =
ϕτ(D)(P

′′
1 , P̂2, P ′−{1,2}) = 1. Since U(bj+l , P ′′

1 ) ∩U(bj , P̂2) ∩τ(D) = [bj , bj+l]τ(D), (3) implies

ϕb(P
′′
1 ,P ′′

1 ,P ′−{1,2}) = ϕb(P
′′
1 , P̂2,P

′−{1,2}) for all b /∈ [bj , bj+l]τ(D). (5)

Moreover, since P̂2 ≡ P bj+l ,bj+l+1 , P̄2 ≡ P bj+l+1,bj+l , and ϕτ(D)(P
′′
1 , P̂2, P ′−{1,2}) = 1, by 

Lemma 13, ϕτ(D)(P
′′
1 , P̄2, P ′−{1,2}) = 1. This, in particular, implies ϕτ(D)(P̄1, P̄2, P ′−{1,2}) = 1. 

Because U(bj+l+1, P ′′
1 ) ∩ U(bj , P̄2) ∩ τ(D) = [bj , bj+l+1]τ(D), (4) implies

ϕb(P
′′
1 ,P ′′

1 ,P ′−{1,2}) = ϕb(P
′′
1 , P̄2,P

′−{1,2}) for all b /∈ [bj , bj+l+1]τ(D). (6)

Combining (5) and (6), ϕb(P
′′
1 , P̂2, P ′−{1,2}) = ϕb(P

′′
1 , P̄2, P ′−{1,2}) for all b /∈ [bj , bj+l+1]τ(D). 

Since P̂2 ≡ P bj+l ,bj+l+1 and P̄2 ≡ P bj+l+1,bj+l , we have by strategy-proofness that
ϕ{bj+l ,bj+l+1}(P ′′

1 , P̂2, P ′−{1,2}) = ϕ{bj+l ,bj+l+1}(P ′′
1 , P̄2, P ′−{1,2}). Let B ′ = [bj , bj+l+1]τ(D) \

{bj+l , bj+l+1}. Then, ϕB ′(P ′′
1 , P̂2, P ′−{1,2}) = ϕB ′(P ′′

1 , P̄2, P ′−{1,2}). Note that by Lemma 8, 

P̂2|B ′ = P̄2|B ′ . Therefore, by applying Lemma 9 with B = {bj+l , bj+l+1} and C = B ′, we have

17 Chatterji and Zeng (2018) provide a sufficient condition for a domain to be tops-only for RSCFs. However, general-
ized intermediate domains do not satisfy their condition.
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ϕb(P
′′
1 , P̂2,P

′−{1,2}) = ϕb(P
′′
1 , P̄2,P

′−{1,2}) for all b �= bj+l , bj+l+1. (7)

By the induction hypothesis, ϕ(P̄1, P̂2, P ′−{1,2}) = ϕ(P ′
1, P̂2, P ′−{1,2}). Again, by Lemma 8, 

bj+l P̄1bj+l+1 and bj+lP
′
1bj+l+1, which implies ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P ′

1, P̄2, P ′−{1,2}). Us-

ing a similar logic, ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P̄1, P ′
2, P

′−{1,2}). This completes the proof of 
Claim 1. �

Claim 2. ϕc(P
′
1, P̄2, P ′−{1,2}) = ϕc(P

′
N) for all c /∈ U(bj+l+1, P ′

1) ∩ U(bj , P ′
2).

By (6), ϕb(P
′
1, P

′
1, P

′−{1,2}) = ϕb(P
′
1, P̄2, P ′−{1,2}) for all b /∈ [bj , bj+l+1]τ(D). Since [bj ,

bj+l+1]τ(D) ⊆ U(bj+l+1, P ′
1) ∩ U(bj , P ′

2), we have ϕc(P
′
1, P

′
1, P

′−{1,2}) = ϕc(P
′
1, P̄2, P ′−{1,2})

for all c /∈ U(bj+l+1, P ′
1) ∩ U(bj , P ′

2). Moreover, by Lemma 12, ϕc(P
′
1, P

′
1, P

′−{1,2}) = ϕc(P
′
N)

for all c /∈ U(bj+l+1, P ′
1) ∩ U(bj , P ′

2). Hence, ϕc(P
′
1, P̄2, P ′−{1,2}) = ϕc(P

′
N) for all c /∈

U(bj+l+1, P ′
1) ∩ U(bj , P ′

2). This completes the proof of Claim 2. �

Claim 3. ϕb(P
′
1, P̄2, P ′−{1,2}) = ϕb(P

′
N) for all b ∈ [bj , bj+l+1]τ(D).

First, we show ϕbj
(P ′

1, P̄2, P ′−{1,2}) = ϕbj
(P ′

N). By Claim 1, ϕ(P ′
1, P̄2, P ′−{1,2}) = ϕ(P̄1, P ′

2,

P ′−{1,2}). Moreover, as τ(P̄1) = τ(P ′
1) = bj , by strategy-proofness, ϕbj

(P̄1, P ′
2, P

′−{1,2}) =
ϕbj

(P ′
N). Combining, we have ϕbj

(P ′
1, P̄2, P ′−{1,2}) = ϕbj

(P ′
N).

Now, we complete the proof of Claim 3 by induction. Consider s < l + 1. Suppose 
ϕbj+r

(P ′
1, P̄2, P ′−{1,2}) = ϕbj+r

(P ′
N) for all 0 ≤ r ≤ s. We show ϕbj+s+1(P

′
1, P̄2, P ′−{1,2}) =

ϕbj+s+1(P
′
N). We show this in two steps. In Step 1, we show that if an alternative outside τ(D)

appears above bj+s+1 in the preference P ′
1, then it receives zero probability at ϕ(P ′

N). In Step 2, 
we use this fact to complete the proof of the claim.

STEP 1. Consider c ∈ A \ τ(D) such that cP ′
1bj+s+1. We show ϕc(P

′
N) = 0. Assume for con-

tradiction that ϕc(P
′
N) > 0. Since cP ′

1bj+s+1, by the definition of a generalized intermediate 
domain, we have bj+s+1P

′
2c. Let t ∈ {2, . . . , k − j − l} be such that U(bj+s+1, P ′

2) ∩ τ(D) =
[bj+s+1, bj+l+1]τ(D) ∪[bj+l+2, bj+l+t ]τ(D). By Claim 1, ϕτ(D)(P

′
1, P̄2, P ′−{1,2}) = 1, and hence

ϕU(bj+s+1,P
′
2)

(P ′
1, P̄2,P

′−{1,2})
= ϕ[bj+s+1,bj+l+1]τ (D)

(P ′
1, P̄2,P

′−{1,2}) + ϕ[bj+l+2,bj+l+t ]τ (D)
(P ′

1, P̄2,P
′−{1,2})

= 1 − ϕ[b1,bj+s ]τ (D)
(P ′

1, P̄2,P
′−{1,2}) − ϕ[bj+l+t+1,bk]τ (D)

(P ′
1, P̄2,P

′−{1,2}). (8)

By Claim 2, ϕbi
(P ′

1, P̄2, P ′−{1,2}) = ϕbi
(P ′

N) for all i ∈ [1, j − 1] ∪ [j + l + t + 1, k], and 

by the assumption of Claim 3, ϕbi
(P ′

1, P̄2, P ′−{1,2}) = ϕbi
(P ′

N) for all i ∈ [j, j + s]. Com-

bining all these observations, we have ϕ[b1,bj+s ]τ (D)
(P ′

1, P̄2, P ′−{1,2}) = ϕ[b1,bj+s ]τ (D)
(P ′

N) and 

ϕ[bj+l+t+1,bk]τ (D)
(P ′

1, P̄2, P ′−{1,2}) = ϕ[bj+l+t+1,bk]τ (D)
(P ′

N). Note that the sets [b1, bj+s]τ(D), 
U(bj+s+1, P ′

2), [bj+l+t+1, bk]τ(D), and {c} are pairwise disjoint. Therefore, ϕ[b1,bj+s ]τ (D)
(P ′

N) +
ϕU(bj+s+1,P

′
2)

(P ′
N) + ϕ[bj+l+t+1,bk]τ (D)

(P ′
N) + ϕc(P

′
N) ≤ 1, and hence

ϕU(bj+s+1,P
′
2)

(P ′
N) ≤ 1 − ϕ[b1,bj+s ]τ (D)

(P ′
N) − ϕ[bj+l+t+1,bk]τ (D)

(P ′
N) − ϕc(P

′
N)

= 1 − ϕ[b1,bj+s ]τ (D)
(P ′

1, P̄2,P
′−{1,2})

− ϕ[bj+l+t+1,bk]τ (D)
(P ′

1, P̄2,P
′−{1,2}) − ϕc(P

′
N). (9)
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As ϕc(P
′
N) > 0, (8) and (9) imply ϕU(bj+s+1,P

′
2)

(P ′
1, P̄2, P ′−{1,2}) > ϕU(bj+s+1,P

′
2)

(P ′
N), which im-

plies agent 2 manipulates at P ′
N via P̄2, a contradiction. This completes Step 1.

STEP 2. In this step, we complete the proof of Claim 3. By Claim 1, it is sufficient to show that 
ϕbj+s+1(P̄1, P ′

2, P
′−{1,2}) = ϕbj+s+1(P

′
N).

Suppose ϕbj+s+1(P̄1, P ′
2, P

′−{1,2}) > ϕbj+s+1(P
′
N). Consider d ∈ U(bj+s+1, P ′

1) \ τ(D). By 

Step 1, ϕd(P ′
1, P̄2, P ′−{1,2}) = ϕd(P ′

N), and by Claim 1, ϕd(P ′
1, P̄2, P ′−{1,2}) = ϕd(P̄1, P ′

2,

P ′−{1,2}). Now, consider d ∈ U(bj+s+1, P ′
1) ∩ τ(D) such that d �= bj+s+1. This implies d = bj ′

for some j ′ ≤ j + s. By Claim 2 and the assumption of Claim 3, ϕd(P ′
1, P̄2, P ′−{1,2}) =

ϕd(P ′
N). By Claim 1, ϕ(P ′

1, P̄2, P ′−{1,2}) = ϕ(P̄1, P ′
2, P

′−{1,2}). Combining all these obser-

vations, we have ϕd(P̄1, P ′
2, P

′−{1,2}) = ϕd(P ′
N) for all d ∈ U(bj+s+1, P ′

1) \ bj+s+1. There-

fore, ϕbj+s+1(P̄1, P ′
2, P

′−{1,2}) > ϕbj+s+1(P
′
N) implies ϕU(bj+s+1,P

′
1)

(P̄1, P ′
2, P

′−{1,2}) >

ϕU(bj+s+1,P
′
1)

(P ′
N), which implies agent 1 manipulates at P ′

N via P̄1.

Now, suppose ϕbj+s+1(P̄1, P ′
2, P

′−{1,2}) < ϕbj+s+1(P
′
N). By Claim 1, ϕτ(D)(P̄1, P ′

2, P
′−{1,2}) =

1. Let u ≤ j be such that U(bj+s+1, P̄1) ∩ τ(D) = [bu, bj+s+1]τ(D). Then, by the assump-
tion of Claim 3, ϕb(P̄1, P ′

2, P
′−{1,2}) = ϕb(P

′
N) for all b ∈ [bj , bj+s]τ(D), and by Claim 2, 

ϕb(P̄1, P ′
2, P

′−{1,2}) = ϕb(P
′
N) for all b ∈ [bu, bj−1]τ(D). Therefore, ϕbj+s+1(P̄1, P ′

2, P
′−{1,2}) <

ϕbj+s+1(P
′
N) implies ϕU(bj+s+1,P̄1)

(P̄1, P ′
2, P

′−{1,2}) < ϕU(bj+s+1,P̄1)
(P ′

N), which implies agent 1

manipulates at (P̄1, P ′
2, P

′−{1,2}) via P ′
1. This completes the proof of Claim 3. �

We are now ready to complete the proof of Lemma 14. First, we show ϕτ(D)(P
′
N) =

1. By Claim 3, ϕb(P
′
1, P̄2, P ′−{1,2}) = ϕb(P

′
N) for all b ∈ [bj , bj+l+1]τ(D). By Claim 2, 

ϕb(P
′
1, P̄2, P ′−{1,2}) = ϕb(P

′
N) for all b ∈ [b1, bj−1]τ(D) ∪ [bj+l+2, bk]τ(D). Combining all 

these observations, we have ϕτ(D)(P
′
1, P̄2, P ′−{1,2}) = ϕτ(D)(P

′
N). Moreover, by Claim 1, 

ϕτ(D)(P
′
1, P̄2, P ′−{1,2}) = 1, and hence ϕτ(D)(P

′
N) = 1.

Now, we show ϕ(P ′
N) = ϕ(P̃ ′

N) for all tops-equivalent profiles P ′
N, P̃ ′

N ∈ Dn. By claims 1, 2, 
and 3, we have ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P ′

N). Moreover, as P̃ ′
1 ∈ Dbj and P̃ ′

2 ∈ Dbj+l+1 , applying 

claims 1, 2, and 3 to P̃ ′
N , we have ϕ(P̄1, P̄2, P̃ ′−{1,2}) = ϕ(P̃ ′

N). Hence, to show ϕ(P ′
N) = ϕ(P̃ ′

N), 

it is enough to show ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P̄1, P̄2, P̃ ′−{1,2}). Recall that P̂2 ≡ P bj+l ,bj+l+1 . Since 

τ(P̂2) − τ(P ′
1) = l and τ(P ′

i ) = τ(P̃ ′
i ) for all i �= 1, 2, by the assumption of Lemma 14, we 

have ϕ(P̄1, P̂2, P ′−{1,2}) = ϕ(P̄1, P̂2, P̃ ′−{1,2}). Also, by (7), ϕb(P̄1, P̂2, P ′−{1,2}) = ϕb(P̄1, P̄2,

P ′−{1,2}) for all b �= bj+l , bj+l+1, which implies ϕb(P̄1, P̄2, P ′−{1,2}) = ϕb(P̄1, P̄2, P̃ ′−{1,2})
for all b �= bj+l , bj+l+1. Using similar arguments as for the proof of (7), it follows that 
ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P̂1, P̄2, P ′−{1,2}) for all b �= bj , bj+1, and hence ϕ(P̄1, P̄2, P ′−{1,2}) =
ϕ(P̄1, P̄2, P̃ ′−{1,2}) for all b �= bj , bj+1. Note that if l ≥ 1, then ϕb(P̄1, P̄2, P ′−{1,2}) = ϕb(P̄1, P̄2,

P̃ ′−{1,2}) for all b ∈ A. Now suppose l = 0. We show ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P̄1, P̄2, P̃ ′−{1,2})
for τ(P̄1) = bj and τ(P̄2) = bj+1. Because ϕb(P̄1, P̄2, P ′−{1,2}) = ϕb(P̄1, P̄2, P̃ ′−{1,2}) for all 

b �= bj , bj+1 and all tops-equivalent P ′−{1,2}, P̃ ′−{1,2} ∈ Dn−2, we have ϕb(P̄1, P̄2, P ′−{1,2}) =
ϕb(P̄1, P̄2, P̃ ′

3, P
′−{1,2,3}) for all b �= bj , bj+1. As τ(P ′

3) = τ(P̃ ′
3), by Lemma 8, bjP

′
3bj+1

if and only if bj P̃
′
3bj+1. Therefore, if ϕbj

(P̄1, P̄2, P ′−{1,2}) �= ϕbj
(P̄1, P̄2, P̃ ′

3, P
′−{1,2,3}), then 
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agent 3 manipulates either at (P̄1, P̄2, P ′−{1,2}) via P̃ ′
3 or at (P̄1, P̄2, P̃ ′

3, P
′−{1,2,3}) via P ′

3. 

Hence, ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P̄1, P̄2, P̃ ′
3, P

′−{1,2,3}). Continuing in this manner, we have 

ϕ(P̄1, P̄2, P ′−{1,2}) = ϕ(P̄1, P̄2, P̃ ′−{1,2}). Therefore, ϕ(P ′
N) = ϕ(P̃ ′

N) for all tops-equivalent pro-

files P ′
N, P̃ ′

N ∈ Dn. This completes the proof of the lemma. �

Lemma 15. The RSCF ϕ satisfies uncompromisingness.

Proof. We prove this in two steps. In Step 1, we provide a sufficient condition for uncompro-
misingness, and in Step 2, we use that to prove the lemma.

STEP 1. In this step, we show that ϕ is uncompromising if the following happens: for all j < k, 
all Pi ≡ P bj ,bj+1 ∈ D , all P ′

i ≡ P bj+1,bj ∈ D , and all P−i ∈ Dn−1,

ϕb(Pi,P−i ) = ϕb(P
′
i , P−i ) ∀b /∈ [τ(Pi), τ (P ′

i )]. (10)

Suppose (10) holds. Since ϕ is tops-only, (10) implies that for all Pi ∈ Dbj , all P ′
i ∈ Dbj+1 , 

all P−i , and all b /∈ [τ(Pi), τ(P ′
i )],

ϕb(Pi,P−i ) = ϕb(P
′
i , P−i ). (11)

Similarly, for all P̄i ∈ Dbj+1 , all P̄ ′
i ∈ Dbj+2 , all P−i , and all b /∈ [τ(P̄i), τ(P̄ ′

i )], we have

ϕb(P̄i ,P−i ) = ϕb(P̄
′
i , P−i ). (12)

Combining (11) and (12), we have ϕb(Pi, P−i ) = ϕb(P̄
′
i , P−i ) for all Pi ∈ Dbj , all P̄ ′

i ∈
Dbj+2 , all P−i , and all b /∈ [τ(Pi), τ(P̄ ′

i )]. Continuing in this manner, we have ϕb(Pi, P−i ) =
ϕb(P

′
i , P−i ) for all Pi, P ′

i ∈ D , all P−i , and all b /∈ [τ(Pi), τ(P ′
i )], which implies ϕ is uncom-

promising.

STEP 2. In this step, we show that ϕ satisfies (10). We do this in two further steps. In Step 2.a., 
we show (10) for agents 1 and 2, and in Step 2.b., we show this for other agents.

STEP 2.a. It is enough to show (10) for agent 1, the proof of the same for agent 2 follows from 
symmetric argument. Without loss of generality, assume τ(P2) = bj+l . Note that by Lemma 14, 
ϕτ(D)(PN) = 1. Therefore, by Lemma 12, ϕb(P1, P2, P−{1,2}) = ϕb(P2, P2, P−{1,2}) for all 
b /∈ [bj , bj+l]τ(D) and ϕb(P

′
1, P2, P−{1,2}) = ϕb(P2, P2, P−{1,2}) for all b /∈ [bj+1, bj+l]τ(D). 

This implies ϕb(P1, P2, P−{1,2}) = ϕb(P
′
1, P2, P−{1,2}) for all b /∈ [bj , bj+l]τ(D). By strategy-

proofness, ϕ{bj ,bj+1}(P1, P2, P−{1,2}) = ϕ{bj ,bj+1}(P ′
1, P2, P−{1,2}). Let B ′ = [bj , bj+l]τ(D) \

{bj , bj+1}. Since P1|B ′ = P ′
1|B ′ , by applying Lemma 9 with B = {bj , bj+1} and C = B ′, 

we have ϕb(P1, P2, P−{1,2}) = ϕb(P
′
1, P2, P−{1,2}) for all b �= bj , bj+l . This proves (10) for 

agent 1. Therefore, by Step 1, we have for all i ∈ {1, 2}, all Pi ∈ D , all P ′
i ∈ D , and all 

P−i ∈ Dn−1,

ϕb(Pi,P−i ) = ϕb(P
′
i , P−i ) ∀b /∈ [τ(Pi), τ (P ′

i )]. (13)

This completes Step 2.a.

STEP 2.b. In this step, we show (10) for agents i ∈ {3, . . . , n}. It is enough to show this for 
i = 3. If P1 = P2, then by the induction hypothesis, ϕb(P3, P−3) = gb(P1, P3, P−{1,2,3}) =
gb(P1, P ′

3, P−{1,2,3}) = ϕb(P
′
3, P−3) for all P3, P ′

3 ∈ D and all b /∈ [τ(P3), τ(P ′
3)]. Let τ(P1) =

bp and τ(P2) = bq . Since ϕτ(D)(PN) = 1 for all PN ∈ Dn, it follows from Lemma 12 that
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ϕb(P1, P1, P3, P−{1,2,3}) = ϕb(P1, P2, P3, P−{1,2,3}) for all b /∈ [bp, bq ]τ(D) and ϕb(P1, P1, P ′
3,

P−{1,2,3}) = ϕb(P1, P2, P ′
3, P−{1,2,3}) for all b /∈ [bp, bq ]τ(D). Combining all these observations, 

we have

ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,P
′
3,P−{1,2,3})

for all b /∈ [bp, bq ]τ(D) ∪ [bj , bj+1]τ(D). (14)

Also, by strategy-proofness,

ϕ{bj ,bj+1}(P1,P2,P3,P−{1,2,3}) = ϕ{bj ,bj+1}(P1,P2,P
′
3,P−{1,2,3}). (15)

Now, we distinguish two cases.

Case 1. Suppose p, q ≤ j + 1 or p, q ≥ j .
Let B ′ = [bp, bq ]τ(D) \ [bj , bj+1]τ(D). Then, by (14) and (15), ϕB ′(P1, P2, P3, P−{1,2,3}) =
ϕB ′(P1, P2, P ′

3, P−{1,2,3}). Since P3|B ′ = P ′
3|B ′ , by applying Lemma 9 with B = {bj , bj+1} and 

C = B ′, ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P ′
3, P−{1,2,3}) for all b ∈ B ′. Therefore,

ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,P
′
3,P−{1,2,3}) for all b /∈ {bj , bj+1}. (16)

This completes Step 2.b. for Case 1.

Case 2. Suppose p < j ≤ j + 1 < q or q < j ≤ j + 1 < p.
We prove the lemma for the case p < j ≤ j + 1 < q , the proof of the same for the case 
q < j ≤ j + 1 < p follows from symmetric arguments. By (13), for all b /∈ [bj , bq ]τ(D), 
we have ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P3, P3, P−{1,2,3}) and ϕb(P1, P2, P ′

3, P−{1,2,3}) =
ϕb(P1, P3, P ′

3, P−{1,2,3}). Moreover, since τ(P1) ≤ bj+1, τ(P3) = bj and τ(P ′
3) = bj+1, 

it follows from (16) that ϕb(P1, P3, P3, P−{1,2,3}) = ϕb(P1, P3, P ′
3, P−{1,2,3}) for all b /∈

[bj , bj+1]τ(D). Combining all these observations, ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P ′
3,

P−{1,2,3}) for all b /∈ [bj , bq ]τ(D). By strategy-proofness, ϕ{bj ,bj+1}(P1, P2, P3, P−{1,2,3}) =
ϕ{bj ,bj+1}(P1, P2, P ′

3, P−{1,2,3}). Let B ′ = [bj , bq ]τ(D) \ {bj , bj+1}. Since P3|B ′ = P ′
3|B ′ , by 

applying Lemma 9 with B = {bj , bj+1} and C = B ′, we have ϕb(P1, P2, P3, P−{1,2,3}) =
ϕb(P1, P2, P ′

3, P−{1,2,3}) for all b ∈ B ′. Hence,

ϕb(P1,P2,P3,P−{1,2,3}) = ϕb(P1,P2,P
′
3,P−{1,2,3}) for all b /∈ {bj , bj+1},

which completes Step 2.b. for Case 2.
Since cases 1 and 2 are exhaustive, this completes Step 2, and consequently the proof of 

Lemma 15. �

Proposition 1 now follows from Lemma 14 and Lemma 15. �

Now, we come back to the proof of Theorem 1. Our proof uses the following theorem which 
is taken from Peters et al. (2014).

Theorem 4 (Theorem 3(a) in Peters et al. (2014)). Let D be the maximal single-peaked domain. 
Then, every tops-only and strategy-proof RSCF ϕ : Dn → �A is a convex combination of some 
tops-only and strategy-proof DSCFs f : Dn → A.

Our next lemma presents the structure of an uncompromising and strategy-proof RSCF on a 
regular single-peaked domain.
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Lemma 16. Let D be a regular single-peaked domain and let ϕ : Dn → �A be uncompromising 
and strategy-proof. Then, ϕ is a convex combination of the generalized min-max rules on Dn.18

Proof. Note that since ϕ is uncompromising, ϕ is tops-only. Let D̂ be the maximal single-
peaked domain. Let ϕ̂ : D̂n → �A be the tops-only extension of ϕ on D̂ . More formally, for all 
P̂N ∈ D̂n, ϕ̂(P̂N ) = ϕ(PN), where PN ∈ Dn is such that PN and P̂N are tops-equivalent. This is 
well-defined as ϕ is tops-only and D is regular. Since D̂ is single-peaked and ϕ is strategy-proof, 
ϕ̂ is also strategy-proof. Hence, by Theorem 4, ϕ̂ is a convex combination of the generalized min-
max rules on D̂n. By the definition of ϕ̂, this implies ϕ is a convex combination of the generalized 
min-max rules on Dn, which completes the proof. �

Finally, we are ready to complete the proof of Theorem 1.

Proof. (If Part) Let D be a generalized intermediate domain with τ(D) = {b1, . . . , bk} and let 
ϕ : Dn → �A be a TRM rule. Since ϕ is a TRM rule, it is unanimous by definition. We show 
that ϕ is strategy-proof. Let ϕ = ∑t

l=1 λlfl , where λls are non-negative numbers summing to 1
and fls are TM rules. To show ϕ is strategy-proof, it is enough to show that fls are strategy-
proof. For all l ∈ {1, . . . , t}, define f̂l : (D |τ(D))

n → τ(D) as f̂l(PN |τ(D)) = fl(PN). Note that 
by Lemma 8, D |τ(D) is a single-peaked domain. Therefore, it follows from Moulin (1980) that 
f̂l is strategy-proof for all l = 1, . . . , t . By Remark 2.3, this implies fl is strategy-proof for all 
l = 1, . . . , t . This completes the proof of the if part.

(Only-if Part) Let D be a generalized intermediate domain with τ(D) = {b1, . . . , bk} and 
let ϕ : Dn → �A be a unanimous and strategy-proof RSCF. Define ϕ̂ : (D |τ(D))

n → �τ(D) as 
ϕ̂b(PN |τ(D)) = ϕb(PN) for all b ∈ τ(D). This is well-defined as by Proposition 1, ϕτ(D)(PN) = 1
for all PN ∈ Dn and ϕ is tops-only. Because ϕ satisfies uncompromisingness, ϕ̂ also satisfies 
uncompromisingness. Hence, by Lemma 16, ϕ̂ is convex combination of generalized min-max 
rules on (D |τ(D))

n. Moreover, since ϕ is unanimous, ϕ̂ is a also unanimous. This implies ϕ̂ is a 
convex combination of the min-max rules on (D |τ(D))

n. By the definition of ϕ̂, this implies ϕ is 
a TRM rule. This completes the proof of the only-if part. �

Appendix B. Proof of Lemma 7

First we prove a lemma which we repeatedly use in the proof of Lemma 7.

Lemma 17. Let {Px}x∈X be a strict intermediate domain. Then for all distinct a, b, c ∈ A, the 
separating lines of the pairs (a, b) and (b, c) do not intersect.

Proof. Let {Px}x∈X be a strict intermediate domain. Assume for contradiction that there exist 
distinct a, b, c ∈ A such that the separating lines of (a, b) and (b, c) intersect. Since {Px}x∈X is 
strict, no three separating lines of {Px}x∈X intersect at a common point. Therefore, we can choose 
an open (see Fig. 5) ball such that no separating line other than those of the pairs (a, b) and (b, c)
passes through that open ball. Consider the regions X1 and X2 in Fig. 5. Consider x ∈ X1. Since 

18 If the set of alternatives is an interval of real numbers, then every uncompromising RSCF on the maximal single-
peaked domain is strategy-proof (see Lemma 3.2 in Ehlers et al. (2002)). However, the same does not hold for the case 
of finitely many alternatives.
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Fig. 5. Diagram for the proof of Lemma 17.

aPxb and bPxc, by transitivity, we have aPxc. Now, consider y ∈ X2. Again, since bPa and 
cPb, by transitivity, we have cPa. Since the relative preference over a and c is changing from 
X1 to X2, it must be that the separating line of (a, c) intersects at least one of these regions. 
However, this is a contradiction to our assumption that no separating line other than those of 
(a, b) and (b, c) intersects this open ball. This completes the proof of the lemma. �

Now we prove Lemma 7.

Proof. Let {Px}x∈X be a domain satisfying strict intermediate property. Since the number of 
alternatives is finite, there are finitely many preferences in the domain {Px}x∈X . Consider a 
preference P ∈ {Px}x∈X . Let XP = {x ∈ X|Px = P }. Since there are finitely many prefer-
ences in the domain {Px}x∈X , we can find a finite collection of parallel lines {l1, . . . , lk} such 
that for each P ∈ {Px}x∈X , there exists l ∈ {l1, . . . , lk} such that XP ∩ l �= ∅. This implies that 
{Px}x∈X = ∪k

i=1{Px}x∈li . Since {Px}x∈X satisfies strict intermediate property, there exists a line l̂
that intersects all the separating lines (as defined in Lemma 6). We assume that (i) l̂ ∈ {l1, . . . , lk}, 
and (ii) no li passes through the point of intersection of any two separating lines. This assumption 
is without of loss of generality because for (i), we can start with l̂ and can consider a collection 
of parallel lines satisfying the required properties, and for (ii), since we have finitely many sep-
arating lines and hence finitely many points of intersection of those, we can always choose the 
lines {l1, . . . , lk} by avoiding those points.

Now we show that ∪k
i=1{Px}x∈li is a generalized intermediate domain satisfying minimal 

richness. We show this using the following three claims.

Claim 1. For each l ∈ {l1, . . . , lk}, the family of preferences {Px}x∈l is a generalized intermediate 
domain satisfying minimal richness.

Consider l ∈ {l1, . . . , lk}. Let x1, . . . , xs be the points of intersection of the line l with the 
separating lines of {Px}x∈X . Note that s ≤ k since there can be separating lines of {Px}x∈X

that do not intersect with l. Assume without loss of generality that xj ∈ (xj−1, xj+1) for all 
j ∈ {2, . . . , s − 1}, that is, the points {x1, . . . , xs} are ordered in a particular direction. Consider 
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Fig. 6. Diagram for the proof of Lemma 7.

x ∈ l such that x1 ∈ (x, x2). Such a point x can always be chosen as X is open and x1 ∈ X. 
Let Px = P1. By Lemma 6, Py = P1 for all y ∈ [x, x1). By our assumption of x1, there exists a 
separating line, say for the pair of alternatives (a, b), that intersects l at x1. This implies there 
exists P2 ∈ {Px}x∈l such that Py = P2 for all y ∈ (x1, x2). By Lemma 6, P1 and P2 differ only 
over the ordering of the pair (a, b). Again, by Lemma 6, the preference Px1 is either P1 or P2. 
Continuing in this manner, we can get hold of a sequence of preferences {Pj }j∈{1,...,s+1} such 
that (i) {Px}x∈l = {P1, . . . , Ps+1}, and (ii) for all j = {2, . . . , s}, Pj and Pj+1 differ only over the 
ordering of a particular pair of alternatives. This implies that {Px}x∈l is minimally rich.

Next, we show {P1, . . . , Ps+1} is a generalized intermediate domain with respect to the or-
dering given by P1. Assume for contradiction that there exist c, d, e ∈ A with cP1dP1e such 
that d, e ∈ τ({P1, . . . , Ps+1}) and cPd for some P ∈ {P1, . . . , Ps+1} with τ(P ) = e. Let xe ∈ X

be such that Pxe = P . Since d ∈ τ({P1, . . . , Ps+1}) and cP1d , it follows that the separating line 
of the pair (c, d) intersects with l. Let xt be this point of intersection. Since cPd by our as-
sumption, xe ∈ (x1, xt ). Consider xd ∈ X such that τ(Pxd

) = d . Such a point xd must exist since 
d ∈ τ({P1, . . . , Ps+1}) Then, it must be that xt ∈ (x1, xd). Also, dP1e and ePd together imply 
xd ∈ (x1, xe). But this contradicts the fact that xe ∈ (x1, xt ). This implies that {P1, . . . , Ps+1} is 
a generalized intermediate domain completing the proof of Claim 1. �

Recall that by our assumption, l̂ ∈ {l1, . . . , lk}. Therefore, by applying Claim 1 for l = l̂, it 
follows that {Px}x∈l̂

is a minimally rich generalized intermediate domain with respect to some 
ordering, say ≺. Suppose τ({Px}x∈l̂

) = {b1, . . . , br}, where b1 ≺ b2 ≺ . . . ≺ br .

Claim 2. For all l ∈ {l1, . . . , lk}, there exist s and t with 1 ≤ s ≤ t ≤ r such that {Px}x∈l is a 
generalized intermediate domain with τ({Px}x∈l) = {bs, . . . , bt }.

Consider l ∈ {l1, . . . , lk} \ l̂. Let y1, . . . , yq be the points of intersection of l with the separating 
lines such that yj ∈ (yj−1, yj+1) for all j ∈ {2, . . . , q − 1}. Similarly, let x1, . . . , xp be the points 
of intersection of l̂ with the separating lines such that xj ∈ (xj−1, xj+1) for all j ∈ {2, . . . , p−1}. 
Assume without loss of generality that #        »xpx1 = #       »yqy1, that is, the direction along which the points 
x1, . . . , xp are counted is the same as that along which the points y1, . . . , yq are counted (see 
Fig. 6).

First, we show τ({Px}x∈l) ⊆ τ({Px}x∈l̂
). Consider b ∈ τ({Px}x∈l). Assume for contradiction 

that b /∈ τ({Px}x∈l̂
). Since min≺ τ({Px}x∈l̂

) = b1, this implies b1 ≺ b. Suppose br ≺ b. Then, 
it must be that for all preferences in {Px}x∈l̂

, br is ranked above b, and hence the separating 
line of the pair (br , b) does not intersect with l̂. However, since b ∈ τ({Px}x∈l ), there must be 
a separating line of the pair (br, b). This is a contradiction to our assumption that l̂ intersects 
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Fig. 7. Diagram for the proof of Lemma 7.

Fig. 8. Diagram for the proof of Lemma 7.

with all separating lines. This shows b ≺ br . Now, suppose bu ≺ b ≺ bv where bu and bv are 
two consecutive alternatives (with respect to the ordering ≺) in the top-set τ({Px}x∈l̂

).19 Since 
bu ≺ b ≺ bv and b /∈ τ({Px}x∈l̂

), by Lemma 6, there must be xe, xf and xg with xf ∈ (xe, xg)

such that the separating lines of the pairs (b, bv), (bu, bv), and (bu, b) intersect l̂ at xe, xf , and 
xg , respectively. By Lemma 17, no two of these separating lines intersect. Note that b = τ(Pz)

for some z ∈ X implies that z must be on the left side of the separating line of (b, bv) and on the 
right side of the separating line of (bu, b) (see Fig. 7). However, as it is evident from Fig. 7, there 
cannot be any such z. Moreover, this is true in general since the separating lines of (b, bv) and 
(bu, b) do not intersect. This shows b ∈ τ({Px}x∈l̂

), and hence τ({Px}x∈l) ⊆ τ({Px}x∈l̂
).

Next, we show that for all b, bu, bv such that bu, bv ∈ τ({Px}x∈l ) and bu � b � bv , we have 
b ∈ τ({Px}x∈l ). Suppose not. Assume without loss of generality that bu and bv are consecutive in 
τ({Px}x∈l), that is, (bu, bv) ∩ τ({Px}x∈l) = ∅. Recall that by our assumption, all the separating 
lines of {Px}x∈X intersect l̂. Suppose that the separating lines of the pairs (bu, b), (bu, bv), and 
(b, bv) intersect l̂ at xe, xf , and xg , respectively, where xf ∈ (xe, xg). By Lemma 17, no two 
of those three separating lines intersect each other. This, together with the fact that bu, bv ∈
τ({Px}x∈l), implies that the separating lines of the pairs (bu, b), (bu, bv), and (b, bv) intersect l
at yh, yi , and yj , respectively, where yi ∈ (yh, yj ) (see Fig. 8). By Lemma 17, bu � τ(Pyi

) � bv . 
However, since bPyi

bu and bPyi
bv , it must be that τ(Pyi

) �= bu, bv . This is a contradiction since 
(bu, bv) ∩ τ({Px}x∈l̂

) = ∅. This completes the proof of Claim 2. �

19 By consecutive in τ({Px }
x∈l̂

), we mean (bu, bv) ∩ τ({Px }
x∈l̂

) = ∅.
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Fig. 9. Diagram for the proof of Lemma 7.

Claim 3. For all l ∈ {l1, . . . , lk}, all P̄ ∈ {Px}x∈l , and all bv ∈ {b1, . . . , br}, P̄ satisfies the be-
tweenness property with respect to bv .

If bv ∈ τ({Px}x∈l ), then Claim 3 follows from Claim 2. Suppose bv /∈ τ({Px}x∈l). Without 
loss of generality, assume bv ≺ bs where bs = min τ({Px}x∈l). Let a ≺ bv . It is enough to show 
that bvP̄ a. Since bv ≺ bs and bsPbv for all P ∈ {Px}x∈l , it must be that the separating line of 
(bv, bs) does not intersect l. Let bt = max≺ τ({Px}x∈l ). Suppose that the points of intersection 
of l̂ with the separating lines of (a, bv), (bv, bs), and (bs, bt ) are xc, xd , and xe, respectively. 
Because a ≺ bv ≺ bs and bv ∈ τ({Px}x∈l̂

), we have xd ∈ (xc, xe). By Lemma 17, separating lines 
of (a, bv) and (bv, bs) cannot intersect each other. This, together with the fact that the separating 
line of (bv, bs) does not intersect l, implies that the separating line of (a, bv) too does not intersect 
l (see Fig. 9). This, in particular, implies bvP̄ a, which completes the proof of Claim 3. �

Now, the proof of Lemma 7 follows from Claim 2 and Claim 3. �

Appendix C. Proof of Theorem 2

Proof. Let D̂ ⊆ sD be the set of strict preferences in sD , i.e., D̂ = {R ∈ sD | |τ(R)| = 1}. We first 
prove a claim.

Claim 1: D̂ is a minimally rich generalized intermediate domain and τ( sD) = τ(D̂).
Since D̂ ⊆ sD , we have τ(D̂) ⊆ τ( sD). As sD is a generalized intermediate domain, all pref-

erences in it satisfies betweenness property with respect to each alternative in τ( sD). This means 
all preferences in sD satisfy betweenness property with respect to each alternative in τ(D̂) and 
hence, D̂ is a generalized intermediate domain.

Suppose τ( sD) = {b1, . . . , bk}. Since sD is minimally rich, for every bt , bt+1 ∈ τ( sD) there 
exists R, R′ ∈ sD such that r1(R) = r2(R

′) = bt and r1(R
′) = r2(R) = bt+1 and rl(R) = rl(R

′)
for all l ≥ 2. Note that both R and R′ are strict preferences and hence, R, R′ ∈ D̂ . This means 
bt , bt+1 ∈ τ(D̂). Similarly, we can show this for other alternatives in sD . This shows τ( sD) =
τ(D̂) and D̂ is minimally rich. �

Let ϕ̂ : D̂n → �A be an RSCF defined as ϕ̂(RN) = ϕ(RN) for all RN ∈ D̂n. Note that ϕ̂
is well defined. Moreover, since ϕ is unanimous and strategy-proof, ϕ̂ is also unanimous and 
strategy-proof. Since D̂ is a minimally-rich generalized intermediate domain (by Claim 1), by 
Theorem 1, ϕ̂ is TRM rule. Hence, ϕ̂c(RN) = 0 for all RN ∈ D̂n and all c /∈ τ(D̂).

Assume for contradiction there exists a profile R̃N ∈ sDn such that ϕc(R̃N) > 0 for some 
c /∈ τ( sD). Let i ∈ N be such that |τ(R̃i)| = 2. By the tie-breaking property, there exists R̂i ∈ sD
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with {τ(R̂i), r2(R̂i)} = τ(R̃i) and rl(R̃i) = rl+1(R̂i) for all l ≥ 2. By strategy-proofness this 
means ϕa(R̃N ) = ϕa(R̂i), R̃−i ) for all a /∈ {bt , bt+1}. This implies ϕc(R̂i), R̃−i ) > 0. Contin-
uing in this manner we can reach a profile R̂N where for all j ∈ N , R̂j = R̃j if |τ(R̃j )| = 1
and {τ(R̂j ), r2(R̂j )} = τ(R̃j ) and rl(R̃j ) = rl+1(R̂j ) for all l ≥ 2 if |τ(R̃j )| = 2. Furthermore, 
ϕc(R̂N) > 0. But this is a contradiction as R̂N ∈ D̂n and by Claim 1 τ( sD) = τ(D̂). This com-
pletes the proof of the theorem. �

Appendix D. Proof of Theorem 3

Proof. Let sD a minimally rich generalized intermediate domain such that |τ(R)| ≤ 2 for all 
R ∈ sD . Further, let ϕ be a TRM rule and πππ be a collection of unanimous and strategy-proof 
tie-breaking rules. Consider the RSCF sϕ(RN) : sDn → �A defined as sϕ(RN) = ϕ(πππ(RN)). We 
show that sϕ is unanimous and strategy-proof. Since ϕτ( sD)(πππ(RN)) = 1 for all RN ∈ sDn, for the 
rest of the proof for some a � b, by [a, b] we denote [a, b]τ( sD).

Unanimity: Consider a profile R̃N ∈ sDn such that ∩i∈Nτ(R̃i) �= ∅. Since all R̃is satisfy
betweenness property with respect to each alternative in τ( sD), we have ∩i∈Nτ(R̃i) =
[a, b] for some a � b. Note that since πi is unanimous for all i ∈ N , we have πi(R̃N) ∈
[a, b] for all i ∈ N . Hence, [mini∈N πi(RN), maxi∈N πi(RN)] ⊆ [a, b]. By the definition of
ϕ, ϕ[mini∈N πi(RN ),maxi∈N πi(RN )](πππ(RN)) = 1 for all RN ∈ sDn. Combining all these observations 
we get ϕ[a,b](πππ(R̃N)) = 1 which implies sϕ∩i∈Nτ(Ri)(R̃N ) = 1. This completes the proof that sϕ is 
unanimous.

Strategy-proofness: Consider a profile R̃N ∈ sDn and an agent i ∈ N . We show that by chang-
ing his/her preference to any R̃′

i ∈ sD agent i cannot manipulate. Consider an upper contour set 
U(a, R̃i) for some a ∈ A. We show that sϕ

U(a,R̃i )
(R̃N ) ≥ sϕ

U(a,R̃i )
(R̃′

i , R̃−i ). Note that sϕ(R̃N) =
ϕ(π1(R̃N ), . . . , πn(R̃N)) and sϕ(R̃′

i , R̃−i ) = ϕ(π1(R̃
′
i , R̃−i ), . . . , πn(R̃

′
i , R̃−i )). Combining all 

these observations, to complete the proof it is enough to show that ϕ
U(a,R̃i )

(π1(R̃N ), . . . ,

πn(R̃N)) ≥ ϕ
U(a,R̃i )

(π1(R̃
′
i , R̃−i ), . . . , πn(R̃N)). Note that by the definition of TRM rule,

ϕb(π1(R̃N ), . . . , πn(R̃N)) �= ϕb(π1(R̃
′
i , R̃−i ), . . . , πn(R̃N))

for all b �= [π1(R̃N ),π1(R̃
′
i , R̃−i )]. (17)

Let i �= 1. Note that by the definition of π1, π1(R̃N ), π1(R̃
′
i , R̃−i ) ∈ τ(R̃1). Since |τ(R̃1)| ≤ 2

and π1 is strategy-proof, we have either π1(R̃
′
i , R̃−i ) � π1(R̃N ) � min τ(R̃i) or max τ(R̃i) �

π1(R̃N ) � π1(R̃
′
i , R̃−i ). Without loss of generality assume that π1(R̃

′
i , R̃−i ) � π1(R̃N ) �

min τ(R̃i). Let U(a, R̃i) = [br , bs]. This means br � min τ(R̃i) � bs . Note that if br �
π1(R̃

′
i , R̃−i ) or π1(R̃N ) ≺ br , then [π1(R̃N ), π1(R̃

′
i , R̃−i )] ⊆ [br , bs] or [π1(R̃N ), π1(R̃

′
i , R̃−i )] ∩

[br , bs] = ∅ and hence, by (17), ϕ[br ,bs ](π1(R̃N ), . . . , πn(R̃N)) = ϕ[br ,bs ](π1(R̃
′
i , R̃−i ), . . . ,

πn(R̃N)). So, assume π1(R̃
′
i , R̃−i ) ≺ br � π1(R̃N ). Assume for contradiction ϕ[br ,bs ](π1(R̃N ),

. . . , πn(R̃N)) < ϕ[br ,bs ](π1(R̃
′
i , R̃−i ), . . . , πn(R̃N)). Together with (17), this implies

ϕ[br ,π1(R̃N )](π1(R̃N ), . . . , πn(R̃N )) < ϕ[br ,π1(R̃N )](π1(R̃
′
i , R̃−i ), . . . , πn(R̃N)). (18)

Consider a single-peaked preference profile RN such that τ(Rj ) = πj (R̃N) and U(br, R1) =
[br , π1(R̃N )]. Further consider R′

1, a single-peaked preference with τ(R′
1) = π1(R̃

′
i , R̃−i ). In 
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view of (18), these profiles imply ϕU(br ,R1)(RN) < ϕU(br ,R1)(R
′
1, R−1) which means agent 1 

manipulates at RN via R′
1. But this is a contradiction since by Theorem 1, ϕ is strategy-proof on 

the set of single-peaked preference profiles.
Let i = 1. By the definition of π1, π1(R̃N ) ∈ τ(R̃1) and π1(R̃

′
1, R̃−1) ∈ τ(R̃′

1). Consider a 
single-peaked preference profile RN where τ(Rj ) = πj (RN) and U(a, R̃1) = U(a, R1). Further 
consider R′

1, a single-peaked preference with τ(R′
1) = π1(R̃

′
1, R̃−1). By strategy-proofness of ϕ, 

ϕU(a,R1)(RN) ≥ ϕU(a,R1)(R
′
1, R−1), which is exactly what we want to show. This completes the 

proof of the theorem. �
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