
Indian Statistical Institute Indian Statistical Institute

ISI Digital Commons ISI Digital Commons

Patents Data and Patents

5-17-2012

Optimization technique using evolutionary algorithms Optimization technique using evolutionary algorithms

Dinabandhu Bhandari

C A. Murthy

Sankar Kumar Pal

Follow this and additional works at: https://digitalcommons.isical.ac.in/patents

https://digitalcommons.isical.ac.in/
https://digitalcommons.isical.ac.in/patents
https://digitalcommons.isical.ac.in/data-patents
https://digitalcommons.isical.ac.in/patents?utm_source=digitalcommons.isical.ac.in%2Fpatents%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

US0087.00548B2

(12) United States Patent (10) Patent No.: US 8,700,548 B2
Bhandari et al. (45) Date of Patent: Apr. 15, 2014

(54) OPTIMIZATION TECHNIQUE USING (56) References Cited
EVOLUTIONARY ALGORTHMS

U.S. PATENT DOCUMENTS

(75) Inventors: Dinabandhu Bhandari, Kolkata (IN); 5,222, 192 A * 6/1993 Shaefer TO6, 13
C. A. Murthy, Kolkata (IN); Sankar 5,255,345 A 10/1993 Shaefer
Kumar Pal, Kolkata (IN) 2002fO16801.0 A1 11, 2002 Ali

2008/0183648 A1 7/2008 Goldberg et al.
(73) Assignee: Indian Statistical Institute, Kolkata, 2009/0307636 A1* 12/2009 Cases et al. T16.2

West Bengal (IN) FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this WO 20081224.12 A1 10, 2008
patent is extended or adjusted under 35
U.S.C. 154(b) by 235 days. OTHER PUBLICATIONS

Journal of the Chinese Institute of Industrial Engineers, vol. 21, No.
(21) Appl. No.: 13/265,480 5, pp. 516-526 (2004) Solving Line-Feature Stereo Matching With

1-1. Genetic Algorithms in Hough Space.*
(22) PCT Filed: Oct. 15, 2010 International Search Report and Written Opinion dated Jan. 11, 2011

for International Application No. PCTIB2010.054679. (86). PCT No.: PCT/B2O1O/O54.679 or International Application No

S371 (c)(1) (Continued)
(2), (4) Date: Oct. 20, 2011 Primary Examiner — Kakali Chaki

(87) PCT Pub. No.: WO2011/135410 Assistant Examiner — Ababacar Seck
(74) Attorney, Agent, or Firm — Brundidge & Stanger, P.C.

PCT Pub. Date: Nov. 3, 2011
(57) ABSTRACT

65 Prior Publication Dat
(65) O DO Provided embodiments include a method, a system, a device,

US 2012/O123980 A1 May 17, 2012 and an article of manufacture. A System for terminating a
O O genetic algorithm (GA), where the GA uses an iterator and

(30) Foreign Application Priority Data generates one best Solution periteration, includes a memory,
an iterative processor, and a terminating processor. The

Apr. 28, 2010 (IN) 472/KOILA2010 memory is provided for storing a plurality of best solutions
generated in a plurality of iterations of the GA. One of the best

(51) Int. Cl. Solutions generated in one of the iterations is stored in the
G06F 5/8 (2006.01) memory if the one of the best solutions is better than a previ
G06N3/00 (2006.01) ous one of the best solutions generated in a previous one of the
G06N3/12 (2006.01) iterations. The iterative processor computes a variance of the

(52) U.S. Cl. plurality of the best solutions stored in the memory. The
USPC - 7O6/13 terminating processor terminates the iterator when the vari

(58) Field of Classification Search ance is less than or equal to a predetermined threshold.
None
See application file for complete search history.

, Žinction " "| Avrig irrir "3, if cases
------------------------- 3i leatics: at 8siti:

3 SES 3.
4:24 3:
3.

282 lo. :
ww.rwww.rr as: A. ~g

32: 23

3.33723.22 3?
... 12:12:48:is

82. ; 8.
28,23, : 3.

A

:303 3.
** sig’”””” "

15-3 28:8..
r 333.

or * 21.1. Y.

awa wavavas a a yawa?y war waawater w w www.wr

16 Claims, 11 Drawing Sheets

Narnier of String “xii;6 at
in aearci, space stigs sist:
error-ra-re-era-e-radarar

wer

: ... 8
i: reached

238 is 8

83.29.
23, 186, 30i.
f33. E14, 33.

264. 932
... 8:8, 5.3
i., 939, 43
"isis"

... if
3, 2:

$2.33

US 8,700.548 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Pendharkar, P.C. and Koehler, G.J., “A general steady state distribu
tion based stopping criteria for finite length genetic algorithms.”
European Journal of Operational Research, vol. 176, Issue 03, Feb.
2007, pp. 1436-1451.
Safe, M. et al., “On Stopping Criteria for Genetic Algorithms.”
Advances in Artificial Intelligence —SBIA 2004, vol. 3171, 2004,
pp. 405-413.
Aytug. H. and Koehler, G. J., “New Stopping Criterion for Genetic
Algorithms.” European Journal of Operational Research, vol. 126,
Issue 3, 2000, pp. 662-674.
Bhandari. D., et al., “Genetic Algorithms with Elitist Model and its
Convergence.” International Journal of Pattern recognition and Arti
ficial Intelligence, vol. 10, Issue 06, 1996, pp. 731-747.
Davis, T. E. and Principe, C.J., “A simulated Annealing like Conver
gence Theory for the Simple Genetic Algorithm.” in Proceedings of
4th Int. Conf. on genetic algorithms, 1991, pp. 174-181.
Dejong, K. A., “An analysis of the behaviour of a class of genetic
adaptive systems.” PhD thesis, Technical Report No. 185, Depart
ment of Computer and Communication Science, Univ. of Michigan,
1975, pp. 271.
Jain, B. J. et al., “On Termination Criteria of Evolutionary Algo
rithms.” In GECCO 2001–Proceedings of the Genetic and Evolu
tionary Computation Conference., pp. 331-338, San Francisco, CA.
Morgan Kauffmann.
Maity, S. P. and Kundu, M. K. “Genetic algorithms for optimality of
data hiding in digital images. Soft Computing, vol. 13, Issue 4, Oct.
2008, pp. 361-373.

Munteanu, C. and Rosa, A., “Gray-scale image enhancement as an
automatic process driven by evolution.” IEEE Transactions on Sys
tems, Man and Cybernetics-Part B: Cybernetics, vol.34, Issue 2, Apr.
2004, pp. 1292-1298.
Murthy, C. A., et al., “Optimal Stopping Time for Genetic Algo
rithms.” Fundamenta Informaticae, vol. 35. Issue 1-4, 1998, pp.
91-111.

Nix, A. E. and Vose, M.D. “Modeling genetic algorithms with
Markov Chains.” Annals of Mathematics and Artificial Intelligence,
vol. 5, Issue 1, 1992, pp. 79-88.
Pal, S. K. and Bhandari. D., "Selection of optimal set of weights in a
layered network using genetic algorithms.” Information Sciences,
vol. 80, Issues 3-4, Sep.1994, pp. 213-234.
Pal, S.K. etal. "Genetic algorithms for optimal image enhancement.”
Pattern Recognition Letters, vol. 15, Mar. 1994, pp. 261-271.
Rudolph, G., “Convergence analysis of canonical genetic algorithm.”
IEEE Transactions on Neural networks, vol. 5, Issue 1, Jan. 1994, pp.
96-101.

Suzuki, J., “A markov chain analysis on simple genetic algorithm.”
IEEE Transactions on Systems, Man and Cybernetics, vol. 25, Issue
4, Apr. 1995, pp. 655-659.
Vose, M.D. “Modeling simple genetic algorithms,” Journal Evolu
tionary Computation, vol. 3, Issue 4, 1995, pp. 453-472.
D. Bhandari et al., “An Optimal Stopping Criterion for complex
optimization.” Evolutionary Computation, Massachusetts Institute of
Technology, pp. 1-15.

* cited by examiner

U.S. Patent Apr. 15, 2014 Sheet 1 of 11 US 8,700,548 B2

Stait Y

Q'exte pigstates of racion
Solsters, are desire &

a 58 Easiliate each S3cs
based -f tress Ji'i:

Site the is:st sistic: if is is
Beief tisser previous test

Y
w

w
w
w

&aculate variance of the best solutions
kissed to tie 3rfeitsiatif

5 2.
&c.

greate few generaior x saussot's sing Y
R y S 3FEast E?

seexists, &cssowes, arts 3i Etair e

U.S. Patent Apr. 15, 2014 Sheet 2 of 11 US 8,700,548 B2

s

Patent Apr. 15, 2014 Sheet 3 of 11 US 8,700,548 B2

SaS

Šs SS SSSSS

U.S. Patent Apr. 15, 2014 Sheet 4 of 11 US 8,700,548 B2

Patent Apr. 15, 2014 Sheet 5 of 11 US 8,700,548 B2

airs S&SS:

US 8,700,548 B2
17

inputs by touching fields shown on the display. The peripheral
devices 312 may include mass storage devices such as disk
drives, and so on, which are used to store an operating system
(OS), applications, and data. The network interface 314 inter
faces the computer 300 to a network (e.g., the Internet). The
network interface 314 may be a wireline network interface or
a wireless network interface and allows the user to remotely
access the computer 300 via the Internet, for example. The
processor 302 executes the OS and the applications and pro
cesses data. The processor 302 may use the memory 304 for
temporary storage (e.g., as a scratch pad) and one or more of
the peripheral devices 312 for permanently storing the data.

Additionally, the computer 300 comprises an iterative pro
cessor 316 and memory 318. The iterative processor 316 is
shown separate from the processor 302 to illustrate the teach
ings of the present disclosure. In some implementations, the
processor 302 may implement the iterative processor 316. For
example, the processor 302 may comprise more than one
core, where a first core may perform the functions of the
processor 302 while a second core may perform the functions
of the iterative processor 316. When the processor 302 imple
ments the iterative processor 316, the processor 302 may be
programmed to execute the functions performed by the itera
tive processor 316.

The iterative processor 316 communicates with the system
bus 308. The iterative processor 316 executes iterative appli
cations such as a GA and performs iterative operations such
as those involved in the GA, for example. The memory 318
may be tightly coupled memory (TCM), where TCM is a low
latency memory that is directly coupled to a processor Such as
the iterative processor 316 via a dedicated bus that is that is
separate and apart from the system bus 308.

Although not shown, the iterative processor 316 may
include multiple parallel processors. Alternatively, the itera
tive processor 316 may operate in parallel with other proces
sors, where the iterative processor 316 performs some of the
iterative operations, and the other processors perform the rest
of the iterative operations. For example, the iterative proces
Sor 316 may operate in parallel with a terminating processor
320, where the terminating processor 320 terminates the GA
using the variance based stopping criterion described herein.

The terminating processor 320 is shown separate from the
processor 302 and the iterative processor 316 to illustrate the
teachings of the present disclosure. In some implementations,
the processor 302 and/or the iterative processor 316 may
implement the terminating processor 320. For example, the
processor 302 and/or the iterative processor 316 may com
prise more than one core, where a first core may perform the
functions of the processor 302 and/or the iterative processor
316 while a second core may perform the functions of the
terminating processor 320. When the processor 302 and/or
the iterative processor 316 implements the terminating pro
cessor 320, the processor 302 and/or the iterative processor
316 may be programmed to execute the functions performed
by the terminating processor 320.

The terminating processor 320 may communicate with the
iterative processor 316 and the system bus 308 and the
memory 318: The terminating processor 320 may directly
communicate with the iterative processor 316. Alternatively
or additionally, the iterative processor 316, the memory 318,
and the terminating processor 320 may communicate via the
dedicated bus.

In some embodiments, the iterative processor 316 may be
a very large-scale integrated circuit (VLSI). The VLSI may be
customized to perform iterative operations such as those
involved in a GA. For example, the VLSI may comprise a

10

15

25

30

35

40

45

50

55

60

65

18
portion of the system 200 shown in FIG. 9. In other imple
mentations, the processor 302 may also be integrated in the
VLSI.

In some implementations, the GA may be executed over a
distributed network of computers including the computer
300. In these implementations, the iterative processor 316
may operate in tandem with other processors on the distrib
uted network. The iterative processor 316 may perform only
some of the operations related to the GA while the other
processor may perform other operations related to the GA.
The user may remotely access the computer 300 and may
remotely terminate the GA via the computer 300.
The iterative processor 316 may use the memory 304 for

processing data in each of the iterations of the GA. For
example, the memory 304 may be partitioned into two por
tions, where one portion is reserved for storing data processed
by the iterative processor 316 while the other portion is used
by the processor 302. Additionally or alternatively, the itera
tive processor 316 may utilize a memory 318 separate and
apart from the memory 304. The memory 318 may be tightly
coupled to the iterative processor 316 via a bus that is separate
and apart from the system bus 308.
The memory 318 may be used to store instructions

executed by the iterative processor 316. The instructions may
include customized instructions for performing operations
relative to the GA. For example, the instructions may include
customized instructions for performing iterative operations
relative to the GA. Additionally, the memory 318 may be used
to cache best Solutions generated in the iterations when the
best solutions are better than those obtained in the previous
iterations. Thus, the iterative processor 316 can perform the
operations relative to the GA (e.g., variance calculation)
quickly and independently of other operations being per
formed by the computer 300.

In use, the computer 300 may receive data and other inputs
for a problem to be solved via the network interface 314
and/or via one or more of the peripheral devices 312. The data
and the other inputs may be stored in data structures in
memory 304 and/or memory 318. The iterative processor 316
processes the data and the other inputs according to the
instructions stored in the memory 318. During processing, the
iterative processor 316 performs read/write operations on the
data structures. For example, the iterative processor 316 per
forms operations described in steps 52 through 66 of the
method 50 shown in FIG. 1. More particularly, the iterative
processor 316 performs operations described in steps 102
through 124 of the method 100 shown in FIG. 8 and opera
tions of system 200 shown in FIG. 9. The iterative processor
316 generates a near optimal Solution for the problem using
the variance as a stopping criterion as described above.

Referring now to FIG. 11, an example of data structures
400 processed by the iterative processor 316 is shown. For
example only, the data structures 400 may comprise the fol
lowing data structures: Variance threshold 402, starting itera
tion number 404, minimum number of iterations 406, fitness
function 408, population 410, best solutions 412, and vari
ance 414 data structures. Based on the data and the other
inputs received by the computer 300, the data structures 400
may be utilized as follows.
The variance threshold 402 data structure stores a variance

threshold (i.e., the bound for variance (e) that the iterative
processor 316 uses as a stopping criterion to stop the GA. The
starting iteration number 404 data structure stores a starting
iteration number from which the iterative processor 316
begins variance calculation. The minimum number of itera
tions 406 data structure stores the minimum number of itera
tions to be performed after which the iterative processor 316

US 8,700,548 B2
19

calculates the variance. The fitness function 408 data struc
ture stores a fitness function that the iterative processor 316
uses to evaluate Solutions and to determine the best Solution in
each iteration of the GA.
The population 410 data structure stores the solutions gen

erated by the iterative processor 316 in each iteration of the
GA. The best solutions 412 data structure stores the best
solutions obtained in the iterations of the GA. For example,
the iterative processor 316 stores a best solution obtained in a
current iteration in the best solutions 412 data structure if the
best solution obtained in the current iteration is better than a
best Solution obtained in a previous iteration.

The variance 414 data structure stores a variance of the best
solutions obtained up to and in a current iteration of the GA.
In each iteration, the iterative processor 316 calculates the
variance of the best solutions stored in the best solutions 412
data structure and stores the variance in the variance 414 data
structure. The iterative processor 316 may calculate the vari
ance only in those iterations that follow the starting iteration
number.

For example only, the variance threshold 402, starting
iteration number 404, and minimum number of iterations 406
data structures may each comprise a single byte or a single
word. Alternatively, the variance threshold 402, starting itera
tion number 404, and minimum number of iterations 406 data
structures may together comprise a single byte or a single
word. The population 410, best solutions 412, and variance
414 data structures may comprise a plurality of bytes, words,
and/or blocks of memory. Accordingly, Some of the data
structures 400 may be stored in memory 304 while others may
be stored in memory 318.

Additionally, although not shown, the iterative processor
316 may use other data structures during processing. For
example, these additional data structures may be used to store
iterative values (e.g., temporary values generated during
iterations) and may includes data structures such as arrays,
which may store best solutions, for example. Some of these
additional data structures may be stored in memory 304 while
others may be stored in memory 318.

In use, in an iteration, the iterative processor 316 reads
solutions stored in the population 410 data structure and the
fitness function stored in the fitness function 408 data struc
ture. Using the fitness function, the iterative processor 316
determines the best solution in the current iteration. The itera
tive processor 316 outputs the best solution to the best solu
tions 412 data structure if the best solution in the current
iteration is better than the best solution in a previous iteration.
The iterative processor 316 reads the starting iteration

number from the starting iteration number 404 data structure
and determines if the current iteration is greater than or equal
to the current iteration. If the current iteration is greater than
or equal to the current iteration, the iterative processor 316
reads the best solutions stored in the best solutions 412 data
structure. The iterative processor 316 calculates variance of
the best solutions and outputs the variance to the variance 414
data structure.
The iterative processor 316 reads the minimum number of

iterations 406 data structure and determines if the variance is
calculated for the minimum number of iterations following
the starting iteration. If the variance is calculated for the
minimum number of iterations following the starting itera
tion, the iterative processor 316 compares the variance in the
currentiteration. For example, ifan N'iteration is the starting
iteration number and if M is the minimum number of itera
tions, the iterative processor 316 compares the variance cal
culated in (N+M)" iteration, where N and M are integers
greater than 1.

10

15

25

30

35

40

45

50

55

60

65

20
The iterative processor 316 (or the terminating processor

320) reads the variance threshold 402 data structure and com
pares the variance calculated in the (N+M)" iteration to the
variance threshold. The iterative processor 316 (or the termi
nating processor) terminates the GA is the variance calculated
in the (N+M)th iteration is less than or equal to the variance
threshold.

In processing the data structures 400, the iterative proces
sor 316 may execute the following pseudo code:

Begin
SETWariance = 1
GET Variance Threshold
GET Fitness Function
GET Population
GET Starting Iteration Number
GET Minimum Number Of Iterations
INIT Array Best Solutions
SET Total Iterations = 0
SETI - O
SET Solution = False
Current Population = Population
Current Best Solution =
Fitness Function(Current Population)
IF (I=0 OR Current Best Solution(I)

Current Best Solution (I-1))
Best Solutions I = Current Best Solution
ENDIF
IF I > Starting Iteration Number
Variance = Current Variance(Best Solutions II)
INCREMENT Total Iterations
ENDIF

IF (Total Iterations > Minimum Number Of Iterations)
AND (Variances Variance Threshold)

OUTPUT Best Solutions
// The best solution of the last iteration is the near optimal solution. //

Solution = True
ENDIF
Population = f(Current Population)

if f is a function based on selection, crossover, and mutation.
INCREMENTI
Solution = True

REPEAT

better than

UNTIL
END

In an embodiment, the variance threshold (i.e., the bound
for variance (C)) and the starting iteration number may be
statistically determined depending on the type of problem
being solved and the distribution of the related data set as
follows. For example, using samples from the data set, a
variance curve may be generated to represent variation of
variance relative to number of iterations. To solve the prob
lem, the value of the variance threshold may be statistically
determined based on a rate of change of variance where the
slope of the variance curve is negative. Additionally, the value
of the starting iteration number may be statistically deter
mined such that the slope of the variance curve is positive and
is near maximum. Further, the minimum number of iterations
may be statistically determined based on the rate of change of
variance where the slope of the variance curve is negative.

In an embodiment, a tangible computer-readable storage
device may store program instructions that cause a processor
to perform operations described with references to FIG. 1 and
FIGS. 8-11 when the processor executes the program instruc
tions. For example only, the tangible computer-readable Stor
age device may include, but is not limited to, one or more of
the following or similar devices: a memory integrated circuit,
a solid-state disk, a hard disk drive, a compact disc (CD), and
SO. O.

US 8,700,548 B2
21

The memory may include, but is not limited to, random
access memory (RAM), read-only memory (ROM), flash
memory, volatile and/or non-volatile memory, re-writable
memory, and so on.
The art relating to the present disclosure has progressed to

the point where there is little distinction left between hard
ware, Software, and/or firmware implementations of aspects
of systems; the use of hardware, software, and/or firmware is
generally (but not always, in that in certain contexts the
choice between hardware and Software can become signifi
cant) a design choice representing cost vs. efficiency
tradeoffs. Those having skill in the art will appreciate that
there are various vehicles by which processes and/or systems
and/or other technologies described herein can be effected
(e.g., hardware, Software, and/or firmware), and that the pre
ferred vehicle will vary with the context in which the pro
cesses and/or systems and/or other technologies are
deployed.

For example, if an implementer determines that speed and
accuracy are paramount, the implementer may opt for a
mainly hardware and/or firmware vehicle; alternatively, if
flexibility is paramount, the implementer may opt for a
mainly software implementation; or, yet again alternatively,
the implementer may opt for Some combination of hardware,
software, and/or firmware. Hence, there are several possible
vehicles by which the processes and/or devices and/or other
technologies described herein may be effected, none of which
is inherently superior to the other in that any vehicle to be
utilized is a choice dependent upon the context in which the
vehicle will be deployed and the specific concerns (e.g.,
speed, flexibility, or predictability) of the implementer, any of
which may vary. Those skilled in the art will recognize that
optical aspects of implementations will typically employ
optically-oriented hardware, software, and or firmware.

In some embodiments, “configured includes at least one
of designed, set up, shaped, implemented, constructed, or
adapted for at least one of aparticular purpose, application, or
function.

It will be understood that, in general, terms used herein,
and especially in the appended claims, are generally intended
as “open’ terms (e.g., the term “including should be inter
preted as “including but not limited to the term “having
should be interpreted as “having at least, the term “includes’
should be interpreted as “includes but is not limited to, etc.).
It will be further understood that if a specific number of an
introduced claim recitation is intended, such an intent will be
explicitly recited in the claim, and in the absence of Such
recitation no such intent is present.

For example, as an aid to understanding, the following
appended claims may contain usage of introductory phrases
such as “at least one' or "one or more' to introduce claim
recitations. However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation
by the indefinite articles “a” or “an limits any particular
claim containing Such introduced claim recitation to inven
tions containing only one such recitation, even when the same
claim includes the introductory phrases “one or more' or “at
least one' and indefinite articles such as “a” or “an” (e.g., “a
receiver' should typically be interpreted to mean “at least one
receiver'); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, it will be recognized that such recitation should typi
cally be interpreted to mean at least the recited number (e.g.,
the bare recitation of “at least two chambers.” or “a plurality
of chambers, without other modifiers, typically means at
least two chambers).

10

15

25

30

35

40

45

50

55

60

65

22
Furthermore, in those instances where a phrase such as “at

least one of A, B, and C.” “at least one of A, B, or C.” or “an
item selected from the group consisting of A, B, and C is
used, in general Such a construction is intended to be disjunc
tive (e.g., any of these phrases would include but not be
limited to systems that have A alone, B alone, C alone, A and
B together, A and C together, B and C together, or A, B, and
C together, and may further include more than one of A, B, or
C, such as A1, A2, and C together, A, B1, B2, C1, and C2
together, or B1 and B2 together). It will be further understood
that virtually any disjunctive word or phrase presenting two or
more alternative terms, whether in the description, claims, or
drawings, should be understood to contemplate the possibili
ties of including one of the terms, either of the terms, or both
terms. For example, the phrase “A or B will be understood to
include the possibilities of “A” or “B” or “A and B.”
The herein described aspects depict different components

contained within, or connected with, different other compo
nents. It is to be understood that such depicted architectures
are merely examples, and that in fact many otherarchitectures
can be implemented which achieve the same functionality. In
a conceptual sense, any arrangement of components to
achieve the same functionality is effectively “associated
such that the desired functionality is achieved. Hence, any
two components herein combined to achieve a particular
functionality can be seen as “associated with each other such
that the desired functionality is achieved, irrespective of
architectures or intermedial components. Likewise, any two
components so associated can also be viewed as being “oper
ably connected,” or “operably coupled to each other to
achieve the desired functionality. Any two components
capable of being so associated can also be viewed as being
“operably couplable' to each other to achieve the desired
functionality. Specific examples of operably couplable
include but are not limited to physically mateable or physi
cally interacting components or wirelessly interactable or
wirelessly interacting components.

With respect to the appended claims the recited operations
therein may generally be performed in any order. Also,
although various operational flows are presented in a
sequence(s), it should be understood that the various opera
tions may be performed in other orders than those which are
illustrated, or may be performed concurrently. Examples of
Such alternate orderings may include overlapping, inter
leaved, interrupted, reordered, incremental, preparatory,
Supplemental, simultaneous, reverse, or other variant order
ings, unless context dictates otherwise. Furthermore, terms
like “responsive to “related to,” or other past-tense adjec
tives are generally not intended to exclude Such variants,
unless context dictates otherwise.

While various aspects and embodiments have been dis
closed herein, the various aspects and embodiments are for
purposes of illustration and are not intended to be limiting,
with the true scope and spirit being indicated by the following
claims.

The invention claimed is:
1. A system for terminating a genetic algorithm (GA) com

prising: an iterator that executes a GA that generates at least
one best solution periteration;

a memory that stores a plurality of best Solutions generated
in a plurality of iterations of the GA, wherein a best
solution is stored in the memory if a fitness function of
the best Solution is greater than a fitness function of a
previous best solution generated in a previous iteration;

an iterative processor that computes a variance of the plu
rality of the best solutions stored in the memory; and

US 8,700,548 B2
23

a terminating processor that terminates the iterator when
the variance is less than or equal to a predetermined
threshold,
wherein the terminating processor determines whether

the variance is less than or equal to the predetermined
threshold after a predetermined number of iterations
are completed following a starting iteration, and

wherein the predetermined number of iterations is sta
tistically determined based on a rate of change of the
variance when the rate of change of the variance rela
tive to a number of the iterations is negative.

2. The system of claim 1, wherein the iterative processor
computes the variance when a starting iteration is reached.

3. The system of claim 1, wherein the predetermined
threshold is statistically determined based on a rate of change
of the variance when the rate of change of the variance relative
to a number of the iterations is negative.

4. The system of claim 2, wherein the starting iteration is
statistically determined based on a rate of change of the
variance when the rate of change of the variance relative to a
number of the iterations is positive.

5. The system of claim 1, wherein the iterative processor
generates the at least one best solution per iteration from a
population of Solutions using the fitness function, wherein
each solution in the population is coded as a string of a finite
length, and wherein a starting iteration is statistically deter
mined based on the finite length and a size of the population.

6. The system of claim 5, wherein when the variance is
greater than the predetermined threshold, the iterative proces
sor generates a Subsequent population of Solutions from the
population of Solutions using operators including selection,
crossover, and mutation.

7. The system of claim 1, wherein the predetermined
threshold is selected based on a desired accuracy of the GA.

8. The system of claim 1, wherein the predetermined
threshold takes into account properties of an objective func
tion and genetic parameters used in the GA.

9. A method for terminating a genetic algorithm (GA),
comprising:

executing a GA by an iterator to generate at least one best
Solution periteration;

storing a plurality of best Solutions generated in a plurality
of iterations of the GA, wherein the best solution is
stored in a memory if a fitness function of the best
Solution is greater than a fitness function of a previous
best Solution generated in a previous iteration;

10

15

25

30

35

40

45

24
computing a variance of the plurality of best solutions

stored in the memory using an iterative processor,
terminating the iterator using a terminating processor when

the variance is less than or equal to a predetermined
threshold;

determining whether the variance is less than or equal to
the predetermined threshold after a redetermined num
ber of iterations are completed when a starting iteration
is reached; and

determining statistically the predetermined number of
iterations based on a rate of change of the variance when
the rate of change of the variance relative to a number of
iterations is negative.

10. The method of claim 9, further comprising computing
the variance when a starting iteration is reached.

11. The method of claim 9, further comprising determining
statistically the predetermined threshold based on a rate of
change of the variance when the rate of change of the variance
relative to a number of the iterations is negative, wherein the
predetermined threshold takes into account properties of an
objective function and genetic parameters used in the GA.

12. The method of claim 10, further comprising determin
ing statistically the starting iteration based on a rate of change
of the variance when the rate of change of the variance relative
to a number of iterations is positive.

13. The method of claim 9, further comprising generating
the at least one best Solution periteration from a population of
Solutions using the fitness function, wherein each solution in
the population is coded as a string of a finite length, and
wherein the starting iteration is determined statistically based
on the finite length and a size of the population.

14. The method of claim 13, further comprising generating
a Subsequent population of Solutions from the population of
Solutions using operators including selection, crossover, and
mutation when the variance is greater than the predetermined
threshold.

15. The method of claim 9, further comprising selecting the
predetermined threshold based on a desired accuracy of the
GA.

16. A tangible computer-readable storage device for Stor
ing program instructions that cause a processor to perform
steps of the method of claim 9 when the processor executes
the program instructions.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,700,548 B2 Page 1 of 2
APPLICATIONNO. : 13/265480
DATED : April 15, 2014
INVENTOR(S) : Bhandari et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Column 6, Line 17, delete “F” and insert -- F --, therefor.

Column 7, Line 64, delete “a and insert -- a--, therefor.

Column 7, Line 66, delete “alsa-sassF1 and insert -- as as as < ... < F, --, therefor.

Column 10, Line 42, delete “of E. and insert -- of e. --, therefor.

Column 11, Line 6, delete “predefined E and insert -- predefined e --, therefor.

Column 11, Line 17, delete “b, and insert -- bi --, therefor.

s 5.

1+XI(r) + X ls
st le Column 11, Lines 49-51, delete “ t

log(1+X Iril +IIIa, I),
c is: --, therefor.

and

insert --

Column 17, Line 59, delete “318: and insert -- 318. --, therefor.

Column 18, Line 61, delete “variance (e) and insert -- variance (e)) --, therefor.

Column 20, Line 6, delete “(N+M)th and insert -- (N+M)" --, therefor.

Column 21, Lines 1-4, delete “The memory.......... So on. and insert the same in
Column 20, at Line 67, after “so on, as a continuation paragraph.

Signed and Sealed this
Thirtieth Day of December, 2014

74-4-04- 2% 4
Michelle K. Lee

Deputy Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 8,700,548 B2

In the Claims

Column 24, Line 7, in Claim 9, delete “redetermined and insert -- predetermined --, therefor.

