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inputs by touching fields shown on the display. The peripheral 
devices 312 may include mass storage devices such as disk 
drives, and so on, which are used to store an operating system 
(OS), applications, and data. The network interface 314 inter 
faces the computer 300 to a network (e.g., the Internet). The 
network interface 314 may be a wireline network interface or 
a wireless network interface and allows the user to remotely 
access the computer 300 via the Internet, for example. The 
processor 302 executes the OS and the applications and pro 
cesses data. The processor 302 may use the memory 304 for 
temporary storage (e.g., as a scratch pad) and one or more of 
the peripheral devices 312 for permanently storing the data. 

Additionally, the computer 300 comprises an iterative pro 
cessor 316 and memory 318. The iterative processor 316 is 
shown separate from the processor 302 to illustrate the teach 
ings of the present disclosure. In some implementations, the 
processor 302 may implement the iterative processor 316. For 
example, the processor 302 may comprise more than one 
core, where a first core may perform the functions of the 
processor 302 while a second core may perform the functions 
of the iterative processor 316. When the processor 302 imple 
ments the iterative processor 316, the processor 302 may be 
programmed to execute the functions performed by the itera 
tive processor 316. 

The iterative processor 316 communicates with the system 
bus 308. The iterative processor 316 executes iterative appli 
cations such as a GA and performs iterative operations such 
as those involved in the GA, for example. The memory 318 
may be tightly coupled memory (TCM), where TCM is a low 
latency memory that is directly coupled to a processor Such as 
the iterative processor 316 via a dedicated bus that is that is 
separate and apart from the system bus 308. 

Although not shown, the iterative processor 316 may 
include multiple parallel processors. Alternatively, the itera 
tive processor 316 may operate in parallel with other proces 
sors, where the iterative processor 316 performs some of the 
iterative operations, and the other processors perform the rest 
of the iterative operations. For example, the iterative proces 
Sor 316 may operate in parallel with a terminating processor 
320, where the terminating processor 320 terminates the GA 
using the variance based stopping criterion described herein. 

The terminating processor 320 is shown separate from the 
processor 302 and the iterative processor 316 to illustrate the 
teachings of the present disclosure. In some implementations, 
the processor 302 and/or the iterative processor 316 may 
implement the terminating processor 320. For example, the 
processor 302 and/or the iterative processor 316 may com 
prise more than one core, where a first core may perform the 
functions of the processor 302 and/or the iterative processor 
316 while a second core may perform the functions of the 
terminating processor 320. When the processor 302 and/or 
the iterative processor 316 implements the terminating pro 
cessor 320, the processor 302 and/or the iterative processor 
316 may be programmed to execute the functions performed 
by the terminating processor 320. 

The terminating processor 320 may communicate with the 
iterative processor 316 and the system bus 308 and the 
memory 318: The terminating processor 320 may directly 
communicate with the iterative processor 316. Alternatively 
or additionally, the iterative processor 316, the memory 318, 
and the terminating processor 320 may communicate via the 
dedicated bus. 

In some embodiments, the iterative processor 316 may be 
a very large-scale integrated circuit (VLSI). The VLSI may be 
customized to perform iterative operations such as those 
involved in a GA. For example, the VLSI may comprise a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
portion of the system 200 shown in FIG. 9. In other imple 
mentations, the processor 302 may also be integrated in the 
VLSI. 

In some implementations, the GA may be executed over a 
distributed network of computers including the computer 
300. In these implementations, the iterative processor 316 
may operate in tandem with other processors on the distrib 
uted network. The iterative processor 316 may perform only 
some of the operations related to the GA while the other 
processor may perform other operations related to the GA. 
The user may remotely access the computer 300 and may 
remotely terminate the GA via the computer 300. 
The iterative processor 316 may use the memory 304 for 

processing data in each of the iterations of the GA. For 
example, the memory 304 may be partitioned into two por 
tions, where one portion is reserved for storing data processed 
by the iterative processor 316 while the other portion is used 
by the processor 302. Additionally or alternatively, the itera 
tive processor 316 may utilize a memory 318 separate and 
apart from the memory 304. The memory 318 may be tightly 
coupled to the iterative processor 316 via a bus that is separate 
and apart from the system bus 308. 
The memory 318 may be used to store instructions 

executed by the iterative processor 316. The instructions may 
include customized instructions for performing operations 
relative to the GA. For example, the instructions may include 
customized instructions for performing iterative operations 
relative to the GA. Additionally, the memory 318 may be used 
to cache best Solutions generated in the iterations when the 
best solutions are better than those obtained in the previous 
iterations. Thus, the iterative processor 316 can perform the 
operations relative to the GA (e.g., variance calculation) 
quickly and independently of other operations being per 
formed by the computer 300. 

In use, the computer 300 may receive data and other inputs 
for a problem to be solved via the network interface 314 
and/or via one or more of the peripheral devices 312. The data 
and the other inputs may be stored in data structures in 
memory 304 and/or memory 318. The iterative processor 316 
processes the data and the other inputs according to the 
instructions stored in the memory 318. During processing, the 
iterative processor 316 performs read/write operations on the 
data structures. For example, the iterative processor 316 per 
forms operations described in steps 52 through 66 of the 
method 50 shown in FIG. 1. More particularly, the iterative 
processor 316 performs operations described in steps 102 
through 124 of the method 100 shown in FIG. 8 and opera 
tions of system 200 shown in FIG. 9. The iterative processor 
316 generates a near optimal Solution for the problem using 
the variance as a stopping criterion as described above. 

Referring now to FIG. 11, an example of data structures 
400 processed by the iterative processor 316 is shown. For 
example only, the data structures 400 may comprise the fol 
lowing data structures: Variance threshold 402, starting itera 
tion number 404, minimum number of iterations 406, fitness 
function 408, population 410, best solutions 412, and vari 
ance 414 data structures. Based on the data and the other 
inputs received by the computer 300, the data structures 400 
may be utilized as follows. 
The variance threshold 402 data structure stores a variance 

threshold (i.e., the bound for variance (e) that the iterative 
processor 316 uses as a stopping criterion to stop the GA. The 
starting iteration number 404 data structure stores a starting 
iteration number from which the iterative processor 316 
begins variance calculation. The minimum number of itera 
tions 406 data structure stores the minimum number of itera 
tions to be performed after which the iterative processor 316 
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calculates the variance. The fitness function 408 data struc 
ture stores a fitness function that the iterative processor 316 
uses to evaluate Solutions and to determine the best Solution in 
each iteration of the GA. 
The population 410 data structure stores the solutions gen 

erated by the iterative processor 316 in each iteration of the 
GA. The best solutions 412 data structure stores the best 
solutions obtained in the iterations of the GA. For example, 
the iterative processor 316 stores a best solution obtained in a 
current iteration in the best solutions 412 data structure if the 
best solution obtained in the current iteration is better than a 
best Solution obtained in a previous iteration. 

The variance 414 data structure stores a variance of the best 
solutions obtained up to and in a current iteration of the GA. 
In each iteration, the iterative processor 316 calculates the 
variance of the best solutions stored in the best solutions 412 
data structure and stores the variance in the variance 414 data 
structure. The iterative processor 316 may calculate the vari 
ance only in those iterations that follow the starting iteration 
number. 

For example only, the variance threshold 402, starting 
iteration number 404, and minimum number of iterations 406 
data structures may each comprise a single byte or a single 
word. Alternatively, the variance threshold 402, starting itera 
tion number 404, and minimum number of iterations 406 data 
structures may together comprise a single byte or a single 
word. The population 410, best solutions 412, and variance 
414 data structures may comprise a plurality of bytes, words, 
and/or blocks of memory. Accordingly, Some of the data 
structures 400 may be stored in memory 304 while others may 
be stored in memory 318. 

Additionally, although not shown, the iterative processor 
316 may use other data structures during processing. For 
example, these additional data structures may be used to store 
iterative values (e.g., temporary values generated during 
iterations) and may includes data structures such as arrays, 
which may store best solutions, for example. Some of these 
additional data structures may be stored in memory 304 while 
others may be stored in memory 318. 

In use, in an iteration, the iterative processor 316 reads 
solutions stored in the population 410 data structure and the 
fitness function stored in the fitness function 408 data struc 
ture. Using the fitness function, the iterative processor 316 
determines the best solution in the current iteration. The itera 
tive processor 316 outputs the best solution to the best solu 
tions 412 data structure if the best solution in the current 
iteration is better than the best solution in a previous iteration. 
The iterative processor 316 reads the starting iteration 

number from the starting iteration number 404 data structure 
and determines if the current iteration is greater than or equal 
to the current iteration. If the current iteration is greater than 
or equal to the current iteration, the iterative processor 316 
reads the best solutions stored in the best solutions 412 data 
structure. The iterative processor 316 calculates variance of 
the best solutions and outputs the variance to the variance 414 
data structure. 
The iterative processor 316 reads the minimum number of 

iterations 406 data structure and determines if the variance is 
calculated for the minimum number of iterations following 
the starting iteration. If the variance is calculated for the 
minimum number of iterations following the starting itera 
tion, the iterative processor 316 compares the variance in the 
currentiteration. For example, ifan N'iteration is the starting 
iteration number and if M is the minimum number of itera 
tions, the iterative processor 316 compares the variance cal 
culated in (N+M)" iteration, where N and M are integers 
greater than 1. 
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20 
The iterative processor 316 (or the terminating processor 

320) reads the variance threshold 402 data structure and com 
pares the variance calculated in the (N+M)" iteration to the 
variance threshold. The iterative processor 316 (or the termi 
nating processor) terminates the GA is the variance calculated 
in the (N+M)th iteration is less than or equal to the variance 
threshold. 

In processing the data structures 400, the iterative proces 
sor 316 may execute the following pseudo code: 

Begin 
SETWariance = 1 
GET Variance Threshold 
GET Fitness Function 
GET Population 
GET Starting Iteration Number 
GET Minimum Number Of Iterations 
INIT Array Best Solutions 
SET Total Iterations = 0 
SETI - O 
SET Solution = False 
Current Population = Population 
Current Best Solution = 
Fitness Function(Current Population) 
IF (I=0 OR Current Best Solution(I) 

Current Best Solution (I-1)) 
Best Solutions I = Current Best Solution 
ENDIF 
IF I > Starting Iteration Number 
Variance = Current Variance(Best Solutions II) 
INCREMENT Total Iterations 
ENDIF 

IF (Total Iterations > Minimum Number Of Iterations) 
AND (Variances Variance Threshold) 

OUTPUT Best Solutions 
// The best solution of the last iteration is the near optimal solution. // 

Solution = True 
ENDIF 
Population = f(Current Population) 

if f is a function based on selection, crossover, and mutation. 
INCREMENTI 
Solution = True 

REPEAT 

better than 

UNTIL 
END 

In an embodiment, the variance threshold (i.e., the bound 
for variance (C)) and the starting iteration number may be 
statistically determined depending on the type of problem 
being solved and the distribution of the related data set as 
follows. For example, using samples from the data set, a 
variance curve may be generated to represent variation of 
variance relative to number of iterations. To solve the prob 
lem, the value of the variance threshold may be statistically 
determined based on a rate of change of variance where the 
slope of the variance curve is negative. Additionally, the value 
of the starting iteration number may be statistically deter 
mined such that the slope of the variance curve is positive and 
is near maximum. Further, the minimum number of iterations 
may be statistically determined based on the rate of change of 
variance where the slope of the variance curve is negative. 

In an embodiment, a tangible computer-readable storage 
device may store program instructions that cause a processor 
to perform operations described with references to FIG. 1 and 
FIGS. 8-11 when the processor executes the program instruc 
tions. For example only, the tangible computer-readable Stor 
age device may include, but is not limited to, one or more of 
the following or similar devices: a memory integrated circuit, 
a solid-state disk, a hard disk drive, a compact disc (CD), and 
SO. O. 
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The memory may include, but is not limited to, random 
access memory (RAM), read-only memory (ROM), flash 
memory, volatile and/or non-volatile memory, re-writable 
memory, and so on. 
The art relating to the present disclosure has progressed to 

the point where there is little distinction left between hard 
ware, Software, and/or firmware implementations of aspects 
of systems; the use of hardware, software, and/or firmware is 
generally (but not always, in that in certain contexts the 
choice between hardware and Software can become signifi 
cant) a design choice representing cost vs. efficiency 
tradeoffs. Those having skill in the art will appreciate that 
there are various vehicles by which processes and/or systems 
and/or other technologies described herein can be effected 
(e.g., hardware, Software, and/or firmware), and that the pre 
ferred vehicle will vary with the context in which the pro 
cesses and/or systems and/or other technologies are 
deployed. 

For example, if an implementer determines that speed and 
accuracy are paramount, the implementer may opt for a 
mainly hardware and/or firmware vehicle; alternatively, if 
flexibility is paramount, the implementer may opt for a 
mainly software implementation; or, yet again alternatively, 
the implementer may opt for Some combination of hardware, 
software, and/or firmware. Hence, there are several possible 
vehicles by which the processes and/or devices and/or other 
technologies described herein may be effected, none of which 
is inherently superior to the other in that any vehicle to be 
utilized is a choice dependent upon the context in which the 
vehicle will be deployed and the specific concerns (e.g., 
speed, flexibility, or predictability) of the implementer, any of 
which may vary. Those skilled in the art will recognize that 
optical aspects of implementations will typically employ 
optically-oriented hardware, software, and or firmware. 

In some embodiments, “configured includes at least one 
of designed, set up, shaped, implemented, constructed, or 
adapted for at least one of aparticular purpose, application, or 
function. 

It will be understood that, in general, terms used herein, 
and especially in the appended claims, are generally intended 
as “open’ terms (e.g., the term “including should be inter 
preted as “including but not limited to the term “having 
should be interpreted as “having at least, the term “includes’ 
should be interpreted as “includes but is not limited to, etc.). 
It will be further understood that if a specific number of an 
introduced claim recitation is intended, such an intent will be 
explicitly recited in the claim, and in the absence of Such 
recitation no such intent is present. 

For example, as an aid to understanding, the following 
appended claims may contain usage of introductory phrases 
such as “at least one' or "one or more' to introduce claim 
recitations. However, the use of such phrases should not be 
construed to imply that the introduction of a claim recitation 
by the indefinite articles “a” or “an limits any particular 
claim containing Such introduced claim recitation to inven 
tions containing only one such recitation, even when the same 
claim includes the introductory phrases “one or more' or “at 
least one' and indefinite articles such as “a” or “an” (e.g., “a 
receiver' should typically be interpreted to mean “at least one 
receiver'); the same holds true for the use of definite articles 
used to introduce claim recitations. In addition, even if a 
specific number of an introduced claim recitation is explicitly 
recited, it will be recognized that such recitation should typi 
cally be interpreted to mean at least the recited number (e.g., 
the bare recitation of “at least two chambers.” or “a plurality 
of chambers, without other modifiers, typically means at 
least two chambers). 
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Furthermore, in those instances where a phrase such as “at 

least one of A, B, and C.” “at least one of A, B, or C.” or “an 
item selected from the group consisting of A, B, and C is 
used, in general Such a construction is intended to be disjunc 
tive (e.g., any of these phrases would include but not be 
limited to systems that have A alone, B alone, C alone, A and 
B together, A and C together, B and C together, or A, B, and 
C together, and may further include more than one of A, B, or 
C, such as A1, A2, and C together, A, B1, B2, C1, and C2 
together, or B1 and B2 together). It will be further understood 
that virtually any disjunctive word or phrase presenting two or 
more alternative terms, whether in the description, claims, or 
drawings, should be understood to contemplate the possibili 
ties of including one of the terms, either of the terms, or both 
terms. For example, the phrase “A or B will be understood to 
include the possibilities of “A” or “B” or “A and B.” 
The herein described aspects depict different components 

contained within, or connected with, different other compo 
nents. It is to be understood that such depicted architectures 
are merely examples, and that in fact many otherarchitectures 
can be implemented which achieve the same functionality. In 
a conceptual sense, any arrangement of components to 
achieve the same functionality is effectively “associated 
such that the desired functionality is achieved. Hence, any 
two components herein combined to achieve a particular 
functionality can be seen as “associated with each other such 
that the desired functionality is achieved, irrespective of 
architectures or intermedial components. Likewise, any two 
components so associated can also be viewed as being “oper 
ably connected,” or “operably coupled to each other to 
achieve the desired functionality. Any two components 
capable of being so associated can also be viewed as being 
“operably couplable' to each other to achieve the desired 
functionality. Specific examples of operably couplable 
include but are not limited to physically mateable or physi 
cally interacting components or wirelessly interactable or 
wirelessly interacting components. 

With respect to the appended claims the recited operations 
therein may generally be performed in any order. Also, 
although various operational flows are presented in a 
sequence(s), it should be understood that the various opera 
tions may be performed in other orders than those which are 
illustrated, or may be performed concurrently. Examples of 
Such alternate orderings may include overlapping, inter 
leaved, interrupted, reordered, incremental, preparatory, 
Supplemental, simultaneous, reverse, or other variant order 
ings, unless context dictates otherwise. Furthermore, terms 
like “responsive to “related to,” or other past-tense adjec 
tives are generally not intended to exclude Such variants, 
unless context dictates otherwise. 

While various aspects and embodiments have been dis 
closed herein, the various aspects and embodiments are for 
purposes of illustration and are not intended to be limiting, 
with the true scope and spirit being indicated by the following 
claims. 

The invention claimed is: 
1. A system for terminating a genetic algorithm (GA) com 

prising: an iterator that executes a GA that generates at least 
one best solution periteration; 

a memory that stores a plurality of best Solutions generated 
in a plurality of iterations of the GA, wherein a best 
solution is stored in the memory if a fitness function of 
the best Solution is greater than a fitness function of a 
previous best solution generated in a previous iteration; 

an iterative processor that computes a variance of the plu 
rality of the best solutions stored in the memory; and 



US 8,700,548 B2 
23 

a terminating processor that terminates the iterator when 
the variance is less than or equal to a predetermined 
threshold, 
wherein the terminating processor determines whether 

the variance is less than or equal to the predetermined 
threshold after a predetermined number of iterations 
are completed following a starting iteration, and 

wherein the predetermined number of iterations is sta 
tistically determined based on a rate of change of the 
variance when the rate of change of the variance rela 
tive to a number of the iterations is negative. 

2. The system of claim 1, wherein the iterative processor 
computes the variance when a starting iteration is reached. 

3. The system of claim 1, wherein the predetermined 
threshold is statistically determined based on a rate of change 
of the variance when the rate of change of the variance relative 
to a number of the iterations is negative. 

4. The system of claim 2, wherein the starting iteration is 
statistically determined based on a rate of change of the 
variance when the rate of change of the variance relative to a 
number of the iterations is positive. 

5. The system of claim 1, wherein the iterative processor 
generates the at least one best solution per iteration from a 
population of Solutions using the fitness function, wherein 
each solution in the population is coded as a string of a finite 
length, and wherein a starting iteration is statistically deter 
mined based on the finite length and a size of the population. 

6. The system of claim 5, wherein when the variance is 
greater than the predetermined threshold, the iterative proces 
sor generates a Subsequent population of Solutions from the 
population of Solutions using operators including selection, 
crossover, and mutation. 

7. The system of claim 1, wherein the predetermined 
threshold is selected based on a desired accuracy of the GA. 

8. The system of claim 1, wherein the predetermined 
threshold takes into account properties of an objective func 
tion and genetic parameters used in the GA. 

9. A method for terminating a genetic algorithm (GA), 
comprising: 

executing a GA by an iterator to generate at least one best 
Solution periteration; 

storing a plurality of best Solutions generated in a plurality 
of iterations of the GA, wherein the best solution is 
stored in a memory if a fitness function of the best 
Solution is greater than a fitness function of a previous 
best Solution generated in a previous iteration; 
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24 
computing a variance of the plurality of best solutions 

stored in the memory using an iterative processor, 
terminating the iterator using a terminating processor when 

the variance is less than or equal to a predetermined 
threshold; 

determining whether the variance is less than or equal to 
the predetermined threshold after a redetermined num 
ber of iterations are completed when a starting iteration 
is reached; and 

determining statistically the predetermined number of 
iterations based on a rate of change of the variance when 
the rate of change of the variance relative to a number of 
iterations is negative. 

10. The method of claim 9, further comprising computing 
the variance when a starting iteration is reached. 

11. The method of claim 9, further comprising determining 
statistically the predetermined threshold based on a rate of 
change of the variance when the rate of change of the variance 
relative to a number of the iterations is negative, wherein the 
predetermined threshold takes into account properties of an 
objective function and genetic parameters used in the GA. 

12. The method of claim 10, further comprising determin 
ing statistically the starting iteration based on a rate of change 
of the variance when the rate of change of the variance relative 
to a number of iterations is positive. 

13. The method of claim 9, further comprising generating 
the at least one best Solution periteration from a population of 
Solutions using the fitness function, wherein each solution in 
the population is coded as a string of a finite length, and 
wherein the starting iteration is determined statistically based 
on the finite length and a size of the population. 

14. The method of claim 13, further comprising generating 
a Subsequent population of Solutions from the population of 
Solutions using operators including selection, crossover, and 
mutation when the variance is greater than the predetermined 
threshold. 

15. The method of claim 9, further comprising selecting the 
predetermined threshold based on a desired accuracy of the 
GA. 

16. A tangible computer-readable storage device for Stor 
ing program instructions that cause a processor to perform 
steps of the method of claim 9 when the processor executes 
the program instructions. 
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