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OPTIMIZATION TECHNIOUE USING 
EVOLUTIONARY ALGORTHMS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present application is the U.S. national phase applica 
tion of, and claims priority to, International application No. 
PCT/IB2010/054679, filed on Oct. 15, 2010, which claims 
priority to Indian Application Serial No. 472/KOL/2010, filed 
Apr. 28, 2010, the entirety of which is incorporated herein by 
reference. 

BACKGROUND 

An evolutionary algorithm (EA) is a subset of evolutionary 
computation, a generic population-based metaheuristic opti 
mization algorithm. EAS use one or more operators inspired 
by biological evolution, which include reproduction, muta 
tion, recombination, and selection. Candidate solutions to an 
optimization problem play the role of individuals in a popu 
lation. A fitness function determines an environment within 
which the candidate solutions “live'. Evolution of the popu 
lation then takes place after repeated application of the opera 
tOrS. 

Generally, an initial population of randomly generated 
candidate Solutions forms a first generation. The fitness func 
tion is applied to the candidate Solutions and any offspring. In 
selection, parents for the next generation are chosen with a 
bias towards higher fitness. The parents reproduce by copying 
with recombination and/or mutation. Recombination acts on 
the two selected parents (candidates) and results in one or two 
children (new candidates). Mutation acts on one candidate 
and results in a new candidate. These operators create the 
offspring (a set of new candidates). These new candidates 
compete with old candidates for their place in the next gen 
eration. This process may be repeated until a candidate with 
Sufficient quality (a solution) is found or a predefined com 
putational limit is reached. 
EAS are of many different types and can be used to find 

solutions to problems in diverse fields. The fields may include 
engineering, robotics, physics, chemistry, biology, genetics, 
operations research, economics, sales, marketing, and so on. 
A genetic algorithm (GA) is a type of E.A. GAS provide 

Solutions to complex optimization problems. GAS are sto 
chastic search methods based on principles of natural genetic 
systems. In an example of a GA, an initial population is 
chosen, and fitness of each individual in the population is 
evaluated. Then the following steps are repeated until a stop 
ping criterion is satisfied: Selecting best ranking individuals 
to reproduce; breeding a new generation through crossover 
and mutation (called genetic operations) and giving birth to 
offspring (strings); evaluating fitness of each individual off 
spring; and retaining best ranked offspring obtained so far. 
The stopping criterion determines when to stop (i.e., termi 
nate) the GA. 
GAS perform a multidimensional search in providing an 

optimal solution for an evaluation function (i.e., a fitness 
function) of an optimization problem. Unlike conventional 
search methods, GAS deal simultaneously with multiple solu 
tions and use only fitness function values. Population mem 
bers are represented by Strings corresponding to chromo 
Somes. Search begins with a population of randomly selected 
strings. From these strings, a next generation is created using 
genetic operators. At each iteration, individual strings are 
evaluated with respect to a performance criterion and are 
assigned a fitness value. Strings are selected based on these 
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2 
fitness values in order to produce the offspring for the next 
generation. Thus, successive populations offeasible solutions 
are generated in stochastic manner following laws of natural 
selection. 
GAS have been theoretically and empirically found to pro 

vide global near-optimal solutions for complex optimization 
problems in various fields. For example, the fields include, 
but are not limited to, operations research, very large scale 
integration (VLSI) circuit design, pattern recognition, image 
processing, machine learning, and so on. 

SUMMARY 

An embodiment of the subject matter described herein 
provides a method for terminating a genetic algorithm (GA), 
where the GA uses an iterator and generates at least one best 
Solution periteration. The method includes storing a plurality 
of best solutions generated in a plurality of iterations of the 
GA. One of the best solutions generated in one of the itera 
tions is stored in a memory if the one of the best solutions is 
better than a previous one of the best solutions generated in a 
previous one of the iterations. The method further includes 
computing a variance of the plurality of the best Solutions 
stored in the memory using an iterative processor and termi 
nating the iterator using a terminating processor when the 
variance is less than or equal to a predetermined threshold. 
The method further includes computing the variance in 

each iteration following a predetermined one of the iterations. 
The method includes determining whether the variance is less 
than or equal to the predetermined threshold after a predeter 
mined number of the iterations are completed following a 
predetermined one of the iterations. The method includes 
statistically determining the predetermined threshold based 
on a rate of change of the variance when the rate of change 
relative to a number of the iterations is negative. The method 
includes statistically determining the predetermined one of 
the iterations based on a rate of change of the variance relative 
when the rate of change to a number of the iterations is 
positive. The method includes statistically determining the 
predetermined number of the iterations based on a rate of 
change of the variance when the rate of change relative to a 
number of the iterations is negative. 
The method includes generating the one best Solution per 

iteration from a population of Solutions using a fitness func 
tion, where each solution in the population is coded as a string 
of a finite length, and where the predetermined one of the 
iterations is statistically determined based on the finite length 
and a size of the population. The method includes generating 
a Subsequent population of Solutions from the population of 
Solutions using operators, which include selection, crossover, 
and mutation when the variance is greater than the predeter 
mined threshold. 
The method includes selecting the predetermined thresh 

old based on a desired accuracy of the GA. The predetermined 
threshold takes into account properties of an objective func 
tion and genetic parameters used in the GA. 
The foregoing Summary is illustrative only and is not 

intended to be in any way limiting. In addition to the illustra 
tive aspects, embodiments, and features described above, fur 
ther aspects, embodiments, and features will become appar 
ent by reference to the drawings and the following detailed 
description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is an example flowchart of a method for determining 
a stopping criterion and terminating a GA using the stopping 
criterion; 
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FIGS. 2-5 illustrate pictorial representations of four 
sample objective functions; 

FIG. 6 is an example graph of variance of best fitness values 
obtained in iterations of a genetic algorithm (GA) relative to 
a number of iterations performed in the GA: 

FIG. 7 is an example table showing average number of 
iterations required to converge a GA for a given bound of 
variance; 

FIG. 8 is an example flowchart of a method for determining 
a stopping criterion and terminating a GA using the stopping 
criterion; 

FIG. 9 is an example functional block diagram of a system 
for determining a stopping criterion and terminating a GA 
using the stopping criterion; 

FIG. 10 is an example functional block diagram of a com 
puter system for determining a stopping criterion and termi 
nating a GA using the stopping criterion; and 

FIG. 11 is an example table showing data structures uti 
lized by the computer system of FIG. 10. 

DETAILED DESCRIPTION 

In the following detailed description, reference is made to 
the accompanying drawings, which form a parthereof. In the 
drawings, similar symbols typically identify similar compo 
nents, unless context dictates otherwise. The illustrated 
embodiments described in the detailed description, drawings, 
and claims are not meant to be limiting. Other embodiments 
may be utilized, and other changes may be made, without 
departing from the spirit or scope of the Subject matter pre 
sented here. 
An example embodiment includes finding a solution to 

complex optimization problems using evolutionary algo 
rithms (EAS) and employs a stopping criterion for the algo 
rithm. In this example embodiment, a genetic algorithm (GA) 
is used as an example only. However, embodiments disclosed 
herein are not limited to GAs. The teachings of the present 
disclosure are applicable to any iterative optimization tech 
nique including the EA. Such techniques include genetic 
algorithms, simulated annealing, ant colony optimization, 
particle Swarm optimization, among others. Specifically, the 
teachings of the present disclosure can be applied to Solve 
problems in any field using any iterative optimization tech 
nique that obtains a best Solution from a number of candidate 
Solutions. 

In GAS, for example, selection of a stopping criterion 
determines the quality of results generated by a GA. More 
than one stopping criterion may be used in a GA. Different 
types of stopping criteria can be used. These stopping criteria 
may be based on fitness function convergence, population 
convergence, generation number, and/or computation time. 
Further, these stopping criteria may be based on running 
mean of fitness values, standard deviation of fitness values, 
and/or search feedback. These statistical properties are those 
of the solutions obtained. Other stopping criteria based on 
objective function use underlying fitness function values to 
calculate auxiliary values, which are used as measures of state 
of convergence of a GA. Additionally, a cluster-based stop 
ping criterion takes into account information about objective 
values as well as a spatial distribution of individuals in a 
search space in order to terminate a GA. 

Generally, in defining an implementable stopping crite 
rion, a bound may be provided on the number of iterations 
required to achieve a level of confidence to guarantee that a 
GA has searched all the optimal number of Strings. Alterna 
tively or additionally, pessimistic and optimistic stopping 
times with respect to mutation probability may be derived. 
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4 
Defining an implementable stopping criterion in these ways, 
however, can be problematic. For example, deciding when to 
stop a GA without a priori information regarding objective 
function is difficult. Though time based stopping criteria are 
simple to implement, determining the time requires knowl 
edge about the global optimal solution, which is not always 
available a priori. Further, these stopping criteria do not guar 
antee the convergence of the GAS to the global optimal solu 
tion since they are terminated after a finite number of itera 
tions. Accordingly, regardless of the value selected for the 
number of iterations, there is generally a positive probability 
of not obtaining the global optimal solution at that stage. 
An embodiment proposed herein relates to a new stopping 

criterion based on variance of best fitness values obtained 
over generations. In an example embodiment, variance of the 
best fitness values obtained in iterations is used as a measure 
to decide the termination criterion of a GA with elitist model 
(EGA). In an EGA, elitism reserves two slots in the next 
generation for the highest scoring candidate (e.g., chromo 
Some) of the current generation without allowing that candi 
date to be crossed over in the next generation. In one of those 
slots, the elite candidate will also not be subjected to mutation 
in the next generation. 

In an embodiment, the stopping criterion can be based only 
on the fitness function values. The stopping criterion can 
automatically take into account properties of the objective 
function and the genetic parameters used. Accordingly, in an 
example embodiment, a user need not study characteristics of 
the objective function and genetic parameters used in the GA. 
Further, no auxiliary values are calculated. Implementing the 
stopping criterion based on variance of the fitness function 
values obtained over generations includes selecting a small 
value of bound for the variance. The variance tends to zero 
when a number of generations tends to infinity while a prob 
ability of obtaining a global optimal Solution tends to one. 
To facilitate understanding of the example embodiments, 

definitions of basic concepts relating to the GAS are now 
introduced. To understand basic principles of GAS, considera 
problem of maximizing a function f(x), xel), where D is a 
finite set. The problem is to find x* such that 

where D is a discrete domain and is finite. 
When solving an optimization problem using GAs, each 

solution is coded as a string (called "chromosome') of finite 
length (say, L). Each string or chromosome is considered as 
an individual. A collection of M (finite) individuals is called a 
population. GAS start with a randomly generated population. 
In each iteration, a new population of same size is generated 
from the current population using three basic operations on 
the individuals of the population. The operators in the three 
basic operations are reproduction/selection, crossover, and 
mutation. 
To use GAS in searching a global optimal solution, a first 

step is to define a mechanism to represent the Solutions in a 
chromosomal form. A solution may be represented as a string 
of length Lover a finite set of alphabet A={C., C2, ..., C. 
Each string S corresponds to a value xel D and is of the form 
S-(BBf3B); BeA, Wi. The GA with A={0,1} is called 
binary coded genetic algorithm (BCGA) or simple genetic 
algorithm (SGA). 
The string representation limits the GA to search a finite 

domain (although users can achieve approximation by 
increasing the String length) and provides the best Solution 
among m” possible options. To take into account the continu 
ous domain, real valued strings are considered as the chro 
mosomal representation by manipulating the genetic opera 
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tors and is called real coded genetic algorithm (RCGA). It is 
difficult, however, to considerall the real values considering 
the limitation of computers in storing irrational values. 
Throughout the present disclosure, GA with A={0,1} is used 
as an example only. The teachings of the present disclosure 
can be easily extended to GAs defined over a finite set of 
alphabet or over RCGAs. 

Generally, a random sample of size M is drawn from a 
spaceS of 2 possible strings to generate an initial population. 
GAS leverage a population of Solutions to generate a new 
population with an expectation that the new population will 
provide a better solution in terms of fitness values. 

In every iteration, each chromosome of the population is 
evaluated using a fitness function fit. Evaluation or fitness 
function fit for a string S is equivalent to a function f defined 
below. 

where S corresponds to X. Without loss of generality, let 
fit(S)>0 for all S in S. 
A selection is a process in which individual strings of a 

current population are copied into a mating pool with respect 
to an empirical probability distribution based on their fitness 
function values. In some cases, an auxiliary fitness value is 
considered to generate the empirical probability distribution 
based on the criticality of the problem and approach. 
A crossover exchanges information between two potential 

strings and generates two offsprings for the next population. 
M/2 pairs are selected randomly from the population. Sub 
strings with a probability p (called crossover probability) are 
Swapped. 
A mutation is an occasional random alteration of a charac 

ter. Mutation introduces some extra variability into the popu 
lation. Though mutation is usually performed with a very low 
mutation probability, q>0, mutation affects exploration pro 
cess. Every character B, i=1,2,..., L in each chromosome 
generated after crossover has an equal chance to undergo 
mutation. Any string can be generated from any given string 
by mutation operation. The mutation probability q is taken to 
be in the range of (0, 0.5. The probability of mutating ibit 
positions is more than the probability of mutating i+1 bit 
positions. That is, 

Thus, qs0.5. Hence, the minimum probability of obtaining 
any string from any given string is q. That is, mutation needs 
to be performed at every character position of the given String. 

Knowledge about the best string obtained so far is pre 
served either in a separate location outside the population or 
within the population. Thus, the GA can report the best value 
found among all possible coded solutions obtained during the 
entire process. GAs that can retain the knowledge of the best 
string obtained so far are called genetic algorithms with elitist 
model or EGAs. 
The new population obtained after selection, crossover, 

and mutation is then used to generate another population. The 
number of possible populations is finite since M is finite. The 
present disclosure concerns EGAS, where the best string 
obtained in a previous iteration is copied into a current popu 
lation if the fitness function values of all strings are less than 
the previous best. 

The values for parameters L., M., p, and q have to be chosen 
properly before performing these operations. For example, 
the population size M is taken as an even integer so that 
strings can be paired for crossover. The probability (p) of 
performing crossover operation is taken to be any value 
between 0.0 and 1.0. Usually in GAs, p is assumed to be a 
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6 
value in the interval 0.25, 1. The mutation probability q is 
taken to be very low 0.001, 0.01), although it can be in the 
interval (0, 0.5. 

Mutation affects convergence of GAS to the global optimal 
Solution. Convergence of GAS is a fundamental building 
block in proposing variance of the best fitness value obtained 
So far as the stopping criterion of a GA. A proof of conver 
gence of GAs follows. 
GAS search over a space S of 2 strings and eventually 

provide the best solution with respect to the fitness function 
fit. The strings can be classified into a set of S classes depend 
ing on their fitness function values. The classes are defined as 

where F denotes the ith highest fitness function value. Thus, 
F>F> . . . D.F. Without loss of generality, let F-0. 
A population Q is a multi-set of M Strings of length L 

generated over a finite alphabet A and is defined as follows: 

Q={S.S1,....(r times).S2, S2,....(r2 times),..., 
S.S. ....(n times) where, SeS, SzS, vizia 
and rel for i=1,2,...,m, X-1”=M. 

Let Q denote the set of all populations of size M. The number 
of populations or states in a Markov chain is finite. The fitness 
function value fit(Q) of a population is defined as fit(Q)= 
max, fit(S). The populations are partitioned into S sets. 
E={Q:QeO and fit(Q)=F, a set of populations having the 
same fitness function value F. 

In an iteration, the genetic operators (selection, crossover, 
and mutation) create a population Q(eE, where l=1,2,..., 
e and k=1,2,..., S. The genetic operators create the popu 
lation Q, from a population QeE, where e, is the number of 
elements in E. The generation of the population Q, from the 
population Q, is considered as a transition from Q, to Q. Let 
p, , denote a transition probability of the transition from Q, 
to Q. 
Then the probability of transition from Q, to any popula 

tion in E can be calculated as 

ék 

Pink =XPiki, j = 1,2,..., ei; k = 1,2,... . s. 
= 

For all i=1.2, ... , e, and i=1,2,....S one obtains 

p > 0 if k si 

= 0 otherwise 

by construction. Thus, once GAS reach a population QeE, the 
GAS will be in a population QeE for ksi. In particular, once 
GAS reach a population QeE, the GAS will not go out of E. 

Let pe" denote a probability that GA results in Q at the 
nth step given that the initial state is Q. Let pe" denote the 
probability of reaching one of the populations in E from Q, 
at the nth step. Then p" X. f= "pi". 
To show the eventual convergence of a GA with elitist 

model to a global optimal Solution the following theorem 
(Theorem 1) is proved. 



US 8,700,548 B2 

Theorem 1. 

1 1 
For an EGA with the probability of mutation ge o, (1) 

lim p2 = 0 for 2 sks s; v i = 1,2,... , e, and 
i = 1, 2, ... , S. 

Hence limp3 = 1 v i = 1,2,... , ei and 

i = 1, 2, ... , S. 
Proof: It can be easily shown that p > 0 
for j = 1, 2, ... 
Let max(| - pii. 1) = 0. 

e; and i = 1, 2, ... , S. 

Note that o < 1 since min pii > 0. 
ld 

Now, X p5 = X pijk = 1 - Pij.1 s (); (2) 
k=2 kEl 

ei (3) S 

XP =XXX, Pili, Pink 
kEl k=2 it li=1 

(since pik = 0 for k > 1) 
as 
i S 

Pi X Pi, i. 
itl i=l k=2 

ei 
X X Pijiji (1 - Pii.1) 
ill i=1 

ei 
s oX X pii (from (1)) 

il Fli =l 

X Pij.il 
itl 

= 0(1-pii. 1) so; 

Similarly, by mathematical induction, it can be shown that 

Xp2 sov i, j. 
kEl 

Note that d' -> 0 as n - ca since Osc C 1. 

Hence X p'. 
kEl 

-> 0 as in -> co. 

Which, immediately implies lim p. = 0 for 

2 sks SW i and i. 
(n) 1: (n) It is clear that, in Pi.1 = lim? 2. PC) 

E 

= 1. 

Some desirable properties of a good stopping criterion 
include the following. The stopping criterion should be easy 
to implement. The stopping criterion should be able to pro 
vide stopping time automatically for any fitness function. The 
stopping criterion should guarantee convergence and lead to a 
satisfactory result. The total number of strings searched 
should not exceed 2', where L is string length. 

In an embodiment of an example stopping criterion, let a 
be a best fitness function value obtained at the end of an ith 

iteration of an EGA. Then, asasasP, as F is the global 
optimal value of the fitness function. Let 
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be an average of the as up to the nth iteration. Then variance 
of the best fitness values obtained up to the nth iteration, 
defined by b, is given by the following equation: 

1 1 - 2 2 -2 -2 -2 
b. =X (a; - a) =X d; - d = d - d. 

i=1 

b, can be used as a stopping criterion for a GA. In this 
example embodiment, a GA is stopped or terminated after N 
iterations when by-e, where e (>0) is a user-defined small 
quantity (bound for variance). 

Referring now to FIG. 1, an example method 50 compris 
ing basic steps of a GA with elitist model is shown, where 
variance of the best Solutions obtained in the generations is 
considered as a stopping criterion. Control begins at 52. At 
54, control creates a population of random solutions, and 
control defines a value fore (i.e., a bound for variance). At 56, 
control evaluates each solution on the basis of a fitness func 
tion. At 58, control stores the best solution if it is better than 
previous best. At 60, control calculates the variance of the best 
solutions obtained up to the current iteration. At 62, control 
determines whether the variance is greater than the predefined 
bound (e). At 64, if the variance is greater than the predefined 
bound (e), control creates new generation of solutions from 
the old generation using selection, crossover, and/or muta 
tion, and control returns to step 56. At 66, if the variance is not 
greater than the predefined bound (e), control terminates the 
GA. The best solution obtained at the time of termination 
represents the near optimal Solution. 

In an example embodiment, when the number of genera 
tions tends to infinity, the probability of obtaining the global 
optimal solution tends to one, and the variance of the best 
Solutions obtained in the generations approaches Zero. Fol 
lowing is a proof that when the number of generations tends 
to infinity, the probability of obtaining the global optimal 
Solution tends to one, and the variance of the best Solutions 
obtained in the generations approaches Zero. 

For GAs with elitist model, the convergence theorem 
shows that 

lim p2 = 1 v i = 1, 2, , e, and i = 1,2,..., S. 

The convergence theorem in turn implies that the probability 
of obtaining a global optimal Solution (F) is one as number of 
iterations, goes to infinity. This can be stated as the following 
lemma. 

Lemma 1: 

For each e > 0, lim Prob(a - F is e1) = 0. (4) 
-cx 

In other words, for each eo is 0 and e > 0, 
there exists No such that for n > No. 
1 - Prob(a - Fis e1) <eo or 
=> Prob(a - Fis e1) > 1 - eo for n > No 
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Using the above lemma, it can be shown (as shown in 
Theorem 2 below), that the variance of the best solutions 
obtained in the generations approaches Zero when number of 
iterations tends to OO. 

Theorem 2: 

1 
Pro iya-o, si as in - ) co for each e > 0. n 4 
Proof: 

1 1 
X (a, -a, = X(a, - F)-(a, - F) 

(5) 

1 
= X(a, -e, -(a, - F) n 4 

1 
s X (a; - F) n 4 

Now for n > No. 

1 1 & 2, 1 X (a; - F) = X(a; - F) + n 4 n 4 it. X (a; - F) 

Since F is the minimum value of the function f(x) 
(defined in section 3), we have, 

1 0 1 0 (6) 
X (a; - F)'s XE (F - F) (as F sais FW i) 

n 4 n 4 
No = (F, - F)* 
it. 

One can always find an N ( > No) such that for each e2( > 0), 

No (7) 
, (F - F) < e2 

Therefore, for n > N > No 

No 

X (a - F) s 
(8) N N (F - Fis (F - Fise, from (7) 

it. N 

As a s a2 is a 3 s... sa; sai-1 s... s F1, 

(9) 

From (4), we have for n > No. 
Prob(a - Fis e1) > 1 - eo 
Therefore, 

Prob(aw - F)'s ei) > 1 - eo (10) 
= Prob((aw - Fis e1) > 1 - eo, as e << 1. 

Now, for each e = e + e2, 
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10 
-continued 

(11) 1 
Prob- - F)'s e= rol Sa 1) s 

W 10 1 pe yo-fri X to-first 
1 

P - F)' s el (from 8) = re: X (a 1) s (from 8) 
1 

Prot- X - F)'s e- 1 - re: (a; 1) se e- €0. 
(from 10), where e1 = e - e. 

Therefore, we can conclude that for each. 
eo is 0, there exists N such that for n > N1 

1 
Prob- - F) 1 - O (Ea 1) -- €0 
In other words, 

1 
Pod Sa - F)'s -> 1 as in - ) co for each e > 0. 

n 4 

This completes the proof of theorem 2. 
In an example embodiment of a variance based stopping 

algorithm, the user needs to select only the bound e for vari 
ance for implementing the stopping criterion. In this embodi 
ment, the likelihood of obtaining a solution closer to global 
optima is inversely proportional to the value of the bound e. 
Additionally, in the initial iterations, the likelihood of obtain 
ing the improved fitness value is high. Moreover, in this 
embodiment, for most functions, due to the low iteration 
number, the variance would initially increase and would then 
decrease as the iteration number increases. Accordingly, a 
premature termination of the GA can be avoided. Further, the 
inherent characteristics of the objective functions are auto 
matically taken into account for a Sufficiently small value of 
the bound for variance. Distinctively, the user need not define 
the number of iterations to be executed. Instead, the user 
defines the value of E. 

Defining the value of e differs from defining the number of 
iterations to be executed. In defining the number of iterations, 
the user decides the total number of iterations while hoping or 
assuming that the GA will provide a satisfactory result after 
those many iterations. Selecting the total number of iterations 
in this manner, however, is purely heuristic and ignores the 
characteristics of the objective function and genetic param 
eters. In contrast, in defining the value of e, the variance is 
calculated from the fitness values obtained in the generations, 
which implicitly takes into account the characteristics of the 
objective function and the genetic parameters used in the GA. 

Generally, a GA progresses fast during initial iterations. 
Accordingly, GAS are expected to produce improved results 
in the first few iterations. After a certain number of iterations, 
GAS typically become quite stable. Subsequently, the possi 
bility of exploring an improved solution in each iteration is 
very low. Faster improvement of the fitness function values 
yields high variance in the beginning, and slower improve 
ment in fitness function results in low variance in the later 
stages of the GA. 
Due to these characteristics of GAS, selecting certain 

parameters is critical in the implementation of the variance as 
a stopping criterion. Specifically, selecting the starting itera 
tion number of the GA, from which the best fitness values are 
to be considered in calculating the variance, and the minimum 
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number of iterations to be considered in calculating the Vari 
ance are important considerations in the implementation. 
One can consider the fitness values from the first iteration 

in calculating the variance. However, due to the faster 
improvement in the initial generations, higher number of 
iterations may make the variance lower than the predefined E 
value. Accordingly, to avoid premature termination, it is 
important to determine the number of consecutive iterations 
that should be considered in calculating the variance of the 
fitness values so as to allow the GA enough opportunity to 
yield an improved solution. This is important since the GA 
may not find a better Solution that shows improvement in 
fitness value in many consecutive iterations. Therefore, it is 
important to select the minimum number of iterations and a 
starting point (iteration) from which the fitness values will be 
considered in calculating the variance. 

In an example embodiment, a variance b, at the end of 
n+1th iteration can be calculated from b, as follows: 

+1 +1 1 1 
= X - a * = X 2 - 2 bn+1 = in + 1 i=1 (a; - a,1) = in + 1 i=l (ii (1 

(12) 

O 

-2 2 2 bn+1 = (na, +a1) - (na. -- a--1)). 

Thus, the variance for the n+1th generation can be evaluated 
based on only an average of the fitness function values and 
their square of the previous n iterations. 

Example experimental results discussed below demon 
strate the effectiveness of the proposed stopping criterion in 
searching for global optimal solutions of some complex func 
tions of multiple variables. The variance of the best fitness 
values obtained in each iteration is used as the stopping cri 
terion to demonstrate its usefulness to automatically termi 
nate the GA. The following objective functions were used in 
the experiment. 

f(x) = 6 + sin(x) when Os x < 27t 
= 6 + 2sin(x) when 27 < x < 47t 
= 6 + 3sin(x) when 47 < x s 67t 
= 6 + 4sin(x) when 67 < x < 87t 
= 6 + 5sin(x) when 87 < x < 107t 
= 6 + sin(x) when 107 < x s 32 

when x is the integral part of x 

, where x is the integral part of x 
Ly? 

5 

1 + 2 

20 
f(x) = - , 

where x is the largest integers x 

Referring now to FIGS. 2-5, pictorial representations of 
these functions are shown. f is a univariate function while 
the remaining functions are multivariate functions with the 
number of variables considered being five, for example. 
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12 
Functions f and fare multimodal functions with symmetri 
cally distributed plateaus of identical size and having multiple 
global maxima. Functions f and f are unimodal functions 
with spatially distant local maxima and single global maxima. 
Different search spaces are considered for different functions 
to exploit the typical features of these functions. 

In these experiments, while implementing the proposed 
stopping criterion, the initial iterations can be ignored as 
mentioned above. The number of these initial iterations can 
be decided based on the length of the strings and the popula 
tion size. The convergence theorem holds true although the 
variance is calculated after a finite number of initial iterations. 
In the experiments, the fitness function values considered to 
calculate the variance were from the 21st iteration for if and 
from the 101st iteration for other functions. 

Additionally, as discussed above, there may be no change 
in the fitness function value for a number of consecutive 
iterations. In an example iteration, therefore, the variance 
could become Zero and could result in premature termination 
of the GA. Accordingly, in an embodiment to avoid premature 
termination, the user should consider a significant number of 
iterations in calculating the variance. In the experiment, the 
minimum number of iterations considered to generate the 
variance was 50 for if and 200 for other functions. 
The genetic parameters used in the execution of the GA 

were as follows: 
Population size=10 for f1 and 50 for others 
String length=20 for f1 and 100 for others 
Crossover probability=0.8 
Mutation probability-varying from 0.2 to 0.45 
To obtain statistically significant results, one test run com 

prised 100 runs for a particular e value for each function. 
Different seeds were supplied to bring in the randomness in 
generating initial populations and performing other genetic 
operations. Considering the importance of mutation in the 
convergence process of the GAS, the mutation probability 
was made variable. It was considered as high as 0.45 in the 
initial iterations and was monotonically reduced to 0.1 
towards final iterations. 

Referring now to FIG. 6, a graph of variance relative to 
iteration numbers is shown. In an example embodiment, as 
the GA explores a better solution with higher fitness value, the 
variance increases. As shown, the variance initially increased 
at 70 and then decreased at 72 as the number of iterations 
increased. 

Referring now to FIG. 7, a Table shows average number of 
iterations required to converge the GA for a given e. The 
results show that for a low value of e, the GA produced 
satisfactory performance for all the functions. Particularly, 
the GA produced a global optimal solution in most cases for 
e=10. The number of iterations to attain the given bound 
differed for different functions depending on the characteris 
tics of the function. Also, the percentage of convergence to the 
global optimum solution was higher for the function f while 
the percentage of convergence to the global optimum solution 
was lower for the function f. With ed.10", no run could 
produce the global optimal solution since the presence of 
multiple global optima of the function f, resulted in faster 
convergence while a single optimum of the function f was 
difficult to attain. This demonstrated the effectiveness of the 
criterion to take into account the inherent properties of the 
objective function. 

In some cases, though the stopping criterion was satisfied, 
the GA did not converge to the global optimal value of the 
objective function. This comports with the property of the 
GAS that GAS do not guarantee the global optimal solution in 
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a finite number of iterations. However, with the reduction ine 
value, the likelihood of obtaining the global optimal solution 
increased. 
The variance of the best solutions obtained up to a current 

iteration tends to Zero as n >OO. In practice, the user needs to 
select an appropriate value for the upper bound of the variance 
for a problem. Different problems with the same size of 
search space may need different bounds for variance to obtain 
global optimal Solution. Forbetter accuracy, the user needs to 
select sufficiently small value fore. Instead of automatically 
selecting the value of e, the user may select the value of e 
depending on the accuracy desired. 

Referring now to FIG. 8, an example method 100 for deter 
mining a stopping criterion and terminating a GA using a 
stopping criterion is shown. Control begins at 102. At 104, 
control creates a population of random Solutions. At 106. 
control defines a bound for variance as a criterion to terminate 
a G.A. Control defines the bound depending on the desired 
accuracy of the GA. At 108, control determines a starting 
iteration number from which to consider solutions with best 
fitness values for calculating variance to determine whetherto 
terminate the GA according to the stopping criterion. Control 
determines the starting iteration based on the length of strings 
and the size of the population. Additionally, control sets a 
predetermined (minimum) number of iterations for which 
variance calculation is to be performed. 

At 110, control evaluates each solution in the current gen 
eration based on the fitness function. At 112, control stores the 
best solution if it is better than the previous best solution. At 
114, control determines whether current iteration is the start 
ing iteration. At 116, when current iteration is not the starting 
iteration, control creates a next generation of Solutions from 
the current generation of solutions using selection, crossover, 
and mutation, and control returns to 110. At 118, when the 
current iteration is the starting iteration, control calculates a 
variance of the best solutions obtained up to and in the current 
iteration. 

At 120, control determines whether variance is calculated 
for the predetermined number of iterations. If variance is not 
calculated for the predetermined number of iterations, control 
returns to 116. At 122., if variance is calculated for the prede 
termined number of iterations, control determines whether 
the variance is greater than the bound. If the variance is 
greater than the bound, control returns to 116. At 124, if the 
variance is not greater than the bound, control terminates the 
GA. 

Referring now to FIG.9, an example system 200 for deter 
mining a stopping criterion and terminating a GA using a 
stopping criterion is shown. The system 200 executes a GA to 
find the best solution for a problem. The problem may be 
related to any field including, but not limited to, operations 
research, very large scale integration (VLSI) circuit design, 
pattern recognition, image processing, machine learning, and 
SO. O. 

The system 200 comprises a user input module 202, a data 
acquisition module 204, a population creation module 206, a 
bound setting module 208, a population analysis module 210, 
an iteration selection module 212, an evaluation module 214. 
a variance module 216, and a termination module 218. The 
system 200 may be implemented by software, hardware, 
firmware, or a combination thereof. The system 200 may also 
be implemented as a system-on-chip (SOC). For example, in 
FIG. 10, a computer 300 comprising one or more processors 
may implement portions of the system 200, wherein most 
components of the computer 300 may be implemented as a 
system-on-chip (SOC). 
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14 
The system 200 comprises a data input unit 200-1, a data 

processing unit 200-2, and an evaluation and termination unit 
200-3. The data input unit 200-1 comprises the user input 
module 202, the data acquisition module 204, and the bound 
setting module 208. The data input unit 200-1 receives input 
data for a problem to be solved. The data processing unit 
200-2 comprises the population creation module 206, the 
population analysis module 210, and the iteration selection 
module 212. The data processing unit 200-2 processes the 
input data. The evaluation and termination unit 200-3 com 
prises the evaluation module 214, the variance module 216, 
and the termination module 218. The evaluation and termi 
nation unit 200-3 evaluates the processed data and terminates 
the GA. 
The user input module 202 allows a user to input data. The 

user input module 202 receives the data from the user and 
outputs the data to the evaluation module 214. The data may 
include the accuracy desired by the user for the solution to be 
generated by the GA. The desired accuracy may depend on 
the type of data acquired by the data acquisition module 204. 
For example, the desired accuracy may depend on the type of 
problem being solved. In some implementations, the user 
may be remote relative to the system 200 and may access the 
system 200 via a wireline network or a wireless network. 
Accordingly, the user input module 202 may include a Suit 
able network interface to connect the system 200 to a net 
work. 
The data acquisition module 204 acquires data for the 

problem to be solved. In some implementations, the data 
acquisition module 204 may comprise Suitable instruments, 
transducers, etc. for acquiring data that is generated by pro 
cesses and that is to be analyzed to find the solution. For 
example, the data acquisition module 204 may comprise pres 
Sure, temperature, and/or other sensors that sense parameters 
related to a chemical process. The data acquisition module 
204 may comprise current, Voltage, and/or other sensors that 
sense parameters related to an electrical system. The data 
acquisition module 204 may comprise an interface that 
acquires data generated by a computer aided design (CAD) 
system for integrated circuit (IC) layout design, vehicle 
design, and so on. The data acquisition module 204 outputs 
the acquired data to the population creation module 206. 
The population creation module 206 creates a population 

of random solutions based on the data acquired by the data 
acquisition module 204. The population creation module 206 
outputs the population to the population analysis module 210 
and to the evaluation module 214. 
The bound setting module 208 sets a bound for variance 

based on the accuracy desired by the user. In some implemen 
tations, the user may directly input and set the bound via the 
user input module 202. The bound for the variance is the 
stopping criterion for stopping the GA executed by the system 
200. The bound setting module 208 outputs the bound to the 
variance module 216. 
The population analysis module 210 analyses the popula 

tion received from the population creation module 206 and 
outputs information such as length of strings and size of the 
population to the iteration selection module 212. The iteration 
selection module 212 selects the starting iteration number 
from which to consider best fitness values for calculating 
variance. The iteration selection module 212 selects the start 
ing iteration number based on the length of strings and size of 
the population received from the population analysis module 
210. Additionally, the iteration selection module 212 selects a 
predetermined (minimum) number of iterations for which 
variance calculation is to be performed. In some implemen 
tations, the user may input the starting iteration number and 
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the minimum number of iterations via the user input module 
202, and the iteration selection module 212 may receive the 
starting iteration number and the minimum number of itera 
tions from the user input module 202. 

The evaluation module 214 receives the population gener 
ated by the population creation module 206 and the desired 
accuracy input by the user via the user input module 202. The 
evaluation module 214 evaluates each solution in the current 
generation based on a fitness function. The evaluation module 
214 calculates fitness values of the solutions using the fitness 
function and determines the best solution based on the fitness 
values. The evaluation module 214 stores the best solution if 
it is better than the previous best solution. In some implemen 
tations, the user may input the fitness function via the user 
input module 202. Alternatively, the user may input informa 
tion related to the fitness function via the user input module 
202, and the evaluation module 214 may generate the fitness 
function based on the information input by the user. Until the 
starting iteration is reached, the population creation module 
206 creates a next generation of solutions from the current 
generation of solutions using selection, crossover, and muta 
tion, and the evaluation module 214 repeats its operations. 

The variance module 216 receives the best solutions stored 
in the evaluation module 214 and the bound for the variance 
from the bound setting module 208. When the starting itera 
tion is reached, the variance module 216 begins calculating a 
variance of the best solutions obtained up to and in the current 
iteration. The population creation module 206, the evaluation 
module 214, and the variance module 216 continue their 
respective operations until the predetermined number of 
iterations are reached. After the predetermined number of 
iterations, the variance module 216 determines whether the 
variance is greater than the bound. So long as the variance is 
greater than the bound, the population creation module 206, 
the evaluation module 214, and the variance module 216 
continue their respective operations. 
The termination module 218 receives the variance calcu 

lated by the variance module 216. The termination module 
218 compares the variance to the bound for the variance. The 
termination module 218terminates the GA when the variance 
is less than or equal to the bound. The termination module 218 
outputs a signal to the evaluation module 214 to terminate 
further evaluation. Additionally, the signal may terminate 
operation of the population creation module 210. The best 
solution stored in the evaluation module 214 at the time of 
termination is the near optimal solution for the problem. 

Genetic algorithms can be applied to solve many real life 
complex optimization problems. For example, Some of the 
applications in various areas include networking, Scheduling, 
complex engineering, finance, image processing, pattern rec 
ognition, and learning. In networking, applications can be 
found in control of gas pipeline in steady and transient states. 
Applications can also be found in design of corporate com 
munication networks that link various widely separated sites. 
In scheduling, applications can be found in Solving complex 
scheduling problems such as examination time tabling. Fur 
ther, applications can be found in solving complex job and 
open shop scheduling problems. 

In complex engineering, GAS can be applied in Solving 
channel routing problem in VLSI design, for example. In 
finance, applications can be found in portfolio optimization 
with an Envelope-based Multi-objective Evolutionary Algo 
rithm. Further, applications can be found in development of 
several financial tools in trading, market prediction, etc. In 
image processing, applications can be found in generating 
image enhancements. In pattern recognition, applications can 
be found in feature selection and generation of class bound 
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16 
aries. In learning, applications can be found in computation 
and selection of optimal set of weights for neural networks. 

Additionally, there are many other areas where GAs can be 
applied in Solving complex problems. These areas include 
controller synthesis, test data generation in automatic testing 
of software, resource allocation systems, constrained service 
provisioning, data mining, molecular biology, web mining, 
production scheduling, imagery exploration, construction, 
transportation, telecommunication, manufacturing, retail, 
and so on. 

In each of these applications, a population of Solutions for 
the problem concerned is generated. Depending on the 
desired accuracy, a bound for variance is selected. In each 
iteration of the GA, the solutions are evaluated, and a best 
Solution is detected. Beginning from a selected Starting itera 
tion, a variance of best solutions obtained in the iterations is 
calculated. Variance is calculated for a predetermined number 
of iterations. Thereafter, the GA is terminated when the vari 
ance is less than or equal to the bound. The Solution obtained 
at the termination is the near optimal solution for the problem. 

Although the stopping criterion disclosed herein is 
described to provide an optimal solution for a GA, the GA is 
used throughout the present disclosure as an example only. 
The stopping criterion disclosed herein can be used with other 
optimization techniques including other evolutionary algo 
rithms. Additionally, stopping criterion disclosed herein can 
be used with other optimization techniques such as simulated 
annealing, particle Swarm optimization, ant colony optimiza 
tion, invasive weed optimization, harmony search, tabu 
search, Gaussian adaptation, and so on. 

In addition to the GA, there are many other optimization 
techniques, such as those mentioned above, that are iterative 
in nature and that are guided by a criterion function. In an 
iterative optimization technique, a criterion function derived 
from the function to be optimized (e.g., fitness function for 
genetic algorithms, error/cost function for artificial neural 
network) is defined using the results of each iteration. In Such 
cases, one of ordinary skill in the art can use the variance 
based stopping criterion disclosed herein in considering an 
appropriate bound (epsilon) for the variance of the criterion 
function values. Thus, the stopping criterion disclosed herein 
may be applicable for all iteration based algorithms. 

Further, these other optimization techniques may be 
applied to solve problems in the areas described above and 
may have applications in addition to those discussed with 
respect to GAS. In each of these applications, a population of 
Solutions for the problem concerned may be generated. 
Depending on the desired accuracy, a bound for variance may 
be selected. In each iteration of these optimization tech 
niques, the Solutions may be evaluated, and a best Solution 
may be detected. Beginning from a selected Starting iteration, 
a variance of best solutions obtained in the iterations may be 
calculated. Variance may be calculated for a predetermined 
number of iterations. Thereafter, these optimization tech 
niques may be terminated when the variance is less than or 
equal to the bound as discussed herein with respect to GAS. 
The solution obtained at the termination may be the near 
optimal solution for the problem. 

Referring now to FIG. 10, a computer 300 comprises a 
processor 302, memory 304, and an input/output (I/O) con 
troller 306 that communicate via a system bus 308. The 
memory 304 may include random access memory (RAM). 
The I/O controller 306 controls I/O devices 310, peripheral 
devices 312, and a network interface 314. The I/O devices 310 
may include a keyboard, a mouse, a display, and so on, which 
allow a user to interact with the computer 300. The display 
may include a touch-screen, which allows the user to enter 
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inputs by touching fields shown on the display. The peripheral 
devices 312 may include mass storage devices such as disk 
drives, and so on, which are used to store an operating system 
(OS), applications, and data. The network interface 314 inter 
faces the computer 300 to a network (e.g., the Internet). The 
network interface 314 may be a wireline network interface or 
a wireless network interface and allows the user to remotely 
access the computer 300 via the Internet, for example. The 
processor 302 executes the OS and the applications and pro 
cesses data. The processor 302 may use the memory 304 for 
temporary storage (e.g., as a scratch pad) and one or more of 
the peripheral devices 312 for permanently storing the data. 

Additionally, the computer 300 comprises an iterative pro 
cessor 316 and memory 318. The iterative processor 316 is 
shown separate from the processor 302 to illustrate the teach 
ings of the present disclosure. In some implementations, the 
processor 302 may implement the iterative processor 316. For 
example, the processor 302 may comprise more than one 
core, where a first core may perform the functions of the 
processor 302 while a second core may perform the functions 
of the iterative processor 316. When the processor 302 imple 
ments the iterative processor 316, the processor 302 may be 
programmed to execute the functions performed by the itera 
tive processor 316. 

The iterative processor 316 communicates with the system 
bus 308. The iterative processor 316 executes iterative appli 
cations such as a GA and performs iterative operations such 
as those involved in the GA, for example. The memory 318 
may be tightly coupled memory (TCM), where TCM is a low 
latency memory that is directly coupled to a processor Such as 
the iterative processor 316 via a dedicated bus that is that is 
separate and apart from the system bus 308. 

Although not shown, the iterative processor 316 may 
include multiple parallel processors. Alternatively, the itera 
tive processor 316 may operate in parallel with other proces 
sors, where the iterative processor 316 performs some of the 
iterative operations, and the other processors perform the rest 
of the iterative operations. For example, the iterative proces 
Sor 316 may operate in parallel with a terminating processor 
320, where the terminating processor 320 terminates the GA 
using the variance based stopping criterion described herein. 

The terminating processor 320 is shown separate from the 
processor 302 and the iterative processor 316 to illustrate the 
teachings of the present disclosure. In some implementations, 
the processor 302 and/or the iterative processor 316 may 
implement the terminating processor 320. For example, the 
processor 302 and/or the iterative processor 316 may com 
prise more than one core, where a first core may perform the 
functions of the processor 302 and/or the iterative processor 
316 while a second core may perform the functions of the 
terminating processor 320. When the processor 302 and/or 
the iterative processor 316 implements the terminating pro 
cessor 320, the processor 302 and/or the iterative processor 
316 may be programmed to execute the functions performed 
by the terminating processor 320. 

The terminating processor 320 may communicate with the 
iterative processor 316 and the system bus 308 and the 
memory 318: The terminating processor 320 may directly 
communicate with the iterative processor 316. Alternatively 
or additionally, the iterative processor 316, the memory 318, 
and the terminating processor 320 may communicate via the 
dedicated bus. 

In some embodiments, the iterative processor 316 may be 
a very large-scale integrated circuit (VLSI). The VLSI may be 
customized to perform iterative operations such as those 
involved in a GA. For example, the VLSI may comprise a 
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portion of the system 200 shown in FIG. 9. In other imple 
mentations, the processor 302 may also be integrated in the 
VLSI. 

In some implementations, the GA may be executed over a 
distributed network of computers including the computer 
300. In these implementations, the iterative processor 316 
may operate in tandem with other processors on the distrib 
uted network. The iterative processor 316 may perform only 
some of the operations related to the GA while the other 
processor may perform other operations related to the GA. 
The user may remotely access the computer 300 and may 
remotely terminate the GA via the computer 300. 
The iterative processor 316 may use the memory 304 for 

processing data in each of the iterations of the GA. For 
example, the memory 304 may be partitioned into two por 
tions, where one portion is reserved for storing data processed 
by the iterative processor 316 while the other portion is used 
by the processor 302. Additionally or alternatively, the itera 
tive processor 316 may utilize a memory 318 separate and 
apart from the memory 304. The memory 318 may be tightly 
coupled to the iterative processor 316 via a bus that is separate 
and apart from the system bus 308. 
The memory 318 may be used to store instructions 

executed by the iterative processor 316. The instructions may 
include customized instructions for performing operations 
relative to the GA. For example, the instructions may include 
customized instructions for performing iterative operations 
relative to the GA. Additionally, the memory 318 may be used 
to cache best Solutions generated in the iterations when the 
best solutions are better than those obtained in the previous 
iterations. Thus, the iterative processor 316 can perform the 
operations relative to the GA (e.g., variance calculation) 
quickly and independently of other operations being per 
formed by the computer 300. 

In use, the computer 300 may receive data and other inputs 
for a problem to be solved via the network interface 314 
and/or via one or more of the peripheral devices 312. The data 
and the other inputs may be stored in data structures in 
memory 304 and/or memory 318. The iterative processor 316 
processes the data and the other inputs according to the 
instructions stored in the memory 318. During processing, the 
iterative processor 316 performs read/write operations on the 
data structures. For example, the iterative processor 316 per 
forms operations described in steps 52 through 66 of the 
method 50 shown in FIG. 1. More particularly, the iterative 
processor 316 performs operations described in steps 102 
through 124 of the method 100 shown in FIG. 8 and opera 
tions of system 200 shown in FIG. 9. The iterative processor 
316 generates a near optimal Solution for the problem using 
the variance as a stopping criterion as described above. 

Referring now to FIG. 11, an example of data structures 
400 processed by the iterative processor 316 is shown. For 
example only, the data structures 400 may comprise the fol 
lowing data structures: Variance threshold 402, starting itera 
tion number 404, minimum number of iterations 406, fitness 
function 408, population 410, best solutions 412, and vari 
ance 414 data structures. Based on the data and the other 
inputs received by the computer 300, the data structures 400 
may be utilized as follows. 
The variance threshold 402 data structure stores a variance 

threshold (i.e., the bound for variance (e) that the iterative 
processor 316 uses as a stopping criterion to stop the GA. The 
starting iteration number 404 data structure stores a starting 
iteration number from which the iterative processor 316 
begins variance calculation. The minimum number of itera 
tions 406 data structure stores the minimum number of itera 
tions to be performed after which the iterative processor 316 
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calculates the variance. The fitness function 408 data struc 
ture stores a fitness function that the iterative processor 316 
uses to evaluate Solutions and to determine the best Solution in 
each iteration of the GA. 
The population 410 data structure stores the solutions gen 

erated by the iterative processor 316 in each iteration of the 
GA. The best solutions 412 data structure stores the best 
solutions obtained in the iterations of the GA. For example, 
the iterative processor 316 stores a best solution obtained in a 
current iteration in the best solutions 412 data structure if the 
best solution obtained in the current iteration is better than a 
best Solution obtained in a previous iteration. 

The variance 414 data structure stores a variance of the best 
solutions obtained up to and in a current iteration of the GA. 
In each iteration, the iterative processor 316 calculates the 
variance of the best solutions stored in the best solutions 412 
data structure and stores the variance in the variance 414 data 
structure. The iterative processor 316 may calculate the vari 
ance only in those iterations that follow the starting iteration 
number. 

For example only, the variance threshold 402, starting 
iteration number 404, and minimum number of iterations 406 
data structures may each comprise a single byte or a single 
word. Alternatively, the variance threshold 402, starting itera 
tion number 404, and minimum number of iterations 406 data 
structures may together comprise a single byte or a single 
word. The population 410, best solutions 412, and variance 
414 data structures may comprise a plurality of bytes, words, 
and/or blocks of memory. Accordingly, Some of the data 
structures 400 may be stored in memory 304 while others may 
be stored in memory 318. 

Additionally, although not shown, the iterative processor 
316 may use other data structures during processing. For 
example, these additional data structures may be used to store 
iterative values (e.g., temporary values generated during 
iterations) and may includes data structures such as arrays, 
which may store best solutions, for example. Some of these 
additional data structures may be stored in memory 304 while 
others may be stored in memory 318. 

In use, in an iteration, the iterative processor 316 reads 
solutions stored in the population 410 data structure and the 
fitness function stored in the fitness function 408 data struc 
ture. Using the fitness function, the iterative processor 316 
determines the best solution in the current iteration. The itera 
tive processor 316 outputs the best solution to the best solu 
tions 412 data structure if the best solution in the current 
iteration is better than the best solution in a previous iteration. 
The iterative processor 316 reads the starting iteration 

number from the starting iteration number 404 data structure 
and determines if the current iteration is greater than or equal 
to the current iteration. If the current iteration is greater than 
or equal to the current iteration, the iterative processor 316 
reads the best solutions stored in the best solutions 412 data 
structure. The iterative processor 316 calculates variance of 
the best solutions and outputs the variance to the variance 414 
data structure. 
The iterative processor 316 reads the minimum number of 

iterations 406 data structure and determines if the variance is 
calculated for the minimum number of iterations following 
the starting iteration. If the variance is calculated for the 
minimum number of iterations following the starting itera 
tion, the iterative processor 316 compares the variance in the 
currentiteration. For example, ifan N'iteration is the starting 
iteration number and if M is the minimum number of itera 
tions, the iterative processor 316 compares the variance cal 
culated in (N+M)" iteration, where N and M are integers 
greater than 1. 
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The iterative processor 316 (or the terminating processor 

320) reads the variance threshold 402 data structure and com 
pares the variance calculated in the (N+M)" iteration to the 
variance threshold. The iterative processor 316 (or the termi 
nating processor) terminates the GA is the variance calculated 
in the (N+M)th iteration is less than or equal to the variance 
threshold. 

In processing the data structures 400, the iterative proces 
sor 316 may execute the following pseudo code: 

Begin 
SETWariance = 1 
GET Variance Threshold 
GET Fitness Function 
GET Population 
GET Starting Iteration Number 
GET Minimum Number Of Iterations 
INIT Array Best Solutions 
SET Total Iterations = 0 
SETI - O 
SET Solution = False 
Current Population = Population 
Current Best Solution = 
Fitness Function(Current Population) 
IF (I=0 OR Current Best Solution(I) 

Current Best Solution (I-1)) 
Best Solutions I = Current Best Solution 
ENDIF 
IF I > Starting Iteration Number 
Variance = Current Variance(Best Solutions II) 
INCREMENT Total Iterations 
ENDIF 

IF (Total Iterations > Minimum Number Of Iterations) 
AND (Variances Variance Threshold) 

OUTPUT Best Solutions 
// The best solution of the last iteration is the near optimal solution. // 

Solution = True 
ENDIF 
Population = f(Current Population) 

if f is a function based on selection, crossover, and mutation. 
INCREMENTI 
Solution = True 

REPEAT 

better than 

UNTIL 
END 

In an embodiment, the variance threshold (i.e., the bound 
for variance (C)) and the starting iteration number may be 
statistically determined depending on the type of problem 
being solved and the distribution of the related data set as 
follows. For example, using samples from the data set, a 
variance curve may be generated to represent variation of 
variance relative to number of iterations. To solve the prob 
lem, the value of the variance threshold may be statistically 
determined based on a rate of change of variance where the 
slope of the variance curve is negative. Additionally, the value 
of the starting iteration number may be statistically deter 
mined such that the slope of the variance curve is positive and 
is near maximum. Further, the minimum number of iterations 
may be statistically determined based on the rate of change of 
variance where the slope of the variance curve is negative. 

In an embodiment, a tangible computer-readable storage 
device may store program instructions that cause a processor 
to perform operations described with references to FIG. 1 and 
FIGS. 8-11 when the processor executes the program instruc 
tions. For example only, the tangible computer-readable Stor 
age device may include, but is not limited to, one or more of 
the following or similar devices: a memory integrated circuit, 
a solid-state disk, a hard disk drive, a compact disc (CD), and 
SO. O. 
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The memory may include, but is not limited to, random 
access memory (RAM), read-only memory (ROM), flash 
memory, volatile and/or non-volatile memory, re-writable 
memory, and so on. 
The art relating to the present disclosure has progressed to 

the point where there is little distinction left between hard 
ware, Software, and/or firmware implementations of aspects 
of systems; the use of hardware, software, and/or firmware is 
generally (but not always, in that in certain contexts the 
choice between hardware and Software can become signifi 
cant) a design choice representing cost vs. efficiency 
tradeoffs. Those having skill in the art will appreciate that 
there are various vehicles by which processes and/or systems 
and/or other technologies described herein can be effected 
(e.g., hardware, Software, and/or firmware), and that the pre 
ferred vehicle will vary with the context in which the pro 
cesses and/or systems and/or other technologies are 
deployed. 

For example, if an implementer determines that speed and 
accuracy are paramount, the implementer may opt for a 
mainly hardware and/or firmware vehicle; alternatively, if 
flexibility is paramount, the implementer may opt for a 
mainly software implementation; or, yet again alternatively, 
the implementer may opt for Some combination of hardware, 
software, and/or firmware. Hence, there are several possible 
vehicles by which the processes and/or devices and/or other 
technologies described herein may be effected, none of which 
is inherently superior to the other in that any vehicle to be 
utilized is a choice dependent upon the context in which the 
vehicle will be deployed and the specific concerns (e.g., 
speed, flexibility, or predictability) of the implementer, any of 
which may vary. Those skilled in the art will recognize that 
optical aspects of implementations will typically employ 
optically-oriented hardware, software, and or firmware. 

In some embodiments, “configured includes at least one 
of designed, set up, shaped, implemented, constructed, or 
adapted for at least one of aparticular purpose, application, or 
function. 

It will be understood that, in general, terms used herein, 
and especially in the appended claims, are generally intended 
as “open’ terms (e.g., the term “including should be inter 
preted as “including but not limited to the term “having 
should be interpreted as “having at least, the term “includes’ 
should be interpreted as “includes but is not limited to, etc.). 
It will be further understood that if a specific number of an 
introduced claim recitation is intended, such an intent will be 
explicitly recited in the claim, and in the absence of Such 
recitation no such intent is present. 

For example, as an aid to understanding, the following 
appended claims may contain usage of introductory phrases 
such as “at least one' or "one or more' to introduce claim 
recitations. However, the use of such phrases should not be 
construed to imply that the introduction of a claim recitation 
by the indefinite articles “a” or “an limits any particular 
claim containing Such introduced claim recitation to inven 
tions containing only one such recitation, even when the same 
claim includes the introductory phrases “one or more' or “at 
least one' and indefinite articles such as “a” or “an” (e.g., “a 
receiver' should typically be interpreted to mean “at least one 
receiver'); the same holds true for the use of definite articles 
used to introduce claim recitations. In addition, even if a 
specific number of an introduced claim recitation is explicitly 
recited, it will be recognized that such recitation should typi 
cally be interpreted to mean at least the recited number (e.g., 
the bare recitation of “at least two chambers.” or “a plurality 
of chambers, without other modifiers, typically means at 
least two chambers). 
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Furthermore, in those instances where a phrase such as “at 

least one of A, B, and C.” “at least one of A, B, or C.” or “an 
item selected from the group consisting of A, B, and C is 
used, in general Such a construction is intended to be disjunc 
tive (e.g., any of these phrases would include but not be 
limited to systems that have A alone, B alone, C alone, A and 
B together, A and C together, B and C together, or A, B, and 
C together, and may further include more than one of A, B, or 
C, such as A1, A2, and C together, A, B1, B2, C1, and C2 
together, or B1 and B2 together). It will be further understood 
that virtually any disjunctive word or phrase presenting two or 
more alternative terms, whether in the description, claims, or 
drawings, should be understood to contemplate the possibili 
ties of including one of the terms, either of the terms, or both 
terms. For example, the phrase “A or B will be understood to 
include the possibilities of “A” or “B” or “A and B.” 
The herein described aspects depict different components 

contained within, or connected with, different other compo 
nents. It is to be understood that such depicted architectures 
are merely examples, and that in fact many otherarchitectures 
can be implemented which achieve the same functionality. In 
a conceptual sense, any arrangement of components to 
achieve the same functionality is effectively “associated 
such that the desired functionality is achieved. Hence, any 
two components herein combined to achieve a particular 
functionality can be seen as “associated with each other such 
that the desired functionality is achieved, irrespective of 
architectures or intermedial components. Likewise, any two 
components so associated can also be viewed as being “oper 
ably connected,” or “operably coupled to each other to 
achieve the desired functionality. Any two components 
capable of being so associated can also be viewed as being 
“operably couplable' to each other to achieve the desired 
functionality. Specific examples of operably couplable 
include but are not limited to physically mateable or physi 
cally interacting components or wirelessly interactable or 
wirelessly interacting components. 

With respect to the appended claims the recited operations 
therein may generally be performed in any order. Also, 
although various operational flows are presented in a 
sequence(s), it should be understood that the various opera 
tions may be performed in other orders than those which are 
illustrated, or may be performed concurrently. Examples of 
Such alternate orderings may include overlapping, inter 
leaved, interrupted, reordered, incremental, preparatory, 
Supplemental, simultaneous, reverse, or other variant order 
ings, unless context dictates otherwise. Furthermore, terms 
like “responsive to “related to,” or other past-tense adjec 
tives are generally not intended to exclude Such variants, 
unless context dictates otherwise. 

While various aspects and embodiments have been dis 
closed herein, the various aspects and embodiments are for 
purposes of illustration and are not intended to be limiting, 
with the true scope and spirit being indicated by the following 
claims. 

The invention claimed is: 
1. A system for terminating a genetic algorithm (GA) com 

prising: an iterator that executes a GA that generates at least 
one best solution periteration; 

a memory that stores a plurality of best Solutions generated 
in a plurality of iterations of the GA, wherein a best 
solution is stored in the memory if a fitness function of 
the best Solution is greater than a fitness function of a 
previous best solution generated in a previous iteration; 

an iterative processor that computes a variance of the plu 
rality of the best solutions stored in the memory; and 
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a terminating processor that terminates the iterator when 
the variance is less than or equal to a predetermined 
threshold, 
wherein the terminating processor determines whether 

the variance is less than or equal to the predetermined 
threshold after a predetermined number of iterations 
are completed following a starting iteration, and 

wherein the predetermined number of iterations is sta 
tistically determined based on a rate of change of the 
variance when the rate of change of the variance rela 
tive to a number of the iterations is negative. 

2. The system of claim 1, wherein the iterative processor 
computes the variance when a starting iteration is reached. 

3. The system of claim 1, wherein the predetermined 
threshold is statistically determined based on a rate of change 
of the variance when the rate of change of the variance relative 
to a number of the iterations is negative. 

4. The system of claim 2, wherein the starting iteration is 
statistically determined based on a rate of change of the 
variance when the rate of change of the variance relative to a 
number of the iterations is positive. 

5. The system of claim 1, wherein the iterative processor 
generates the at least one best solution per iteration from a 
population of Solutions using the fitness function, wherein 
each solution in the population is coded as a string of a finite 
length, and wherein a starting iteration is statistically deter 
mined based on the finite length and a size of the population. 

6. The system of claim 5, wherein when the variance is 
greater than the predetermined threshold, the iterative proces 
sor generates a Subsequent population of Solutions from the 
population of Solutions using operators including selection, 
crossover, and mutation. 

7. The system of claim 1, wherein the predetermined 
threshold is selected based on a desired accuracy of the GA. 

8. The system of claim 1, wherein the predetermined 
threshold takes into account properties of an objective func 
tion and genetic parameters used in the GA. 

9. A method for terminating a genetic algorithm (GA), 
comprising: 

executing a GA by an iterator to generate at least one best 
Solution periteration; 

storing a plurality of best Solutions generated in a plurality 
of iterations of the GA, wherein the best solution is 
stored in a memory if a fitness function of the best 
Solution is greater than a fitness function of a previous 
best Solution generated in a previous iteration; 
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computing a variance of the plurality of best solutions 

stored in the memory using an iterative processor, 
terminating the iterator using a terminating processor when 

the variance is less than or equal to a predetermined 
threshold; 

determining whether the variance is less than or equal to 
the predetermined threshold after a redetermined num 
ber of iterations are completed when a starting iteration 
is reached; and 

determining statistically the predetermined number of 
iterations based on a rate of change of the variance when 
the rate of change of the variance relative to a number of 
iterations is negative. 

10. The method of claim 9, further comprising computing 
the variance when a starting iteration is reached. 

11. The method of claim 9, further comprising determining 
statistically the predetermined threshold based on a rate of 
change of the variance when the rate of change of the variance 
relative to a number of the iterations is negative, wherein the 
predetermined threshold takes into account properties of an 
objective function and genetic parameters used in the GA. 

12. The method of claim 10, further comprising determin 
ing statistically the starting iteration based on a rate of change 
of the variance when the rate of change of the variance relative 
to a number of iterations is positive. 

13. The method of claim 9, further comprising generating 
the at least one best Solution periteration from a population of 
Solutions using the fitness function, wherein each solution in 
the population is coded as a string of a finite length, and 
wherein the starting iteration is determined statistically based 
on the finite length and a size of the population. 

14. The method of claim 13, further comprising generating 
a Subsequent population of Solutions from the population of 
Solutions using operators including selection, crossover, and 
mutation when the variance is greater than the predetermined 
threshold. 

15. The method of claim 9, further comprising selecting the 
predetermined threshold based on a desired accuracy of the 
GA. 

16. A tangible computer-readable storage device for Stor 
ing program instructions that cause a processor to perform 
steps of the method of claim 9 when the processor executes 
the program instructions. 

k k k k k 
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