
Indian Statistical Institute Indian Statistical Institute

ISI Digital Commons ISI Digital Commons

Patents Data and Patents

5-17-2012

Optimization technique using evolutionary algorithms Optimization technique using evolutionary algorithms

Dinabandhu Bhandari

C A. Murthy

Sankar Kumar Pal

Follow this and additional works at: https://digitalcommons.isical.ac.in/patents

https://digitalcommons.isical.ac.in/
https://digitalcommons.isical.ac.in/patents
https://digitalcommons.isical.ac.in/data-patents
https://digitalcommons.isical.ac.in/patents?utm_source=digitalcommons.isical.ac.in%2Fpatents%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

US0087.00548B2

(12) United States Patent (10) Patent No.: US 8,700,548 B2
Bhandari et al. (45) Date of Patent: Apr. 15, 2014

(54) OPTIMIZATION TECHNIQUE USING (56) References Cited
EVOLUTIONARY ALGORTHMS

U.S. PATENT DOCUMENTS

(75) Inventors: Dinabandhu Bhandari, Kolkata (IN); 5,222, 192 A * 6/1993 Shaefer TO6, 13
C. A. Murthy, Kolkata (IN); Sankar 5,255,345 A 10/1993 Shaefer
Kumar Pal, Kolkata (IN) 2002fO16801.0 A1 11, 2002 Ali

2008/0183648 A1 7/2008 Goldberg et al.
(73) Assignee: Indian Statistical Institute, Kolkata, 2009/0307636 A1* 12/2009 Cases et al. T16.2

West Bengal (IN) FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this WO 20081224.12 A1 10, 2008
patent is extended or adjusted under 35
U.S.C. 154(b) by 235 days. OTHER PUBLICATIONS

Journal of the Chinese Institute of Industrial Engineers, vol. 21, No.
(21) Appl. No.: 13/265,480 5, pp. 516-526 (2004) Solving Line-Feature Stereo Matching With

1-1. Genetic Algorithms in Hough Space.*
(22) PCT Filed: Oct. 15, 2010 International Search Report and Written Opinion dated Jan. 11, 2011

for International Application No. PCTIB2010.054679. (86). PCT No.: PCT/B2O1O/O54.679 or International Application No

S371 (c)(1) (Continued)
(2), (4) Date: Oct. 20, 2011 Primary Examiner — Kakali Chaki

(87) PCT Pub. No.: WO2011/135410 Assistant Examiner — Ababacar Seck
(74) Attorney, Agent, or Firm — Brundidge & Stanger, P.C.

PCT Pub. Date: Nov. 3, 2011
(57) ABSTRACT

65 Prior Publication Dat
(65) O DO Provided embodiments include a method, a system, a device,

US 2012/O123980 A1 May 17, 2012 and an article of manufacture. A System for terminating a
O O genetic algorithm (GA), where the GA uses an iterator and

(30) Foreign Application Priority Data generates one best Solution periteration, includes a memory,
an iterative processor, and a terminating processor. The

Apr. 28, 2010 (IN) 472/KOILA2010 memory is provided for storing a plurality of best solutions
generated in a plurality of iterations of the GA. One of the best

(51) Int. Cl. Solutions generated in one of the iterations is stored in the
G06F 5/8 (2006.01) memory if the one of the best solutions is better than a previ
G06N3/00 (2006.01) ous one of the best solutions generated in a previous one of the
G06N3/12 (2006.01) iterations. The iterative processor computes a variance of the

(52) U.S. Cl. plurality of the best solutions stored in the memory. The
USPC - 7O6/13 terminating processor terminates the iterator when the vari

(58) Field of Classification Search ance is less than or equal to a predetermined threshold.
None
See application file for complete search history.

, Žinction " "| Avrig irrir "3, if cases
------------------------- 3i leatics: at 8siti:

3 SES 3.
4:24 3:
3.

282 lo. :
ww.rwww.rr as: A. ~g

32: 23

3.33723.22 3?
... 12:12:48:is

82. ; 8.
28,23, : 3.

A

:303 3.
** sig’”””” "

15-3 28:8..
r 333.

or * 21.1. Y.

awa wavavas a a yawa?y war waawater w w www.wr

16 Claims, 11 Drawing Sheets

Narnier of String “xii;6 at
in aearci, space stigs sist:
error-ra-re-era-e-radarar

wer

: ... 8
i: reached

238 is 8

83.29.
23, 186, 30i.
f33. E14, 33.

264. 932
... 8:8, 5.3
i., 939, 43
"isis"

... if
3, 2:

$2.33

US 8,700.548 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Pendharkar, P.C. and Koehler, G.J., “A general steady state distribu
tion based stopping criteria for finite length genetic algorithms.”
European Journal of Operational Research, vol. 176, Issue 03, Feb.
2007, pp. 1436-1451.
Safe, M. et al., “On Stopping Criteria for Genetic Algorithms.”
Advances in Artificial Intelligence —SBIA 2004, vol. 3171, 2004,
pp. 405-413.
Aytug. H. and Koehler, G. J., “New Stopping Criterion for Genetic
Algorithms.” European Journal of Operational Research, vol. 126,
Issue 3, 2000, pp. 662-674.
Bhandari. D., et al., “Genetic Algorithms with Elitist Model and its
Convergence.” International Journal of Pattern recognition and Arti
ficial Intelligence, vol. 10, Issue 06, 1996, pp. 731-747.
Davis, T. E. and Principe, C.J., “A simulated Annealing like Conver
gence Theory for the Simple Genetic Algorithm.” in Proceedings of
4th Int. Conf. on genetic algorithms, 1991, pp. 174-181.
Dejong, K. A., “An analysis of the behaviour of a class of genetic
adaptive systems.” PhD thesis, Technical Report No. 185, Depart
ment of Computer and Communication Science, Univ. of Michigan,
1975, pp. 271.
Jain, B. J. et al., “On Termination Criteria of Evolutionary Algo
rithms.” In GECCO 2001–Proceedings of the Genetic and Evolu
tionary Computation Conference., pp. 331-338, San Francisco, CA.
Morgan Kauffmann.
Maity, S. P. and Kundu, M. K. “Genetic algorithms for optimality of
data hiding in digital images. Soft Computing, vol. 13, Issue 4, Oct.
2008, pp. 361-373.

Munteanu, C. and Rosa, A., “Gray-scale image enhancement as an
automatic process driven by evolution.” IEEE Transactions on Sys
tems, Man and Cybernetics-Part B: Cybernetics, vol.34, Issue 2, Apr.
2004, pp. 1292-1298.
Murthy, C. A., et al., “Optimal Stopping Time for Genetic Algo
rithms.” Fundamenta Informaticae, vol. 35. Issue 1-4, 1998, pp.
91-111.

Nix, A. E. and Vose, M.D. “Modeling genetic algorithms with
Markov Chains.” Annals of Mathematics and Artificial Intelligence,
vol. 5, Issue 1, 1992, pp. 79-88.
Pal, S. K. and Bhandari. D., "Selection of optimal set of weights in a
layered network using genetic algorithms.” Information Sciences,
vol. 80, Issues 3-4, Sep.1994, pp. 213-234.
Pal, S.K. etal. "Genetic algorithms for optimal image enhancement.”
Pattern Recognition Letters, vol. 15, Mar. 1994, pp. 261-271.
Rudolph, G., “Convergence analysis of canonical genetic algorithm.”
IEEE Transactions on Neural networks, vol. 5, Issue 1, Jan. 1994, pp.
96-101.

Suzuki, J., “A markov chain analysis on simple genetic algorithm.”
IEEE Transactions on Systems, Man and Cybernetics, vol. 25, Issue
4, Apr. 1995, pp. 655-659.
Vose, M.D. “Modeling simple genetic algorithms,” Journal Evolu
tionary Computation, vol. 3, Issue 4, 1995, pp. 453-472.
D. Bhandari et al., “An Optimal Stopping Criterion for complex
optimization.” Evolutionary Computation, Massachusetts Institute of
Technology, pp. 1-15.

* cited by examiner

U.S. Patent Apr. 15, 2014 Sheet 1 of 11 US 8,700,548 B2

Stait Y

Q'exte pigstates of racion
Solsters, are desire &

a 58 Easiliate each S3cs
based -f tress Ji'i:

Site the is:st sistic: if is is
Beief tisser previous test

Y
w

w
w
w

&aculate variance of the best solutions
kissed to tie 3rfeitsiatif

5 2.
&c.

greate few generaior x saussot's sing Y
R y S 3FEast E?

seexists, &cssowes, arts 3i Etair e

U.S. Patent Apr. 15, 2014 Sheet 2 of 11 US 8,700,548 B2

s

Patent Apr. 15, 2014 Sheet 3 of 11 US 8,700,548 B2

SaS

Šs SS SSSSS

U.S. Patent Apr. 15, 2014 Sheet 4 of 11 US 8,700,548 B2

Patent Apr. 15, 2014 Sheet 5 of 11 US 8,700,548 B2

airs S&SS:

U.S. Patent Apr. 15, 2014 Sheet 8 of 11 US 8,700,548 B2

rto
/

CF&as a $xpslation if
Sarcors so: Eigris

sess-dig 33 desised accuracy, getire a
bound or satisfits as a castessor; to step GA

3.

rer 8

Base QSS
for wiss to cosider test itness waiues for caiquiating wearice, 3rd a

piecieterritted its rites of Stsiaticss for which to Caiculate was sarce

Swaite;t&eact solutists it in eigeetatior
tase of Štess fascis

8 - 3

Ci as a sxi get bef aspi & Saiviots fro:
cs: sett &Sesaix (if saktions using
issectiori, Eoss&yer, aid ris8tatest

S$8rs is
that fevious test settigs is

Satsats ariate Ef the bess so:it:xins
ba:tles: ip is assis (33 fest is fatigs

seristerfined rartef
if & stors F8&th&

- 22
is Yasses

38:

US 8,700,548 B2 Sheet 10 of 11 Apr. 15, 2014 U.S. Patent

{}{}{} ·

US 8,700,548 B2 Sheet 11 of 11 Apr. 15, 2014 U.S. Patent

?

{}{}} ?

US 8,700,548 B2
1.

OPTIMIZATION TECHNIOUE USING
EVOLUTIONARY ALGORTHMS

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is the U.S. national phase applica
tion of, and claims priority to, International application No.
PCT/IB2010/054679, filed on Oct. 15, 2010, which claims
priority to Indian Application Serial No. 472/KOL/2010, filed
Apr. 28, 2010, the entirety of which is incorporated herein by
reference.

BACKGROUND

An evolutionary algorithm (EA) is a subset of evolutionary
computation, a generic population-based metaheuristic opti
mization algorithm. EAS use one or more operators inspired
by biological evolution, which include reproduction, muta
tion, recombination, and selection. Candidate solutions to an
optimization problem play the role of individuals in a popu
lation. A fitness function determines an environment within
which the candidate solutions “live'. Evolution of the popu
lation then takes place after repeated application of the opera
tOrS.

Generally, an initial population of randomly generated
candidate Solutions forms a first generation. The fitness func
tion is applied to the candidate Solutions and any offspring. In
selection, parents for the next generation are chosen with a
bias towards higher fitness. The parents reproduce by copying
with recombination and/or mutation. Recombination acts on
the two selected parents (candidates) and results in one or two
children (new candidates). Mutation acts on one candidate
and results in a new candidate. These operators create the
offspring (a set of new candidates). These new candidates
compete with old candidates for their place in the next gen
eration. This process may be repeated until a candidate with
Sufficient quality (a solution) is found or a predefined com
putational limit is reached.
EAS are of many different types and can be used to find

solutions to problems in diverse fields. The fields may include
engineering, robotics, physics, chemistry, biology, genetics,
operations research, economics, sales, marketing, and so on.
A genetic algorithm (GA) is a type of E.A. GAS provide

Solutions to complex optimization problems. GAS are sto
chastic search methods based on principles of natural genetic
systems. In an example of a GA, an initial population is
chosen, and fitness of each individual in the population is
evaluated. Then the following steps are repeated until a stop
ping criterion is satisfied: Selecting best ranking individuals
to reproduce; breeding a new generation through crossover
and mutation (called genetic operations) and giving birth to
offspring (strings); evaluating fitness of each individual off
spring; and retaining best ranked offspring obtained so far.
The stopping criterion determines when to stop (i.e., termi
nate) the GA.
GAS perform a multidimensional search in providing an

optimal solution for an evaluation function (i.e., a fitness
function) of an optimization problem. Unlike conventional
search methods, GAS deal simultaneously with multiple solu
tions and use only fitness function values. Population mem
bers are represented by Strings corresponding to chromo
Somes. Search begins with a population of randomly selected
strings. From these strings, a next generation is created using
genetic operators. At each iteration, individual strings are
evaluated with respect to a performance criterion and are
assigned a fitness value. Strings are selected based on these

10

15

25

30

35

40

45

50

55

60

65

2
fitness values in order to produce the offspring for the next
generation. Thus, successive populations offeasible solutions
are generated in stochastic manner following laws of natural
selection.
GAS have been theoretically and empirically found to pro

vide global near-optimal solutions for complex optimization
problems in various fields. For example, the fields include,
but are not limited to, operations research, very large scale
integration (VLSI) circuit design, pattern recognition, image
processing, machine learning, and so on.

SUMMARY

An embodiment of the subject matter described herein
provides a method for terminating a genetic algorithm (GA),
where the GA uses an iterator and generates at least one best
Solution periteration. The method includes storing a plurality
of best solutions generated in a plurality of iterations of the
GA. One of the best solutions generated in one of the itera
tions is stored in a memory if the one of the best solutions is
better than a previous one of the best solutions generated in a
previous one of the iterations. The method further includes
computing a variance of the plurality of the best Solutions
stored in the memory using an iterative processor and termi
nating the iterator using a terminating processor when the
variance is less than or equal to a predetermined threshold.
The method further includes computing the variance in

each iteration following a predetermined one of the iterations.
The method includes determining whether the variance is less
than or equal to the predetermined threshold after a predeter
mined number of the iterations are completed following a
predetermined one of the iterations. The method includes
statistically determining the predetermined threshold based
on a rate of change of the variance when the rate of change
relative to a number of the iterations is negative. The method
includes statistically determining the predetermined one of
the iterations based on a rate of change of the variance relative
when the rate of change to a number of the iterations is
positive. The method includes statistically determining the
predetermined number of the iterations based on a rate of
change of the variance when the rate of change relative to a
number of the iterations is negative.
The method includes generating the one best Solution per

iteration from a population of Solutions using a fitness func
tion, where each solution in the population is coded as a string
of a finite length, and where the predetermined one of the
iterations is statistically determined based on the finite length
and a size of the population. The method includes generating
a Subsequent population of Solutions from the population of
Solutions using operators, which include selection, crossover,
and mutation when the variance is greater than the predeter
mined threshold.
The method includes selecting the predetermined thresh

old based on a desired accuracy of the GA. The predetermined
threshold takes into account properties of an objective func
tion and genetic parameters used in the GA.
The foregoing Summary is illustrative only and is not

intended to be in any way limiting. In addition to the illustra
tive aspects, embodiments, and features described above, fur
ther aspects, embodiments, and features will become appar
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example flowchart of a method for determining
a stopping criterion and terminating a GA using the stopping
criterion;

US 8,700,548 B2
3

FIGS. 2-5 illustrate pictorial representations of four
sample objective functions;

FIG. 6 is an example graph of variance of best fitness values
obtained in iterations of a genetic algorithm (GA) relative to
a number of iterations performed in the GA:

FIG. 7 is an example table showing average number of
iterations required to converge a GA for a given bound of
variance;

FIG. 8 is an example flowchart of a method for determining
a stopping criterion and terminating a GA using the stopping
criterion;

FIG. 9 is an example functional block diagram of a system
for determining a stopping criterion and terminating a GA
using the stopping criterion;

FIG. 10 is an example functional block diagram of a com
puter system for determining a stopping criterion and termi
nating a GA using the stopping criterion; and

FIG. 11 is an example table showing data structures uti
lized by the computer system of FIG. 10.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a parthereof. In the
drawings, similar symbols typically identify similar compo
nents, unless context dictates otherwise. The illustrated
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the Subject matter pre
sented here.
An example embodiment includes finding a solution to

complex optimization problems using evolutionary algo
rithms (EAS) and employs a stopping criterion for the algo
rithm. In this example embodiment, a genetic algorithm (GA)
is used as an example only. However, embodiments disclosed
herein are not limited to GAs. The teachings of the present
disclosure are applicable to any iterative optimization tech
nique including the EA. Such techniques include genetic
algorithms, simulated annealing, ant colony optimization,
particle Swarm optimization, among others. Specifically, the
teachings of the present disclosure can be applied to Solve
problems in any field using any iterative optimization tech
nique that obtains a best Solution from a number of candidate
Solutions.

In GAS, for example, selection of a stopping criterion
determines the quality of results generated by a GA. More
than one stopping criterion may be used in a GA. Different
types of stopping criteria can be used. These stopping criteria
may be based on fitness function convergence, population
convergence, generation number, and/or computation time.
Further, these stopping criteria may be based on running
mean of fitness values, standard deviation of fitness values,
and/or search feedback. These statistical properties are those
of the solutions obtained. Other stopping criteria based on
objective function use underlying fitness function values to
calculate auxiliary values, which are used as measures of state
of convergence of a GA. Additionally, a cluster-based stop
ping criterion takes into account information about objective
values as well as a spatial distribution of individuals in a
search space in order to terminate a GA.

Generally, in defining an implementable stopping crite
rion, a bound may be provided on the number of iterations
required to achieve a level of confidence to guarantee that a
GA has searched all the optimal number of Strings. Alterna
tively or additionally, pessimistic and optimistic stopping
times with respect to mutation probability may be derived.

5

10

15

25

30

35

40

45

50

55

60

65

4
Defining an implementable stopping criterion in these ways,
however, can be problematic. For example, deciding when to
stop a GA without a priori information regarding objective
function is difficult. Though time based stopping criteria are
simple to implement, determining the time requires knowl
edge about the global optimal solution, which is not always
available a priori. Further, these stopping criteria do not guar
antee the convergence of the GAS to the global optimal solu
tion since they are terminated after a finite number of itera
tions. Accordingly, regardless of the value selected for the
number of iterations, there is generally a positive probability
of not obtaining the global optimal solution at that stage.
An embodiment proposed herein relates to a new stopping

criterion based on variance of best fitness values obtained
over generations. In an example embodiment, variance of the
best fitness values obtained in iterations is used as a measure
to decide the termination criterion of a GA with elitist model
(EGA). In an EGA, elitism reserves two slots in the next
generation for the highest scoring candidate (e.g., chromo
Some) of the current generation without allowing that candi
date to be crossed over in the next generation. In one of those
slots, the elite candidate will also not be subjected to mutation
in the next generation.

In an embodiment, the stopping criterion can be based only
on the fitness function values. The stopping criterion can
automatically take into account properties of the objective
function and the genetic parameters used. Accordingly, in an
example embodiment, a user need not study characteristics of
the objective function and genetic parameters used in the GA.
Further, no auxiliary values are calculated. Implementing the
stopping criterion based on variance of the fitness function
values obtained over generations includes selecting a small
value of bound for the variance. The variance tends to zero
when a number of generations tends to infinity while a prob
ability of obtaining a global optimal Solution tends to one.
To facilitate understanding of the example embodiments,

definitions of basic concepts relating to the GAS are now
introduced. To understand basic principles of GAS, considera
problem of maximizing a function f(x), xel), where D is a
finite set. The problem is to find x* such that

where D is a discrete domain and is finite.
When solving an optimization problem using GAs, each

solution is coded as a string (called "chromosome') of finite
length (say, L). Each string or chromosome is considered as
an individual. A collection of M (finite) individuals is called a
population. GAS start with a randomly generated population.
In each iteration, a new population of same size is generated
from the current population using three basic operations on
the individuals of the population. The operators in the three
basic operations are reproduction/selection, crossover, and
mutation.
To use GAS in searching a global optimal solution, a first

step is to define a mechanism to represent the Solutions in a
chromosomal form. A solution may be represented as a string
of length Lover a finite set of alphabet A={C., C2, ..., C.
Each string S corresponds to a value xel D and is of the form
S-(BBf3B); BeA, Wi. The GA with A={0,1} is called
binary coded genetic algorithm (BCGA) or simple genetic
algorithm (SGA).
The string representation limits the GA to search a finite

domain (although users can achieve approximation by
increasing the String length) and provides the best Solution
among m” possible options. To take into account the continu
ous domain, real valued strings are considered as the chro
mosomal representation by manipulating the genetic opera

US 8,700,548 B2
5

tors and is called real coded genetic algorithm (RCGA). It is
difficult, however, to considerall the real values considering
the limitation of computers in storing irrational values.
Throughout the present disclosure, GA with A={0,1} is used
as an example only. The teachings of the present disclosure
can be easily extended to GAs defined over a finite set of
alphabet or over RCGAs.

Generally, a random sample of size M is drawn from a
spaceS of 2 possible strings to generate an initial population.
GAS leverage a population of Solutions to generate a new
population with an expectation that the new population will
provide a better solution in terms of fitness values.

In every iteration, each chromosome of the population is
evaluated using a fitness function fit. Evaluation or fitness
function fit for a string S is equivalent to a function f defined
below.

where S corresponds to X. Without loss of generality, let
fit(S)>0 for all S in S.
A selection is a process in which individual strings of a

current population are copied into a mating pool with respect
to an empirical probability distribution based on their fitness
function values. In some cases, an auxiliary fitness value is
considered to generate the empirical probability distribution
based on the criticality of the problem and approach.
A crossover exchanges information between two potential

strings and generates two offsprings for the next population.
M/2 pairs are selected randomly from the population. Sub
strings with a probability p (called crossover probability) are
Swapped.
A mutation is an occasional random alteration of a charac

ter. Mutation introduces some extra variability into the popu
lation. Though mutation is usually performed with a very low
mutation probability, q>0, mutation affects exploration pro
cess. Every character B, i=1,2,..., L in each chromosome
generated after crossover has an equal chance to undergo
mutation. Any string can be generated from any given string
by mutation operation. The mutation probability q is taken to
be in the range of (0, 0.5. The probability of mutating ibit
positions is more than the probability of mutating i+1 bit
positions. That is,

Thus, qs0.5. Hence, the minimum probability of obtaining
any string from any given string is q. That is, mutation needs
to be performed at every character position of the given String.

Knowledge about the best string obtained so far is pre
served either in a separate location outside the population or
within the population. Thus, the GA can report the best value
found among all possible coded solutions obtained during the
entire process. GAs that can retain the knowledge of the best
string obtained so far are called genetic algorithms with elitist
model or EGAs.
The new population obtained after selection, crossover,

and mutation is then used to generate another population. The
number of possible populations is finite since M is finite. The
present disclosure concerns EGAS, where the best string
obtained in a previous iteration is copied into a current popu
lation if the fitness function values of all strings are less than
the previous best.

The values for parameters L., M., p, and q have to be chosen
properly before performing these operations. For example,
the population size M is taken as an even integer so that
strings can be paired for crossover. The probability (p) of
performing crossover operation is taken to be any value
between 0.0 and 1.0. Usually in GAs, p is assumed to be a

5

10

15

25

30

35

40

45

50

55

60

65

6
value in the interval 0.25, 1. The mutation probability q is
taken to be very low 0.001, 0.01), although it can be in the
interval (0, 0.5.

Mutation affects convergence of GAS to the global optimal
Solution. Convergence of GAS is a fundamental building
block in proposing variance of the best fitness value obtained
So far as the stopping criterion of a GA. A proof of conver
gence of GAs follows.
GAS search over a space S of 2 strings and eventually

provide the best solution with respect to the fitness function
fit. The strings can be classified into a set of S classes depend
ing on their fitness function values. The classes are defined as

where F denotes the ith highest fitness function value. Thus,
F>F> . . . D.F. Without loss of generality, let F-0.
A population Q is a multi-set of M Strings of length L

generated over a finite alphabet A and is defined as follows:

Q={S.S1,....(r times).S2, S2,....(r2 times),...,
S.S.(n times) where, SeS, SzS, vizia
and rel for i=1,2,...,m, X-1”=M.

Let Q denote the set of all populations of size M. The number
of populations or states in a Markov chain is finite. The fitness
function value fit(Q) of a population is defined as fit(Q)=
max, fit(S). The populations are partitioned into S sets.
E={Q:QeO and fit(Q)=F, a set of populations having the
same fitness function value F.

In an iteration, the genetic operators (selection, crossover,
and mutation) create a population Q(eE, where l=1,2,...,
e and k=1,2,..., S. The genetic operators create the popu
lation Q, from a population QeE, where e, is the number of
elements in E. The generation of the population Q, from the
population Q, is considered as a transition from Q, to Q. Let
p, , denote a transition probability of the transition from Q,
to Q.
Then the probability of transition from Q, to any popula

tion in E can be calculated as

ék

Pink =XPiki, j = 1,2,..., ei; k = 1,2,... . s.
=

For all i=1.2, ... , e, and i=1,2,....S one obtains

p > 0 if k si

= 0 otherwise

by construction. Thus, once GAS reach a population QeE, the
GAS will be in a population QeE for ksi. In particular, once
GAS reach a population QeE, the GAS will not go out of E.

Let pe" denote a probability that GA results in Q at the
nth step given that the initial state is Q. Let pe" denote the
probability of reaching one of the populations in E from Q,
at the nth step. Then p" X. f= "pi".
To show the eventual convergence of a GA with elitist

model to a global optimal Solution the following theorem
(Theorem 1) is proved.

US 8,700,548 B2

Theorem 1.

1 1
For an EGA with the probability of mutation ge o, (1)

lim p2 = 0 for 2 sks s; v i = 1,2,... , e, and
i = 1, 2, ... , S.

Hence limp3 = 1 v i = 1,2,... , ei and

i = 1, 2, ... , S.
Proof: It can be easily shown that p > 0
for j = 1, 2, ...
Let max(| - pii. 1) = 0.

e; and i = 1, 2, ... , S.

Note that o < 1 since min pii > 0.
ld

Now, X p5 = X pijk = 1 - Pij.1 s (); (2)
k=2 kEl

ei (3) S

XP =XXX, Pili, Pink
kEl k=2 it li=1

(since pik = 0 for k > 1)
as
i S

Pi X Pi, i.
itl i=l k=2

ei
X X Pijiji (1 - Pii.1)
ill i=1

ei
s oX X pii (from (1))

il Fli =l

X Pij.il
itl

= 0(1-pii. 1) so;

Similarly, by mathematical induction, it can be shown that

Xp2 sov i, j.
kEl

Note that d' -> 0 as n - ca since Osc C 1.

Hence X p'.
kEl

-> 0 as in -> co.

Which, immediately implies lim p. = 0 for

2 sks SW i and i.
(n) 1: (n) It is clear that, in Pi.1 = lim? 2. PC)

E

= 1.

Some desirable properties of a good stopping criterion
include the following. The stopping criterion should be easy
to implement. The stopping criterion should be able to pro
vide stopping time automatically for any fitness function. The
stopping criterion should guarantee convergence and lead to a
satisfactory result. The total number of strings searched
should not exceed 2', where L is string length.

In an embodiment of an example stopping criterion, let a
be a best fitness function value obtained at the end of an ith

iteration of an EGA. Then, asasasP, as F is the global
optimal value of the fitness function. Let

10

15

25

30

35

40

45

50

55

60

65

be an average of the as up to the nth iteration. Then variance
of the best fitness values obtained up to the nth iteration,
defined by b, is given by the following equation:

1 1 - 2 2 -2 -2 -2
b. =X (a; - a) =X d; - d = d - d.

i=1

b, can be used as a stopping criterion for a GA. In this
example embodiment, a GA is stopped or terminated after N
iterations when by-e, where e (>0) is a user-defined small
quantity (bound for variance).

Referring now to FIG. 1, an example method 50 compris
ing basic steps of a GA with elitist model is shown, where
variance of the best Solutions obtained in the generations is
considered as a stopping criterion. Control begins at 52. At
54, control creates a population of random solutions, and
control defines a value fore (i.e., a bound for variance). At 56,
control evaluates each solution on the basis of a fitness func
tion. At 58, control stores the best solution if it is better than
previous best. At 60, control calculates the variance of the best
solutions obtained up to the current iteration. At 62, control
determines whether the variance is greater than the predefined
bound (e). At 64, if the variance is greater than the predefined
bound (e), control creates new generation of solutions from
the old generation using selection, crossover, and/or muta
tion, and control returns to step 56. At 66, if the variance is not
greater than the predefined bound (e), control terminates the
GA. The best solution obtained at the time of termination
represents the near optimal Solution.

In an example embodiment, when the number of genera
tions tends to infinity, the probability of obtaining the global
optimal solution tends to one, and the variance of the best
Solutions obtained in the generations approaches Zero. Fol
lowing is a proof that when the number of generations tends
to infinity, the probability of obtaining the global optimal
Solution tends to one, and the variance of the best Solutions
obtained in the generations approaches Zero.

For GAs with elitist model, the convergence theorem
shows that

lim p2 = 1 v i = 1, 2, , e, and i = 1,2,..., S.

The convergence theorem in turn implies that the probability
of obtaining a global optimal Solution (F) is one as number of
iterations, goes to infinity. This can be stated as the following
lemma.

Lemma 1:

For each e > 0, lim Prob(a - F is e1) = 0. (4)
-cx

In other words, for each eo is 0 and e > 0,
there exists No such that for n > No.
1 - Prob(a - Fis e1) <eo or
=> Prob(a - Fis e1) > 1 - eo for n > No

US 8,700,548 B2
9

Using the above lemma, it can be shown (as shown in
Theorem 2 below), that the variance of the best solutions
obtained in the generations approaches Zero when number of
iterations tends to OO.

Theorem 2:

1
Pro iya-o, si as in -) co for each e > 0. n 4
Proof:

1 1
X (a, -a, = X(a, - F)-(a, - F)

(5)

1
= X(a, -e, -(a, - F) n 4

1
s X (a; - F) n 4

Now for n > No.

1 1 & 2, 1 X (a; - F) = X(a; - F) + n 4 n 4 it. X (a; - F)

Since F is the minimum value of the function f(x)
(defined in section 3), we have,

1 0 1 0 (6)
X (a; - F)'s XE (F - F) (as F sais FW i)

n 4 n 4
No = (F, - F)*
it.

One can always find an N (> No) such that for each e2(> 0),

No (7)
, (F - F) < e2

Therefore, for n > N > No

No

X (a - F) s
(8) N N (F - Fis (F - Fise, from (7)

it. N

As a s a2 is a 3 s... sa; sai-1 s... s F1,

(9)

From (4), we have for n > No.
Prob(a - Fis e1) > 1 - eo
Therefore,

Prob(aw - F)'s ei) > 1 - eo (10)
= Prob((aw - Fis e1) > 1 - eo, as e << 1.

Now, for each e = e + e2,

10

15

25

30

35

40

45

50

55

60

65

10
-continued

(11) 1
Prob- - F)'s e= rol Sa 1) s

W 10 1 pe yo-fri X to-first
1

P - F)' s el (from 8) = re: X (a 1) s (from 8)
1

Prot- X - F)'s e- 1 - re: (a; 1) se e- €0.
(from 10), where e1 = e - e.

Therefore, we can conclude that for each.
eo is 0, there exists N such that for n > N1

1
Prob- - F) 1 - O (Ea 1) -- €0
In other words,

1
Pod Sa - F)'s -> 1 as in -) co for each e > 0.

n 4

This completes the proof of theorem 2.
In an example embodiment of a variance based stopping

algorithm, the user needs to select only the bound e for vari
ance for implementing the stopping criterion. In this embodi
ment, the likelihood of obtaining a solution closer to global
optima is inversely proportional to the value of the bound e.
Additionally, in the initial iterations, the likelihood of obtain
ing the improved fitness value is high. Moreover, in this
embodiment, for most functions, due to the low iteration
number, the variance would initially increase and would then
decrease as the iteration number increases. Accordingly, a
premature termination of the GA can be avoided. Further, the
inherent characteristics of the objective functions are auto
matically taken into account for a Sufficiently small value of
the bound for variance. Distinctively, the user need not define
the number of iterations to be executed. Instead, the user
defines the value of E.

Defining the value of e differs from defining the number of
iterations to be executed. In defining the number of iterations,
the user decides the total number of iterations while hoping or
assuming that the GA will provide a satisfactory result after
those many iterations. Selecting the total number of iterations
in this manner, however, is purely heuristic and ignores the
characteristics of the objective function and genetic param
eters. In contrast, in defining the value of e, the variance is
calculated from the fitness values obtained in the generations,
which implicitly takes into account the characteristics of the
objective function and the genetic parameters used in the GA.

Generally, a GA progresses fast during initial iterations.
Accordingly, GAS are expected to produce improved results
in the first few iterations. After a certain number of iterations,
GAS typically become quite stable. Subsequently, the possi
bility of exploring an improved solution in each iteration is
very low. Faster improvement of the fitness function values
yields high variance in the beginning, and slower improve
ment in fitness function results in low variance in the later
stages of the GA.
Due to these characteristics of GAS, selecting certain

parameters is critical in the implementation of the variance as
a stopping criterion. Specifically, selecting the starting itera
tion number of the GA, from which the best fitness values are
to be considered in calculating the variance, and the minimum

US 8,700,548 B2
11

number of iterations to be considered in calculating the Vari
ance are important considerations in the implementation.
One can consider the fitness values from the first iteration

in calculating the variance. However, due to the faster
improvement in the initial generations, higher number of
iterations may make the variance lower than the predefined E
value. Accordingly, to avoid premature termination, it is
important to determine the number of consecutive iterations
that should be considered in calculating the variance of the
fitness values so as to allow the GA enough opportunity to
yield an improved solution. This is important since the GA
may not find a better Solution that shows improvement in
fitness value in many consecutive iterations. Therefore, it is
important to select the minimum number of iterations and a
starting point (iteration) from which the fitness values will be
considered in calculating the variance.

In an example embodiment, a variance b, at the end of
n+1th iteration can be calculated from b, as follows:

+1 +1 1 1
= X - a * = X 2 - 2 bn+1 = in + 1 i=1 (a; - a,1) = in + 1 i=l (ii (1

(12)

O

-2 2 2 bn+1 = (na, +a1) - (na. -- a--1)).

Thus, the variance for the n+1th generation can be evaluated
based on only an average of the fitness function values and
their square of the previous n iterations.

Example experimental results discussed below demon
strate the effectiveness of the proposed stopping criterion in
searching for global optimal solutions of some complex func
tions of multiple variables. The variance of the best fitness
values obtained in each iteration is used as the stopping cri
terion to demonstrate its usefulness to automatically termi
nate the GA. The following objective functions were used in
the experiment.

f(x) = 6 + sin(x) when Os x < 27t
= 6 + 2sin(x) when 27 < x < 47t
= 6 + 3sin(x) when 47 < x s 67t
= 6 + 4sin(x) when 67 < x < 87t
= 6 + 5sin(x) when 87 < x < 107t
= 6 + sin(x) when 107 < x s 32

when x is the integral part of x

, where x is the integral part of x
Ly?

5

1 + 2

20
f(x) = - ,

where x is the largest integers x

Referring now to FIGS. 2-5, pictorial representations of
these functions are shown. f is a univariate function while
the remaining functions are multivariate functions with the
number of variables considered being five, for example.

5

10

15

25

30

35

40

45

55

60

65

12
Functions f and fare multimodal functions with symmetri
cally distributed plateaus of identical size and having multiple
global maxima. Functions f and f are unimodal functions
with spatially distant local maxima and single global maxima.
Different search spaces are considered for different functions
to exploit the typical features of these functions.

In these experiments, while implementing the proposed
stopping criterion, the initial iterations can be ignored as
mentioned above. The number of these initial iterations can
be decided based on the length of the strings and the popula
tion size. The convergence theorem holds true although the
variance is calculated after a finite number of initial iterations.
In the experiments, the fitness function values considered to
calculate the variance were from the 21st iteration for if and
from the 101st iteration for other functions.

Additionally, as discussed above, there may be no change
in the fitness function value for a number of consecutive
iterations. In an example iteration, therefore, the variance
could become Zero and could result in premature termination
of the GA. Accordingly, in an embodiment to avoid premature
termination, the user should consider a significant number of
iterations in calculating the variance. In the experiment, the
minimum number of iterations considered to generate the
variance was 50 for if and 200 for other functions.
The genetic parameters used in the execution of the GA

were as follows:
Population size=10 for f1 and 50 for others
String length=20 for f1 and 100 for others
Crossover probability=0.8
Mutation probability-varying from 0.2 to 0.45
To obtain statistically significant results, one test run com

prised 100 runs for a particular e value for each function.
Different seeds were supplied to bring in the randomness in
generating initial populations and performing other genetic
operations. Considering the importance of mutation in the
convergence process of the GAS, the mutation probability
was made variable. It was considered as high as 0.45 in the
initial iterations and was monotonically reduced to 0.1
towards final iterations.

Referring now to FIG. 6, a graph of variance relative to
iteration numbers is shown. In an example embodiment, as
the GA explores a better solution with higher fitness value, the
variance increases. As shown, the variance initially increased
at 70 and then decreased at 72 as the number of iterations
increased.

Referring now to FIG. 7, a Table shows average number of
iterations required to converge the GA for a given e. The
results show that for a low value of e, the GA produced
satisfactory performance for all the functions. Particularly,
the GA produced a global optimal solution in most cases for
e=10. The number of iterations to attain the given bound
differed for different functions depending on the characteris
tics of the function. Also, the percentage of convergence to the
global optimum solution was higher for the function f while
the percentage of convergence to the global optimum solution
was lower for the function f. With ed.10", no run could
produce the global optimal solution since the presence of
multiple global optima of the function f, resulted in faster
convergence while a single optimum of the function f was
difficult to attain. This demonstrated the effectiveness of the
criterion to take into account the inherent properties of the
objective function.

In some cases, though the stopping criterion was satisfied,
the GA did not converge to the global optimal value of the
objective function. This comports with the property of the
GAS that GAS do not guarantee the global optimal solution in

US 8,700,548 B2
13

a finite number of iterations. However, with the reduction ine
value, the likelihood of obtaining the global optimal solution
increased.
The variance of the best solutions obtained up to a current

iteration tends to Zero as n >OO. In practice, the user needs to
select an appropriate value for the upper bound of the variance
for a problem. Different problems with the same size of
search space may need different bounds for variance to obtain
global optimal Solution. Forbetter accuracy, the user needs to
select sufficiently small value fore. Instead of automatically
selecting the value of e, the user may select the value of e
depending on the accuracy desired.

Referring now to FIG. 8, an example method 100 for deter
mining a stopping criterion and terminating a GA using a
stopping criterion is shown. Control begins at 102. At 104,
control creates a population of random Solutions. At 106.
control defines a bound for variance as a criterion to terminate
a G.A. Control defines the bound depending on the desired
accuracy of the GA. At 108, control determines a starting
iteration number from which to consider solutions with best
fitness values for calculating variance to determine whetherto
terminate the GA according to the stopping criterion. Control
determines the starting iteration based on the length of strings
and the size of the population. Additionally, control sets a
predetermined (minimum) number of iterations for which
variance calculation is to be performed.

At 110, control evaluates each solution in the current gen
eration based on the fitness function. At 112, control stores the
best solution if it is better than the previous best solution. At
114, control determines whether current iteration is the start
ing iteration. At 116, when current iteration is not the starting
iteration, control creates a next generation of Solutions from
the current generation of solutions using selection, crossover,
and mutation, and control returns to 110. At 118, when the
current iteration is the starting iteration, control calculates a
variance of the best solutions obtained up to and in the current
iteration.

At 120, control determines whether variance is calculated
for the predetermined number of iterations. If variance is not
calculated for the predetermined number of iterations, control
returns to 116. At 122., if variance is calculated for the prede
termined number of iterations, control determines whether
the variance is greater than the bound. If the variance is
greater than the bound, control returns to 116. At 124, if the
variance is not greater than the bound, control terminates the
GA.

Referring now to FIG.9, an example system 200 for deter
mining a stopping criterion and terminating a GA using a
stopping criterion is shown. The system 200 executes a GA to
find the best solution for a problem. The problem may be
related to any field including, but not limited to, operations
research, very large scale integration (VLSI) circuit design,
pattern recognition, image processing, machine learning, and
SO. O.

The system 200 comprises a user input module 202, a data
acquisition module 204, a population creation module 206, a
bound setting module 208, a population analysis module 210,
an iteration selection module 212, an evaluation module 214.
a variance module 216, and a termination module 218. The
system 200 may be implemented by software, hardware,
firmware, or a combination thereof. The system 200 may also
be implemented as a system-on-chip (SOC). For example, in
FIG. 10, a computer 300 comprising one or more processors
may implement portions of the system 200, wherein most
components of the computer 300 may be implemented as a
system-on-chip (SOC).

10

15

25

30

35

40

45

50

55

60

65

14
The system 200 comprises a data input unit 200-1, a data

processing unit 200-2, and an evaluation and termination unit
200-3. The data input unit 200-1 comprises the user input
module 202, the data acquisition module 204, and the bound
setting module 208. The data input unit 200-1 receives input
data for a problem to be solved. The data processing unit
200-2 comprises the population creation module 206, the
population analysis module 210, and the iteration selection
module 212. The data processing unit 200-2 processes the
input data. The evaluation and termination unit 200-3 com
prises the evaluation module 214, the variance module 216,
and the termination module 218. The evaluation and termi
nation unit 200-3 evaluates the processed data and terminates
the GA.
The user input module 202 allows a user to input data. The

user input module 202 receives the data from the user and
outputs the data to the evaluation module 214. The data may
include the accuracy desired by the user for the solution to be
generated by the GA. The desired accuracy may depend on
the type of data acquired by the data acquisition module 204.
For example, the desired accuracy may depend on the type of
problem being solved. In some implementations, the user
may be remote relative to the system 200 and may access the
system 200 via a wireline network or a wireless network.
Accordingly, the user input module 202 may include a Suit
able network interface to connect the system 200 to a net
work.
The data acquisition module 204 acquires data for the

problem to be solved. In some implementations, the data
acquisition module 204 may comprise Suitable instruments,
transducers, etc. for acquiring data that is generated by pro
cesses and that is to be analyzed to find the solution. For
example, the data acquisition module 204 may comprise pres
Sure, temperature, and/or other sensors that sense parameters
related to a chemical process. The data acquisition module
204 may comprise current, Voltage, and/or other sensors that
sense parameters related to an electrical system. The data
acquisition module 204 may comprise an interface that
acquires data generated by a computer aided design (CAD)
system for integrated circuit (IC) layout design, vehicle
design, and so on. The data acquisition module 204 outputs
the acquired data to the population creation module 206.
The population creation module 206 creates a population

of random solutions based on the data acquired by the data
acquisition module 204. The population creation module 206
outputs the population to the population analysis module 210
and to the evaluation module 214.
The bound setting module 208 sets a bound for variance

based on the accuracy desired by the user. In some implemen
tations, the user may directly input and set the bound via the
user input module 202. The bound for the variance is the
stopping criterion for stopping the GA executed by the system
200. The bound setting module 208 outputs the bound to the
variance module 216.
The population analysis module 210 analyses the popula

tion received from the population creation module 206 and
outputs information such as length of strings and size of the
population to the iteration selection module 212. The iteration
selection module 212 selects the starting iteration number
from which to consider best fitness values for calculating
variance. The iteration selection module 212 selects the start
ing iteration number based on the length of strings and size of
the population received from the population analysis module
210. Additionally, the iteration selection module 212 selects a
predetermined (minimum) number of iterations for which
variance calculation is to be performed. In some implemen
tations, the user may input the starting iteration number and

US 8,700,548 B2
15

the minimum number of iterations via the user input module
202, and the iteration selection module 212 may receive the
starting iteration number and the minimum number of itera
tions from the user input module 202.

The evaluation module 214 receives the population gener
ated by the population creation module 206 and the desired
accuracy input by the user via the user input module 202. The
evaluation module 214 evaluates each solution in the current
generation based on a fitness function. The evaluation module
214 calculates fitness values of the solutions using the fitness
function and determines the best solution based on the fitness
values. The evaluation module 214 stores the best solution if
it is better than the previous best solution. In some implemen
tations, the user may input the fitness function via the user
input module 202. Alternatively, the user may input informa
tion related to the fitness function via the user input module
202, and the evaluation module 214 may generate the fitness
function based on the information input by the user. Until the
starting iteration is reached, the population creation module
206 creates a next generation of solutions from the current
generation of solutions using selection, crossover, and muta
tion, and the evaluation module 214 repeats its operations.

The variance module 216 receives the best solutions stored
in the evaluation module 214 and the bound for the variance
from the bound setting module 208. When the starting itera
tion is reached, the variance module 216 begins calculating a
variance of the best solutions obtained up to and in the current
iteration. The population creation module 206, the evaluation
module 214, and the variance module 216 continue their
respective operations until the predetermined number of
iterations are reached. After the predetermined number of
iterations, the variance module 216 determines whether the
variance is greater than the bound. So long as the variance is
greater than the bound, the population creation module 206,
the evaluation module 214, and the variance module 216
continue their respective operations.
The termination module 218 receives the variance calcu

lated by the variance module 216. The termination module
218 compares the variance to the bound for the variance. The
termination module 218terminates the GA when the variance
is less than or equal to the bound. The termination module 218
outputs a signal to the evaluation module 214 to terminate
further evaluation. Additionally, the signal may terminate
operation of the population creation module 210. The best
solution stored in the evaluation module 214 at the time of
termination is the near optimal solution for the problem.

Genetic algorithms can be applied to solve many real life
complex optimization problems. For example, Some of the
applications in various areas include networking, Scheduling,
complex engineering, finance, image processing, pattern rec
ognition, and learning. In networking, applications can be
found in control of gas pipeline in steady and transient states.
Applications can also be found in design of corporate com
munication networks that link various widely separated sites.
In scheduling, applications can be found in Solving complex
scheduling problems such as examination time tabling. Fur
ther, applications can be found in solving complex job and
open shop scheduling problems.

In complex engineering, GAS can be applied in Solving
channel routing problem in VLSI design, for example. In
finance, applications can be found in portfolio optimization
with an Envelope-based Multi-objective Evolutionary Algo
rithm. Further, applications can be found in development of
several financial tools in trading, market prediction, etc. In
image processing, applications can be found in generating
image enhancements. In pattern recognition, applications can
be found in feature selection and generation of class bound

10

15

25

30

35

40

45

50

55

60

65

16
aries. In learning, applications can be found in computation
and selection of optimal set of weights for neural networks.

Additionally, there are many other areas where GAs can be
applied in Solving complex problems. These areas include
controller synthesis, test data generation in automatic testing
of software, resource allocation systems, constrained service
provisioning, data mining, molecular biology, web mining,
production scheduling, imagery exploration, construction,
transportation, telecommunication, manufacturing, retail,
and so on.

In each of these applications, a population of Solutions for
the problem concerned is generated. Depending on the
desired accuracy, a bound for variance is selected. In each
iteration of the GA, the solutions are evaluated, and a best
Solution is detected. Beginning from a selected Starting itera
tion, a variance of best solutions obtained in the iterations is
calculated. Variance is calculated for a predetermined number
of iterations. Thereafter, the GA is terminated when the vari
ance is less than or equal to the bound. The Solution obtained
at the termination is the near optimal solution for the problem.

Although the stopping criterion disclosed herein is
described to provide an optimal solution for a GA, the GA is
used throughout the present disclosure as an example only.
The stopping criterion disclosed herein can be used with other
optimization techniques including other evolutionary algo
rithms. Additionally, stopping criterion disclosed herein can
be used with other optimization techniques such as simulated
annealing, particle Swarm optimization, ant colony optimiza
tion, invasive weed optimization, harmony search, tabu
search, Gaussian adaptation, and so on.

In addition to the GA, there are many other optimization
techniques, such as those mentioned above, that are iterative
in nature and that are guided by a criterion function. In an
iterative optimization technique, a criterion function derived
from the function to be optimized (e.g., fitness function for
genetic algorithms, error/cost function for artificial neural
network) is defined using the results of each iteration. In Such
cases, one of ordinary skill in the art can use the variance
based stopping criterion disclosed herein in considering an
appropriate bound (epsilon) for the variance of the criterion
function values. Thus, the stopping criterion disclosed herein
may be applicable for all iteration based algorithms.

Further, these other optimization techniques may be
applied to solve problems in the areas described above and
may have applications in addition to those discussed with
respect to GAS. In each of these applications, a population of
Solutions for the problem concerned may be generated.
Depending on the desired accuracy, a bound for variance may
be selected. In each iteration of these optimization tech
niques, the Solutions may be evaluated, and a best Solution
may be detected. Beginning from a selected Starting iteration,
a variance of best solutions obtained in the iterations may be
calculated. Variance may be calculated for a predetermined
number of iterations. Thereafter, these optimization tech
niques may be terminated when the variance is less than or
equal to the bound as discussed herein with respect to GAS.
The solution obtained at the termination may be the near
optimal solution for the problem.

Referring now to FIG. 10, a computer 300 comprises a
processor 302, memory 304, and an input/output (I/O) con
troller 306 that communicate via a system bus 308. The
memory 304 may include random access memory (RAM).
The I/O controller 306 controls I/O devices 310, peripheral
devices 312, and a network interface 314. The I/O devices 310
may include a keyboard, a mouse, a display, and so on, which
allow a user to interact with the computer 300. The display
may include a touch-screen, which allows the user to enter

US 8,700,548 B2
17

inputs by touching fields shown on the display. The peripheral
devices 312 may include mass storage devices such as disk
drives, and so on, which are used to store an operating system
(OS), applications, and data. The network interface 314 inter
faces the computer 300 to a network (e.g., the Internet). The
network interface 314 may be a wireline network interface or
a wireless network interface and allows the user to remotely
access the computer 300 via the Internet, for example. The
processor 302 executes the OS and the applications and pro
cesses data. The processor 302 may use the memory 304 for
temporary storage (e.g., as a scratch pad) and one or more of
the peripheral devices 312 for permanently storing the data.

Additionally, the computer 300 comprises an iterative pro
cessor 316 and memory 318. The iterative processor 316 is
shown separate from the processor 302 to illustrate the teach
ings of the present disclosure. In some implementations, the
processor 302 may implement the iterative processor 316. For
example, the processor 302 may comprise more than one
core, where a first core may perform the functions of the
processor 302 while a second core may perform the functions
of the iterative processor 316. When the processor 302 imple
ments the iterative processor 316, the processor 302 may be
programmed to execute the functions performed by the itera
tive processor 316.

The iterative processor 316 communicates with the system
bus 308. The iterative processor 316 executes iterative appli
cations such as a GA and performs iterative operations such
as those involved in the GA, for example. The memory 318
may be tightly coupled memory (TCM), where TCM is a low
latency memory that is directly coupled to a processor Such as
the iterative processor 316 via a dedicated bus that is that is
separate and apart from the system bus 308.

Although not shown, the iterative processor 316 may
include multiple parallel processors. Alternatively, the itera
tive processor 316 may operate in parallel with other proces
sors, where the iterative processor 316 performs some of the
iterative operations, and the other processors perform the rest
of the iterative operations. For example, the iterative proces
Sor 316 may operate in parallel with a terminating processor
320, where the terminating processor 320 terminates the GA
using the variance based stopping criterion described herein.

The terminating processor 320 is shown separate from the
processor 302 and the iterative processor 316 to illustrate the
teachings of the present disclosure. In some implementations,
the processor 302 and/or the iterative processor 316 may
implement the terminating processor 320. For example, the
processor 302 and/or the iterative processor 316 may com
prise more than one core, where a first core may perform the
functions of the processor 302 and/or the iterative processor
316 while a second core may perform the functions of the
terminating processor 320. When the processor 302 and/or
the iterative processor 316 implements the terminating pro
cessor 320, the processor 302 and/or the iterative processor
316 may be programmed to execute the functions performed
by the terminating processor 320.

The terminating processor 320 may communicate with the
iterative processor 316 and the system bus 308 and the
memory 318: The terminating processor 320 may directly
communicate with the iterative processor 316. Alternatively
or additionally, the iterative processor 316, the memory 318,
and the terminating processor 320 may communicate via the
dedicated bus.

In some embodiments, the iterative processor 316 may be
a very large-scale integrated circuit (VLSI). The VLSI may be
customized to perform iterative operations such as those
involved in a GA. For example, the VLSI may comprise a

10

15

25

30

35

40

45

50

55

60

65

18
portion of the system 200 shown in FIG. 9. In other imple
mentations, the processor 302 may also be integrated in the
VLSI.

In some implementations, the GA may be executed over a
distributed network of computers including the computer
300. In these implementations, the iterative processor 316
may operate in tandem with other processors on the distrib
uted network. The iterative processor 316 may perform only
some of the operations related to the GA while the other
processor may perform other operations related to the GA.
The user may remotely access the computer 300 and may
remotely terminate the GA via the computer 300.
The iterative processor 316 may use the memory 304 for

processing data in each of the iterations of the GA. For
example, the memory 304 may be partitioned into two por
tions, where one portion is reserved for storing data processed
by the iterative processor 316 while the other portion is used
by the processor 302. Additionally or alternatively, the itera
tive processor 316 may utilize a memory 318 separate and
apart from the memory 304. The memory 318 may be tightly
coupled to the iterative processor 316 via a bus that is separate
and apart from the system bus 308.
The memory 318 may be used to store instructions

executed by the iterative processor 316. The instructions may
include customized instructions for performing operations
relative to the GA. For example, the instructions may include
customized instructions for performing iterative operations
relative to the GA. Additionally, the memory 318 may be used
to cache best Solutions generated in the iterations when the
best solutions are better than those obtained in the previous
iterations. Thus, the iterative processor 316 can perform the
operations relative to the GA (e.g., variance calculation)
quickly and independently of other operations being per
formed by the computer 300.

In use, the computer 300 may receive data and other inputs
for a problem to be solved via the network interface 314
and/or via one or more of the peripheral devices 312. The data
and the other inputs may be stored in data structures in
memory 304 and/or memory 318. The iterative processor 316
processes the data and the other inputs according to the
instructions stored in the memory 318. During processing, the
iterative processor 316 performs read/write operations on the
data structures. For example, the iterative processor 316 per
forms operations described in steps 52 through 66 of the
method 50 shown in FIG. 1. More particularly, the iterative
processor 316 performs operations described in steps 102
through 124 of the method 100 shown in FIG. 8 and opera
tions of system 200 shown in FIG. 9. The iterative processor
316 generates a near optimal Solution for the problem using
the variance as a stopping criterion as described above.

Referring now to FIG. 11, an example of data structures
400 processed by the iterative processor 316 is shown. For
example only, the data structures 400 may comprise the fol
lowing data structures: Variance threshold 402, starting itera
tion number 404, minimum number of iterations 406, fitness
function 408, population 410, best solutions 412, and vari
ance 414 data structures. Based on the data and the other
inputs received by the computer 300, the data structures 400
may be utilized as follows.
The variance threshold 402 data structure stores a variance

threshold (i.e., the bound for variance (e) that the iterative
processor 316 uses as a stopping criterion to stop the GA. The
starting iteration number 404 data structure stores a starting
iteration number from which the iterative processor 316
begins variance calculation. The minimum number of itera
tions 406 data structure stores the minimum number of itera
tions to be performed after which the iterative processor 316

US 8,700,548 B2
19

calculates the variance. The fitness function 408 data struc
ture stores a fitness function that the iterative processor 316
uses to evaluate Solutions and to determine the best Solution in
each iteration of the GA.
The population 410 data structure stores the solutions gen

erated by the iterative processor 316 in each iteration of the
GA. The best solutions 412 data structure stores the best
solutions obtained in the iterations of the GA. For example,
the iterative processor 316 stores a best solution obtained in a
current iteration in the best solutions 412 data structure if the
best solution obtained in the current iteration is better than a
best Solution obtained in a previous iteration.

The variance 414 data structure stores a variance of the best
solutions obtained up to and in a current iteration of the GA.
In each iteration, the iterative processor 316 calculates the
variance of the best solutions stored in the best solutions 412
data structure and stores the variance in the variance 414 data
structure. The iterative processor 316 may calculate the vari
ance only in those iterations that follow the starting iteration
number.

For example only, the variance threshold 402, starting
iteration number 404, and minimum number of iterations 406
data structures may each comprise a single byte or a single
word. Alternatively, the variance threshold 402, starting itera
tion number 404, and minimum number of iterations 406 data
structures may together comprise a single byte or a single
word. The population 410, best solutions 412, and variance
414 data structures may comprise a plurality of bytes, words,
and/or blocks of memory. Accordingly, Some of the data
structures 400 may be stored in memory 304 while others may
be stored in memory 318.

Additionally, although not shown, the iterative processor
316 may use other data structures during processing. For
example, these additional data structures may be used to store
iterative values (e.g., temporary values generated during
iterations) and may includes data structures such as arrays,
which may store best solutions, for example. Some of these
additional data structures may be stored in memory 304 while
others may be stored in memory 318.

In use, in an iteration, the iterative processor 316 reads
solutions stored in the population 410 data structure and the
fitness function stored in the fitness function 408 data struc
ture. Using the fitness function, the iterative processor 316
determines the best solution in the current iteration. The itera
tive processor 316 outputs the best solution to the best solu
tions 412 data structure if the best solution in the current
iteration is better than the best solution in a previous iteration.
The iterative processor 316 reads the starting iteration

number from the starting iteration number 404 data structure
and determines if the current iteration is greater than or equal
to the current iteration. If the current iteration is greater than
or equal to the current iteration, the iterative processor 316
reads the best solutions stored in the best solutions 412 data
structure. The iterative processor 316 calculates variance of
the best solutions and outputs the variance to the variance 414
data structure.
The iterative processor 316 reads the minimum number of

iterations 406 data structure and determines if the variance is
calculated for the minimum number of iterations following
the starting iteration. If the variance is calculated for the
minimum number of iterations following the starting itera
tion, the iterative processor 316 compares the variance in the
currentiteration. For example, ifan N'iteration is the starting
iteration number and if M is the minimum number of itera
tions, the iterative processor 316 compares the variance cal
culated in (N+M)" iteration, where N and M are integers
greater than 1.

10

15

25

30

35

40

45

50

55

60

65

20
The iterative processor 316 (or the terminating processor

320) reads the variance threshold 402 data structure and com
pares the variance calculated in the (N+M)" iteration to the
variance threshold. The iterative processor 316 (or the termi
nating processor) terminates the GA is the variance calculated
in the (N+M)th iteration is less than or equal to the variance
threshold.

In processing the data structures 400, the iterative proces
sor 316 may execute the following pseudo code:

Begin
SETWariance = 1
GET Variance Threshold
GET Fitness Function
GET Population
GET Starting Iteration Number
GET Minimum Number Of Iterations
INIT Array Best Solutions
SET Total Iterations = 0
SETI - O
SET Solution = False
Current Population = Population
Current Best Solution =
Fitness Function(Current Population)
IF (I=0 OR Current Best Solution(I)

Current Best Solution (I-1))
Best Solutions I = Current Best Solution
ENDIF
IF I > Starting Iteration Number
Variance = Current Variance(Best Solutions II)
INCREMENT Total Iterations
ENDIF

IF (Total Iterations > Minimum Number Of Iterations)
AND (Variances Variance Threshold)

OUTPUT Best Solutions
// The best solution of the last iteration is the near optimal solution. //

Solution = True
ENDIF
Population = f(Current Population)

if f is a function based on selection, crossover, and mutation.
INCREMENTI
Solution = True

REPEAT

better than

UNTIL
END

In an embodiment, the variance threshold (i.e., the bound
for variance (C)) and the starting iteration number may be
statistically determined depending on the type of problem
being solved and the distribution of the related data set as
follows. For example, using samples from the data set, a
variance curve may be generated to represent variation of
variance relative to number of iterations. To solve the prob
lem, the value of the variance threshold may be statistically
determined based on a rate of change of variance where the
slope of the variance curve is negative. Additionally, the value
of the starting iteration number may be statistically deter
mined such that the slope of the variance curve is positive and
is near maximum. Further, the minimum number of iterations
may be statistically determined based on the rate of change of
variance where the slope of the variance curve is negative.

In an embodiment, a tangible computer-readable storage
device may store program instructions that cause a processor
to perform operations described with references to FIG. 1 and
FIGS. 8-11 when the processor executes the program instruc
tions. For example only, the tangible computer-readable Stor
age device may include, but is not limited to, one or more of
the following or similar devices: a memory integrated circuit,
a solid-state disk, a hard disk drive, a compact disc (CD), and
SO. O.

US 8,700,548 B2
21

The memory may include, but is not limited to, random
access memory (RAM), read-only memory (ROM), flash
memory, volatile and/or non-volatile memory, re-writable
memory, and so on.
The art relating to the present disclosure has progressed to

the point where there is little distinction left between hard
ware, Software, and/or firmware implementations of aspects
of systems; the use of hardware, software, and/or firmware is
generally (but not always, in that in certain contexts the
choice between hardware and Software can become signifi
cant) a design choice representing cost vs. efficiency
tradeoffs. Those having skill in the art will appreciate that
there are various vehicles by which processes and/or systems
and/or other technologies described herein can be effected
(e.g., hardware, Software, and/or firmware), and that the pre
ferred vehicle will vary with the context in which the pro
cesses and/or systems and/or other technologies are
deployed.

For example, if an implementer determines that speed and
accuracy are paramount, the implementer may opt for a
mainly hardware and/or firmware vehicle; alternatively, if
flexibility is paramount, the implementer may opt for a
mainly software implementation; or, yet again alternatively,
the implementer may opt for Some combination of hardware,
software, and/or firmware. Hence, there are several possible
vehicles by which the processes and/or devices and/or other
technologies described herein may be effected, none of which
is inherently superior to the other in that any vehicle to be
utilized is a choice dependent upon the context in which the
vehicle will be deployed and the specific concerns (e.g.,
speed, flexibility, or predictability) of the implementer, any of
which may vary. Those skilled in the art will recognize that
optical aspects of implementations will typically employ
optically-oriented hardware, software, and or firmware.

In some embodiments, “configured includes at least one
of designed, set up, shaped, implemented, constructed, or
adapted for at least one of aparticular purpose, application, or
function.

It will be understood that, in general, terms used herein,
and especially in the appended claims, are generally intended
as “open’ terms (e.g., the term “including should be inter
preted as “including but not limited to the term “having
should be interpreted as “having at least, the term “includes’
should be interpreted as “includes but is not limited to, etc.).
It will be further understood that if a specific number of an
introduced claim recitation is intended, such an intent will be
explicitly recited in the claim, and in the absence of Such
recitation no such intent is present.

For example, as an aid to understanding, the following
appended claims may contain usage of introductory phrases
such as “at least one' or "one or more' to introduce claim
recitations. However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation
by the indefinite articles “a” or “an limits any particular
claim containing Such introduced claim recitation to inven
tions containing only one such recitation, even when the same
claim includes the introductory phrases “one or more' or “at
least one' and indefinite articles such as “a” or “an” (e.g., “a
receiver' should typically be interpreted to mean “at least one
receiver'); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, it will be recognized that such recitation should typi
cally be interpreted to mean at least the recited number (e.g.,
the bare recitation of “at least two chambers.” or “a plurality
of chambers, without other modifiers, typically means at
least two chambers).

10

15

25

30

35

40

45

50

55

60

65

22
Furthermore, in those instances where a phrase such as “at

least one of A, B, and C.” “at least one of A, B, or C.” or “an
item selected from the group consisting of A, B, and C is
used, in general Such a construction is intended to be disjunc
tive (e.g., any of these phrases would include but not be
limited to systems that have A alone, B alone, C alone, A and
B together, A and C together, B and C together, or A, B, and
C together, and may further include more than one of A, B, or
C, such as A1, A2, and C together, A, B1, B2, C1, and C2
together, or B1 and B2 together). It will be further understood
that virtually any disjunctive word or phrase presenting two or
more alternative terms, whether in the description, claims, or
drawings, should be understood to contemplate the possibili
ties of including one of the terms, either of the terms, or both
terms. For example, the phrase “A or B will be understood to
include the possibilities of “A” or “B” or “A and B.”
The herein described aspects depict different components

contained within, or connected with, different other compo
nents. It is to be understood that such depicted architectures
are merely examples, and that in fact many otherarchitectures
can be implemented which achieve the same functionality. In
a conceptual sense, any arrangement of components to
achieve the same functionality is effectively “associated
such that the desired functionality is achieved. Hence, any
two components herein combined to achieve a particular
functionality can be seen as “associated with each other such
that the desired functionality is achieved, irrespective of
architectures or intermedial components. Likewise, any two
components so associated can also be viewed as being “oper
ably connected,” or “operably coupled to each other to
achieve the desired functionality. Any two components
capable of being so associated can also be viewed as being
“operably couplable' to each other to achieve the desired
functionality. Specific examples of operably couplable
include but are not limited to physically mateable or physi
cally interacting components or wirelessly interactable or
wirelessly interacting components.

With respect to the appended claims the recited operations
therein may generally be performed in any order. Also,
although various operational flows are presented in a
sequence(s), it should be understood that the various opera
tions may be performed in other orders than those which are
illustrated, or may be performed concurrently. Examples of
Such alternate orderings may include overlapping, inter
leaved, interrupted, reordered, incremental, preparatory,
Supplemental, simultaneous, reverse, or other variant order
ings, unless context dictates otherwise. Furthermore, terms
like “responsive to “related to,” or other past-tense adjec
tives are generally not intended to exclude Such variants,
unless context dictates otherwise.

While various aspects and embodiments have been dis
closed herein, the various aspects and embodiments are for
purposes of illustration and are not intended to be limiting,
with the true scope and spirit being indicated by the following
claims.

The invention claimed is:
1. A system for terminating a genetic algorithm (GA) com

prising: an iterator that executes a GA that generates at least
one best solution periteration;

a memory that stores a plurality of best Solutions generated
in a plurality of iterations of the GA, wherein a best
solution is stored in the memory if a fitness function of
the best Solution is greater than a fitness function of a
previous best solution generated in a previous iteration;

an iterative processor that computes a variance of the plu
rality of the best solutions stored in the memory; and

US 8,700,548 B2
23

a terminating processor that terminates the iterator when
the variance is less than or equal to a predetermined
threshold,
wherein the terminating processor determines whether

the variance is less than or equal to the predetermined
threshold after a predetermined number of iterations
are completed following a starting iteration, and

wherein the predetermined number of iterations is sta
tistically determined based on a rate of change of the
variance when the rate of change of the variance rela
tive to a number of the iterations is negative.

2. The system of claim 1, wherein the iterative processor
computes the variance when a starting iteration is reached.

3. The system of claim 1, wherein the predetermined
threshold is statistically determined based on a rate of change
of the variance when the rate of change of the variance relative
to a number of the iterations is negative.

4. The system of claim 2, wherein the starting iteration is
statistically determined based on a rate of change of the
variance when the rate of change of the variance relative to a
number of the iterations is positive.

5. The system of claim 1, wherein the iterative processor
generates the at least one best solution per iteration from a
population of Solutions using the fitness function, wherein
each solution in the population is coded as a string of a finite
length, and wherein a starting iteration is statistically deter
mined based on the finite length and a size of the population.

6. The system of claim 5, wherein when the variance is
greater than the predetermined threshold, the iterative proces
sor generates a Subsequent population of Solutions from the
population of Solutions using operators including selection,
crossover, and mutation.

7. The system of claim 1, wherein the predetermined
threshold is selected based on a desired accuracy of the GA.

8. The system of claim 1, wherein the predetermined
threshold takes into account properties of an objective func
tion and genetic parameters used in the GA.

9. A method for terminating a genetic algorithm (GA),
comprising:

executing a GA by an iterator to generate at least one best
Solution periteration;

storing a plurality of best Solutions generated in a plurality
of iterations of the GA, wherein the best solution is
stored in a memory if a fitness function of the best
Solution is greater than a fitness function of a previous
best Solution generated in a previous iteration;

10

15

25

30

35

40

45

24
computing a variance of the plurality of best solutions

stored in the memory using an iterative processor,
terminating the iterator using a terminating processor when

the variance is less than or equal to a predetermined
threshold;

determining whether the variance is less than or equal to
the predetermined threshold after a redetermined num
ber of iterations are completed when a starting iteration
is reached; and

determining statistically the predetermined number of
iterations based on a rate of change of the variance when
the rate of change of the variance relative to a number of
iterations is negative.

10. The method of claim 9, further comprising computing
the variance when a starting iteration is reached.

11. The method of claim 9, further comprising determining
statistically the predetermined threshold based on a rate of
change of the variance when the rate of change of the variance
relative to a number of the iterations is negative, wherein the
predetermined threshold takes into account properties of an
objective function and genetic parameters used in the GA.

12. The method of claim 10, further comprising determin
ing statistically the starting iteration based on a rate of change
of the variance when the rate of change of the variance relative
to a number of iterations is positive.

13. The method of claim 9, further comprising generating
the at least one best Solution periteration from a population of
Solutions using the fitness function, wherein each solution in
the population is coded as a string of a finite length, and
wherein the starting iteration is determined statistically based
on the finite length and a size of the population.

14. The method of claim 13, further comprising generating
a Subsequent population of Solutions from the population of
Solutions using operators including selection, crossover, and
mutation when the variance is greater than the predetermined
threshold.

15. The method of claim 9, further comprising selecting the
predetermined threshold based on a desired accuracy of the
GA.

16. A tangible computer-readable storage device for Stor
ing program instructions that cause a processor to perform
steps of the method of claim 9 when the processor executes
the program instructions.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,700,548 B2 Page 1 of 2
APPLICATIONNO. : 13/265480
DATED : April 15, 2014
INVENTOR(S) : Bhandari et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Column 6, Line 17, delete “F” and insert -- F --, therefor.

Column 7, Line 64, delete “a and insert -- a--, therefor.

Column 7, Line 66, delete “alsa-sassF1 and insert -- as as as < ... < F, --, therefor.

Column 10, Line 42, delete “of E. and insert -- of e. --, therefor.

Column 11, Line 6, delete “predefined E and insert -- predefined e --, therefor.

Column 11, Line 17, delete “b, and insert -- bi --, therefor.

s 5.

1+XI(r) + X ls
st le Column 11, Lines 49-51, delete “ t

log(1+X Iril +IIIa, I),
c is: --, therefor.

and

insert --

Column 17, Line 59, delete “318: and insert -- 318. --, therefor.

Column 18, Line 61, delete “variance (e) and insert -- variance (e)) --, therefor.

Column 20, Line 6, delete “(N+M)th and insert -- (N+M)" --, therefor.

Column 21, Lines 1-4, delete “The memory.......... So on. and insert the same in
Column 20, at Line 67, after “so on, as a continuation paragraph.

Signed and Sealed this
Thirtieth Day of December, 2014

74-4-04- 2% 4
Michelle K. Lee

Deputy Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 8,700,548 B2

In the Claims

Column 24, Line 7, in Claim 9, delete “redetermined and insert -- predetermined --, therefor.

	Optimization technique using evolutionary algorithms
	1498407385770599953-08700548

