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Abstract: We study the quantum (C∗) convexity structure of normalized positive oper-
ator valued measures (POVMs) on measurable spaces. In particular, it is seen that unlike
extreme points under classical convexity, C∗-extreme points of normalized POVMs on
countable spaces (in particular for finite sets) are always spectral measures (normalized
projection valued measures). More generally it is shown that atomic C∗-extreme points
are spectral. A Krein–Milman type theorem for POVMs has also been proved. As an
application it is shown that a map on any commutative unital C∗-algebra with countable
spectrum (in particular C

n) is C∗-extreme in the set of unital completely positive maps
if and only if it is a unital ∗-homomorphism.

1. Introduction

The classical notion of convexity plays an important role in analysis in understanding
various mathematical structures. Often the problem is to identify extreme points of a
convex set. Once that is done, subsequently one may try to show that all points of
the set are convex combinations of extreme points or their limits. There have been
several approaches to generalize the notion of convexity to have a non-commutative (or
quantum) variant, for example CP-convexity [18], matrix convexity [14], nc-convexity
[9] and C∗-convexity ([15,25]).

One prominent and useful idea is to replace positive scalars in the interval [0, 1]
as coefficients for convexity by positive, contractive and invertible elements in a C∗-
algebra. This is the notion of quantum or C∗-convexity. The study of C∗-convexity and
C∗-extreme points seems to have been started by Loebl and Paulsen [25] for subsets of
C∗-algebras and subsequently many researchers have explored it. Farenick and Morenz
[15] defined and initiated a study ofC∗-convexity andC∗-extreme points (see Definition
7.4) for unital completely positive (UCP) maps on C∗-algebras taking values in the
algebra B(H) of all bounded operators on a Hilbert space H. They call these maps
as generalized states following an earlier convention, as UCP maps taking values in
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B(H) with H one dimensional are just states. In particular they show that for n ∈ N,
C∗-extreme UCP maps on the C∗-algebra C

n , taking values in matrices (that is, B(H)

with finite dimensional H) are ∗-homomorphisms. Whether the same conclusion can
be arrived at when the space H is infinite dimensional and separable was left open. We
settle it here affirmatively in Theorem 7.7.

It should be mentioned here that there are several papers analyzing C∗-convexity
of UCP maps: [15,17,19,26,38], to name a few. In [17,38], one can see some abstract
characterizations ofC∗-extreme points of UCPmaps. There is awell-known relationship
(see [20,33]) between UCP maps on the C∗-algebra C(X) of continuous functions on
a compact Hausdorff space X and positive operator valued measures (POVMs) on the
Borel σ -algebra O(X) on X. Many authors while studying UCP maps on commutative
C∗-algebras exploit this relationship. We follow the same approach and for the purpose
first study POVMs.

Positive operator valued measures (POVMs) are called generalized measurements in
quantum mechanics and are basic mathematical tools in quantum information theory.
There is extensive literature on POVMs and we do not attempt a survey. Some standard
references are [10,11,23,36] and [21]. The notions of C∗-convexity and C∗-extreme
points have natural extensions to POVMs (see Definition 3.1 and 3.2). Here we study
C∗-convexity of POVMs on a measurable space (X,O(X)), whereO(X) is a σ -algebra
of subsets of a set X . The problem of identifying C∗-extreme points of POVMs has been
open for several decades even for finite sets. The result from1997of Farenick andMorenz
[15] translates to saying that C∗-extreme positive matrix valued measures on a finite set
X are spectral measures (normalized projection valued measures). We generalize the
result of [15] considerably, as we allow general POVMs on all countable spaces and still
all the C∗-extreme points are spectral (Theorem 3.11). This is important because it is in
stark contrast with classical (linear) convexity. Extreme points of POVMs under classical
convexity are not necessarily spectral measures and are hard to describe even for finite
sets, though abstract characterizations are available. C∗-extreme points being spectral
measures have physical significance as they relate to classical measurements. Our result
reinforces the idea that C∗-convexity is perhaps the suitable notion of convexity in the
quantum setting.

Our main goal is to explore the C∗-convexity structure and identify the C∗-extreme
points of POVMs taking values for arbitrary separable Hilbert spaces. We shall also
present some results on usual (classical) extreme points of POVMs for comparison. We
investigate POVMsvia decomposing them into a sumof atomic and non-atomic POVMs.
Some of these results on POVMs could be folklore in the literature, but we present them
here for clarity of presentation and for completeness.

This paper is organized as follows. We start with the definition of POVMs on mea-
surable spaces in Sect. 2 and state some known basic results such as Naimark’s dilation
theorem, Radon–Nikodym type theorem and so on. A brief description of atomic and
non-atomic POVMs is given. In Sect. 3, we present some of our main results on C∗-
extreme points. Themost crucial technical step is in the proof of Theorem3.8. Heinosaari
and Pellonpää [22] have shown that extreme points of POVMs with commutative ranges
are spectral. The same conclusion holds underC∗-convexity (Theorem3.9) aswell.Most
importantly all atomic C∗-extreme points are also seen to be spectral (Theorem 3.11).
This also helps us in proving that C∗-extreme points are spectral for finite dimensional
Hilbert spaces, which we prove in full generality.

In Sect. 4, a notion of disjointness for spectral measures is introduced and we see
that it is equivalent to mutual singularity. We study the behaviour of C∗-extreme points
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on taking direct sums of mutually singular POVMs. In particular, we show that every
C∗-extreme point decomposes into a direct sum of an atomic POVM and a non-atomic
POVM, mutually singular to each other. Next in Sect. 5, we explore basic properties
like C∗-convexity, atomicity etc under a notion of measure isomorphism of POVMs. In
Sect. 6, we analyze POVMs on topological spaces. In this case, we consider the notion of
regularity of POVMs and obtain some results analogous to classical measure theory. We
also consider a topology on the collection of all POVMs and prove a Krein–Milman type
theorem (Theorem 6.15). Lastly in Sect. 7, we describe a well-known correspondence
between regular POVMs on a compact Hausdorff space X and completely positive
maps on the space C(X) of all continuous functions on X . Using the results got earlier
for POVMs and this correspondence, we obtain a number of results for UCP maps on
C(X). In particular we show that C∗-extreme maps on commutative unital C∗-algebras
with countable spectrum are ∗-homomorphisms (Theorem 7.7). Then making use of the
theory of measure isomorphism of POVMs, we show that separable commutative unital
C∗-algebras with uncountable spectrum always admit non ∗-homomorphic UCP maps
as C∗-extreme points (Theorem 7.10). We also show a Krein–Milman type theorem for
the collection of all UCP maps on C(X) equipped with bounded-weak topology. In the
concluding section we remark that the study of C∗-convexity can easily be extended to
the setting of locally compact Hausdorff spaces by taking one point compactifications.
We end with a question on identifying C∗-extreme points of unital completely positive
maps on the C∗-algebra l∞.

It may be remarked here that, although we have relegated a detailed description of
the relationship between POVMs and completely positive maps to Sect. 7, occasionally
even in earlier sections we would be making references to some known results from the
theory of completely positive maps.

Convention. All Hilbert spaces on which POVMs and UCP maps act will be complex
and separable as that is where our interest lies. However, when we consider Naimark’s
dilation of POVMs or Stinespring representations of UCP maps we may end up with
non-separable Hilbert spaces and this has to be kept in mind. We follow the convention
of the inner product being linear in the second variable. Throughout B(H) denotes the
algebra of all bounded operators on a complex separable Hilbert space H. If H,K are
two Hilbert spaces,B(H,K) denotes the space of all bounded linear operators fromH to
K. For a subset M of a Hilbert space, [M] denotes the closed subspace generated by M .
For any map f , ran( f ) denotes its range. Usually A, B, C etc. will denote measurable
subsets of general measurable spaces. Terms like μ, ν etc will denote arbitrary POVMs
while π, ρ will be used specifically for spectral measures. The Hilbert space on which
a spectral measure π acts will usually be denoted (and taken without mention) by Hπ .
Terms like φ,ψ etc will denote completely positive maps on a C∗-algebra. By a positive
measure, we mean a (not necessarily finite) usual scalar valued measure taking value in
[0,∞]. For our convenience, we always assume that singleton sets are measurable.

2. Basic Properties of POVMs

2.1. Positive operator valued measures. In this section, we recall the definition and
some basics of positive operator valued measures. This would also help us in fixing the
notation. See [10,23,33,36] and [21] for general references.

Unless stated otherwise, X is a non-empty set and O(X) denotes a σ -algebra of
subsets of X . The pair (X,O(X)) is called a measurable space and the elements of
O(X) are called measurable subsets. We shall simply call X a measurable space without
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mentioning the underlying σ -algebra O(X). To avoid some unnecessary complications
in presentation, we assume that all singleton subsets of X are measurable. When X is a
topological space, we shall assumeO(X) to be the Borel σ -algebra on X . All topological
spaces under consideration would be Hausdorff.

Definition 2.1. Let X be a measurable space and let H be a Hilbert space. A positive
operator valued measure(POVM) on X with values inB(H) is amapμ : O(X) → B(H)

satisfying the following:

• μ(A) ≥ 0 in B(H) for all A ∈ O(X) and
• for every h, k ∈ H, the map μh,k : O(X) → C defined by

μh,k(A) = 〈h, μ(A)k〉 for all A ∈ O(X), (2.1)

is a complex measure.

Moreover, a POVM μ is called

(1) normalized if μ(X) = IH, the identity operator on H.
(2) projection valued measure (PVM) if μ(A) is a projection for each A ∈ O(X).
(3) spectral measure if μ is a PVM and is normalized.

It follows from the definition of POVM that, for any increasing (or decreasing) se-
quence {An} of measurable subsets converging to A i.e. An ⊆ An+1 and ∪n An = A (or
An ⊇ An+1 and∩An = A),μ(An) → μ(A) in weak operator topology (WOT) inB(H).
Since convergence of an increasing (or decreasing) sequence of bounded operators is
equivalent for both weak operator topology and strong operator topology (SOT), it fol-
lows that μ(An) → μ(A) in SOT. Also, since on bounded subsets of B(H), WOT and
σ -weak topology agree, we infer that μ(An) → μ(A) in σ -weak topology. Therefore,
in the countable additivity of POVM:

μ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

μ(Bn), Bn ∈ O(X), Bn ∩ Bm = ∅ for n �= m,

the convergence of the series holds inWOT, SOT and σ -weak topologies. So for POVMs
such sums can be considered in any of the three topologies.

For any POVM μ, by μh,k we would mean the complex measure defined in (2.1).
It is clear that a POVM μ is determined by its associated family of complex measures
{μh,k : h, k ∈ H}.
Notation. Let P OV MH(X) denote the collection of all POVMsonO(X)with values in
B(H) and let PH(X) denote the collection of all normalized elements in P OV MH(X).

Wefrequentlymakeuse of the following remarks in subsequent resultswithout always
explicitly referring to them.

Remark 2.2. It is well-known that for a POVM μ, that μ(A) is a projection for all
A ∈ O(X) (i.e. μ is a PVM) is equivalent to the fact that μ(B ∩ C) = μ(B)μ(C) for
all B, C ∈ O(X) (see pg 34, [36]).

Remark 2.3. Let μ : O(X) → B(H) be a POVM and let {Bi }i∈I be a collection of
mutually disjoint measurable subsets such that μ(Bi ) �= 0 for each i ∈ I . Then by
using separability ofH, one can show that I is countable (Lemma 3.1, [12]) as follows:
consider any strictly positive density operator S on H such that the map T �→ tr(ST )

(tr denotes trace) is a normal faithful state on B(H). Define the positive measure μS :
O(X) → [0,∞) by μS(A) = tr(Sμ(A)) for all A ∈ O(X). Note that μS(Bi ) �= 0 for
all i ∈ I and since

∑
i∈I μS(Bi ) ≤ μS(∪i∈I Bi ) < ∞, we conclude that I is countable.
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2.2. Naimark’s dilation theorem. The classical dilation theorem of Naimark [28] shows
that POVMs can be dilated to spectral measures: Let X be a measurable space and
μ : O(X) → B(H) be a POVM. Then there exists a triple (π, V,Hπ ) where Hπ is a
Hilbert space, π : O(X) → B(Hπ ) is a spectral measure and V ∈ B(H,Hπ ) such that

μ(A) = V ∗π(A)V for all A ∈ O(X) (2.2)

and the minimality condition: Hπ = [π(O(X))VH] is satisfied. Moreover such a di-
lation is unique up to unitary equivalence. The triple (π, V,Hπ ) is called a Naimark
dilation triple for μ. Since π is spectral, note from (2.2) that V is an isometry if and
only if μ is a normalized POVM.

Naimark’s theorem is text book material. The proof generally uses the usual GNS
construction method. Some possible references are (Theorem II.11.F, [36]) and (Theo-
rem 2.1.1, [23]). A proof using Stinespring’s theorem for completely positive maps is
also well-known (Theorem 4.6, [33]), but then POVMs under consideration will have to
be assumed to be regular on the Borel σ−algebra of some locally compact Hausdorff
space. As an immediate application of Naimark’s dilation theoremwe have the following
result. Here and elsewhere, M′ denotes the commutant of a subset M in B(H).

Proposition 2.4. Let μ : O(X) → B(H) be a normalized POVM and μ(E) a projection
for some E ∈ O(X). Then μ(E ∩ A) = μ(E)μ(A) = μ(A)μ(E) for every A ∈ O(X).
In particular, μ(E) ∈ μ(O(X))′ and hence ran(μ(E)), the range of μ(E) is a reducing
subspace for all μ(A), A ∈ O(X).

Proof. Let (π, V,Hπ ) be theminimalNaimark dilation forμ. As noticed earlier, sinceμ

is normalized and π is spectral, it follows that V is an isometry. Now for any A ∈ O(X),
as μ(A) = V ∗π(A)V and V ∗V = IH, we get

[V μ(A) − π(A)V ]∗ · [V μ(A) − π(A)V ] = [μ(A)V ∗ − V ∗π(A)] · [V μ(A) − π(A)V ]
= μ(A)2 − μ(A)2 − μ(A)2 + μ(A)

= μ(A)2 − μ(A).

In particular, since μ(E) is a projection, we get V μ(E) = π(E)V . For any A ∈ O(X),
therefore

μ(A)μ(E) = V ∗π(A)V μ(E) = V ∗π(A)π(E)V = V ∗π(A ∩ E)V = μ(A ∩ E).

Similarly or by taking adjoint of the last equation we get μ(E)μ(A) = μ(E ∩ A). ��
Definition 2.5. A POVM μ is concentrated on a measurable subset E if μ(A) = μ(A ∩
E) for all A ∈ O(X).

Note that a POVM μ being concentrated on a subset E just means that μ(X\E) = 0.
This is not same as saying that E is the support ofμ. In factwhen X is a topological space,
the support of μ is defined as the smallest closed subset C such that μ(C) = μ(X).

Proposition 2.6. Let μ : O(X) → B(H) be a POVM with the minimal Naimark dilation
(π, V,Hπ ). Then for any A ∈ O(X), μ(A) = 0 if and only if π(A) = 0. In particular,
μ is concentrated on E ∈ O(X) if and only if π is concentrated on E .
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Proof. Let μ(A) = 0. Then for any B ∈ O(X) and h ∈ H, we get

〈π(A)π(B)V h, π(B)V h〉 = 〈V ∗π(B ∩ A)V h, h〉 = 〈μ(B ∩ A)h, h〉 ≤ 〈μ(A)h, h〉 = 0.

Since {π(B)V h; h ∈ H, B ∈ O(X)} is total in Hπ by the minimality condition, we
conclude that π(A) = 0. The converse is obvious. The second assertion follows from
the first. ��
Remark 2.7. As we have already mentioned in Convention, all Hilbert spaces on which
POVMs act are assumed to be separable. But note that the Hilbert space Hπ in the
minimal Naimark dilation (π, V,Hπ ) of a POVM need not always be separable. Nev-
ertheless, notions like atoms and atomic/non-atomic POVMs (Definition 2.11), mutual
singularity (Definition 4.1) of POVMs, regularity (Definition 6.1) of a POVM etc. do
not need the assumption of separability of the Hilbert space and hence will naturally be
considered for the spectral measure π .

2.3. Radon–Nikodym type theorem. In classical measure theory, the Radon–Nikodym
derivative of a (σ -finite) positive measure absolutely continuous with respect to another
(σ -finite) positivemeasure is a well-established fact. There have been several attempts to
generalize it to the case of absolutely continuous POVMs (which is defined in a similar
way as usual positive measures), especially for finite dimensional Hilbert spaces, see for
example [16,27]. In this paper however we consider a different notion of comparison of
POVMs. We say ν is dominated by μ (denoted by ν ≤ μ) if μ − ν is a POVM. Here
also a Radon–Nikodym type of theorem is known and is well studied. It is analogous to
a Radon–Nikodym theorem for completely positive maps by Arveson (Theorem 1.4.2,
[1]). See [35] for a more recent account of this result of Arveson and its implications to
quantum information theory.

For readers convenience we present an outline of the proof. Here the operator D can
be thought of as the Radon–Nikodym derivative of ν with respect to μ.

Theorem 2.8 (Radon–Nikodym type theorem). Let μ : O(X) → B(H) be a POVM with
the minimal Naimark dilation (π, V,Hπ ). Then for a POVM ν : O(X) → B(H), ν ≤ μ

(i.e. μ − ν is a POVM) if and only if there exists a positive contraction D ∈ π(O(X))′
such that ν(A) = V ∗Dπ(A)V for all A ∈ O(X).

Proof. The proof of ‘if’ part is obvious. For the converse, assume that μ − ν is a
POVM. Let (Hρ, ρ, W ) be the minimal Naimark dilation for ν and define an operator
T : Hπ → Hρ as follows: first define T on the subspace span{π(A)V h; A ∈ O(X), h ∈
H} of Hπ by T (π(A)V h) = ρ(A)W h, for all A ∈ O(X), h ∈ H and extend it
linearly. One can easily show that T is a well-defined contraction by using the fact that∑n

i, j=1〈hi , (μ − ν)(Ai ∩ A j )h j 〉 ≥ 0 for any Ai ∈ O(X), hi ∈ H, 1 ≤ i ≤ n. So it
extends as a contraction to its closure Hπ , which we still denote by T . Set D = T ∗T .
Then D is a positive contraction and it is immediate to verify that D ∈ π(O(X))′ and
ν(A) = V ∗ Dπ(A)V for all A ∈ O(X). ��

2.4. Extreme POVMs. The setPH(X), which is the collection of all normalized POVMs
on X with values in B(H) is clearly a convex set. Extreme points of this set are well
studied, especially when X is a finite set or a compact Hausdorff space andH is a finite
dimensional Hilbert space (see [6,16,32] and [22]). In this paper, we are not focusing
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much on extreme points of PH(X). Nevertheless, we provide some results for the sake
of comparison with C∗-extreme points. It is to be noted that even when X is finite with
more than two points, the set of extreme points is difficult to describe. This is true even
whenH is finite dimensional. The following abstract characterization of extreme points
ofPH(X) is again inspired by Arveson’s result (Theorem 1.4.6, [1]) which characterizes
the extreme points of unital completely positive maps on a C∗-algebra. This must have
been noted by several researchers for the case of POVMs and so we just outline the
proof.

Theorem 2.9 (Extreme point criterion). Suppose that μ ∈ PH(X) has the minimal
Naimark dilation (π, V,Hπ ). Then a necessary and sufficient criterion for μ to be
extreme in PH(X) is that the map D �→ V ∗ DV from π(O(X))′ to B(H) is injective.

Proof. First assume that μ is extreme in PH(X). Let V ∗ DV = 0 for some D ∈
π (O(X))′. Without loss of generality, we can assume that −IHπ

≤ D ≤ IHπ
. Write

μ = (μ+ +μ−)/2 whereμ±(·) = V ∗(IHπ
± D)π(·)V . Then asμ is extreme inPH(X),

we must have μ = μ+. Hence V ∗Dπ(·)V = 0, which implies D = 0. For the con-
verse, assume the injectivity of the map D �→ V ∗DV , and let μ = (μ1 + μ2)/2 for
μ1, μ2 ∈ PH(X). By Radon–Nikodym type theorem, there are positive contractions
Di ∈ π (O(X))′, i = 1, 2 such that μi (·)

2 = V ∗ Diπ(·)V . But then as μi is normalized,
we have V ∗(2Di − IHπ

)V = 0 and hence the hypothesis implies 2Di = IHπ
. Thus we

get μi (·) = V ∗π(·)V = μ(·) for i = 1, 2, which proves that μ is extreme in PH(X). ��
The following is an immediate corollary of this theorem. It can also be seen directly,

as projections are extremal in the set of positive contractions.

Corollary 2.10. Every spectral measure is extreme in PH(X).

We briefly discuss here a result in Holevo [23] (see Theorem 2.1.2 therein), which
describes some significant differences that can arise when dimension of theHilbert space
changes from finite to infinite. LetP0

H(X) denote the set of all spectral measures, and let
P1
H(X) denote the set of POVMs with commuting ranges. Note that P0

H(X) ⊆ P1
H(X).

Let Ext(PH(X)) denote the set of extreme points of PH(X), and let co(S) denote
the convex hull of a subset S of PH(X). Holevo considers the following topology on
PH(X) given by the convergence: a net μi converges to μ in PH(X) if tr(T μi (A)) →
tr(T μ(A)), for all A ∈ O(X) and trace class operators T on H i.e. μi (A) → μ(A)

in σ -weak topology (this is equivalent to saying that μi (A) → μ(A) in WOT for all
A ∈ O(X)). In Sect. 6, we also consider a strictly weaker topology that we define for
POVMs on topological spaces (see Definition 6.11).

Let n denote the cardinality of the set X . If n = 2, then the extreme points of PH(X)

are exactly the spectral measures (this case relates closely to the classical probability
theory), as well as we have P1

H(X) = co(P0
H(X)). Note that this happens regardless

of the dimension of the Hilbert space H. On the other hand, when n > 2 the situation
becomes more complicated. To be precise, if n > 2 then there are always some extreme
points ofPH(X)which are not spectral measures, andwe haveP1

H(X) � co(P0
H(X)) ⊆

PH(X). Moreover, the latter inclusion is strict when dimH < ∞, while they are equal
when dimH = ∞.

The scenario in the case of C∗-extreme points of PH(X) (see Definition 3.2) is less
complex. Indeed if X is countable, or if dimH < ∞ and X is arbitrary, then C∗-extreme
points of PH(X) are always spectral measures (see Theorem 3.11 and Theorem 3.13
below). This is in stark contrast with extreme points case. Since spectral measures are
more tractable objects and have classical significance, it seems very natural to study the
theory of C∗-convexity of POVMs.
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2.5. Atomic and non-atomic POVMs. One of the approaches that we take in this paper
for exploring C∗-extreme points is via the decomposition of POVMs into atomic and
non-atomic POVMs and analysing them separately. So we recall here the definitions
and give some of their properties. These notions have been widely studied in classical
measure theory. See [24] for a very general exposition.

Definition 2.11. Let μ : O(X) → B(H) be a POVM. A subset A ∈ O(X) is called an
atom for μ if μ(A) �= 0 and whenever B ⊆ A in O(X),

either μ(B) = 0 or μ(B) = μ(A).

A POVM μ is called atomic if every A ∈ O(X) with μ(A) �= 0 contains an atom. A
POVM μ is called non-atomic if it has no atom.

We shall frequently make use of the following remark, which is easy to verify.

Remark 2.12. If A is an atom for a POVM μ then for any B ⊆ A in O(X), either
μ(B) = 0 or A ∩ B is an atom for μ.

It is a well-known fact that every finite (more generally σ -finite) positive measure
decomposes uniquely as a sum of an atomic positive measure and a non-atomic positive
measure. In a similar fashion, every POVM decomposes uniquely as a sum of an atomic
POVM and a non-atomic POVM ([10,27]). Although the proof in [27] (which itself is
inspired from the classical case) is for POVMs on locally compact Hausdorff spaces,
the same proof will work for general measurable spaces (see the proof of Theorem 4.9
below). We state it here.

Theorem 2.13 (Theorem 3.10, [27]). Every POVM decomposes uniquely as a sum of an
atomic POVM and a non-atomic POVM.

We end this section by making a useful observation on atoms of POVMs which shall
be frequently used in the paper.

Proposition 2.14. Let μ : O(X) → B(H) be a POVM with the minimal Naimark
dilation (π, V,Hπ ). Then a subset A ∈ O(X) is an atom for μ if and only if A is an
atom for π . In particular, μ is atomic (non-atomic) if and only if π is atomic (non-atomic).

Proof. For any subset A ∈ O(X), A is an atom for μ if and only if μ(A) �= 0 and
for each A′ ⊆ A in O(X), we have either μ(A′) = 0 or μ(A\A′) = 0. Equivalently
π(A) �= 0 and we have either π(A′) = 0 or π(A\A′) = 0 from Proposition 2.6, which
in turn is same as saying that A is an atom for π . The second assertion easily follows
from the first. ��

3. Main Results on C∗-Extreme Points

As mentioned earlier, PH(X) denotes the collection of all normalized POVMs from
O(X) to B(H). We already saw that PH(X) is a convex set and Theorem 2.9 gives
an abstract characterization of extreme points of PH(X). In the rest of the paper, we
look into a non-commutative convexity structure of PH(X), called quantum convexity
or C∗-convexity. As said earlier, the notion of C∗-convexity was introduced in [25] for
a subset of B(H). In [15], it is generalized to the collection of unital completely positive
maps. Further one can see the definition of C∗-convexity being modified and studied
by [26] in different settings. The notion has also been studied by Farenick et al. [16]
for positive operator valued measures, which is our main interest in this paper. Some
general references on this topic are [15,17,19,25,26,38] and [16].
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Definition 3.1. For anyμi ∈ PH(X) and Ti ∈ B(H), 1 ≤ i ≤ n with
∑n

i=1 T ∗
i Ti = IH,

a sum of the form

μ(·) =
n∑

i=1

T ∗
i μi (·)Ti (3.1)

is called aC∗-convex combination forμ. TheoperatorsTi ’s here are calledC∗-coefficients.
When Ti ’s are invertible, the sum in (3.1) is called a proper C∗-convex combination for
μ.

Observe thatPH(X) is a C∗-convex set in the sense that it is closed under C∗-convex
combinations. Now the following definition ofC∗-extreme points is the POVManalogue
of the definition in [15] for unital completely positive maps.

Definition 3.2. A normalized POVMμ is called a C∗-extreme point inPH(X) if, when-
ever

∑n
i=1 T ∗

i μi (·)Ti is a proper C∗-convex combination forμ, then eachμi is unitarily
equivalent to μ i.e. there are unitary operators Ui ∈ B(H) such that μi (·) = U∗

i μ(·)Ui
for 1 ≤ i ≤ n.

3.1. Abstract characterizations of C∗-extreme points. Farenick and Zhou [17] obtained
a characterization of C∗-extreme points for unital completely positive maps. The same
can be translated into the language of POVMs and one obtains a characterization for
C∗-extreme points of PH(X).

As we are dealing with the more general case of arbitrary measurable spaces and also
because we are deliberately making slight changes in the statements, we are providing
the proof here for completeness.

Theorem 3.3 (Theorem 3.1, [17]). Let μ : O(X) → B(H) be a normalized POVM with
the minimal Naimark dilation (π, V,Hπ ). Then μ is a C∗-extreme point in PH(X) if
and only if for any positive operator D ∈ π(O(X))′ with V ∗DV being invertible, there
exists a co-isometry U ∈ π(O(X))′ (i.e. UU∗ = IHπ

) satisfying U∗U D1/2 = D1/2

and an invertible operator S ∈ B(H) such that U D1/2V = V S.

Proof. First assume that μ is C∗-extreme in PH(X). Let D ∈ π(O(X))′ be positive
with V ∗ DV invertible. Choose α > 0 such that ‖αD‖ < 1. This ensures that IHπ

−αD
is positive and invertible. Also ‖αV ∗ DV ‖ < 1 and hence IH −αV ∗ DV is positive and
invertible. Set

T1 = (αV ∗DV )1/2 and T2 = (IH − αV ∗DV )1/2.

Then both T1 and T2 are invertible and T ∗
1 T1 + T ∗

2 T2 = IH. Now we define POVMs
μi : O(X) → B(H), i = 1, 2 by

μ1(A) = T −1
1

(
αV ∗Dπ(A)V

)
T −1
1 and μ2(A) = T −1

2

(
V ∗(IHπ

− αD)π(A)V
)

T −1
2 ,

(3.2)

for all A ∈ O(X). It is clear that μi is a POVM and μi (X) = IH. Also,

T ∗
1 μ1(A)T1 + T ∗

2 μ2(A)T2 = V ∗π(A)V = μ(A) for all A ∈ O(X).
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Therefore since μ is C∗-extreme, there exists a unitary W ∈ B(H) such that μ(·) =
W ∗μ1(·)W . This implies

μ(·) = W ∗T −1
1 (αV ∗ Dπ(·)V )T −1

1 W =
(√

αW ∗T −1
1 V ∗ D1/2

)
π(·)

(√
αD1/2V T −1

1 W
)

= V ∗
1 π(·)V1,

where V1 = √
αD1/2V T −1

1 W ∈ B(H,Hπ ). Note that V ∗
1 V1 = V ∗

1 π(X)V1 = μ(X) =
IH, and so V1 is an isometry. Now if we set

K = [π (O(X)) V1H] ⊆ Hπ ,

thenK is a reducing subspace for all π(A), A ∈ O(X). Also ran(V1) = π(X)V1H ⊆ K,

and if we think V1 as an operator from H into K, then (π(·)|K, V1,K) is the minimal
Naimark dilation for μ. Therefore, by the uniqueness of minimal dilation, there exists a
unitary U : K → Hπ satisfying

U V1 = V and π(A)U = Uπ(A)|K for all A ∈ O(X).

Extend U to the whole ofHπ by assigning it to be 0 onHπ �K, which we still denote
by U . Here Hπ � K denotes the orthogonal complement of K in Hπ . It is immediate
that

U∗U = PK and UU∗ = IHπ

where PK is the projection of Hπ onto K, which is to say that U is a co-isometry. We
also have

π(A)U = Uπ(A) for all A ∈ O(X),

and hence U ∈ π (O(X))′. Set

S = √
α

−1
W ∗T1 ∈ B(H).

Then S is invertible and, since U V1 = V and W is a unitary, we get

V S = U V1S = √
α
√

α
−1

U D1/2V T −1
1 W W ∗T1 = U D1/2V .

The only remaining thing is to show that U∗U D1/2 = D1/2. Since U∗U is a projec-
tion onto K, this will follow once we show that K = ran(D1/2). Now using Hπ =
[π (O(X)) VH] and invertibility of T1 and W , we obtain

K =[π (O(X)) V1H] = [π (O(X)) D1/2V
(√

αT −1
1 WH

)
]

=[D1/2π (O(X)) VH] = ran(D1/2).

For the converse, assume that the given statement in ‘only if’ part is true. Let μ =∑n
i=1 T ∗

i μi (·)Ti be a proper C∗-convex combination. Fix any i ∈ {1, . . . , n}. Since
T ∗

i μi (·)Ti ≤ μ, it follows from Radon–Nikodym type Theorem (Theorem 2.8) that
there exists a positive operator Di ∈ π(O(X))′ satisfying

T ∗
i μi (A)Ti = V ∗ Diπ(A)V for all A ∈ O(X).

Then V ∗Di V = T ∗
i Ti and since Ti is invertible, it follows that V ∗ Di V is invertible.

Hence the hypothesis ensures the existence of an operator Ui ∈ π (O(X))′ satisfying
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U∗
i Ui D1/2

i = D1/2
i and an invertible operator Si ∈ B(H) such that Ui D1/2

i V = V Si .
Thus,

T ∗
i μi (·)Ti = V ∗ Diπ(·)V = V ∗ D1/2

i π(·)D1/2
i V

= V ∗ D1/2
i π(·)U∗

i Ui D1/2
i V = V ∗ D1/2

i U∗
i π(·)Ui D1/2

i V

=
(

Ui D1/2
i V

)∗
π(·)

(
Ui D1/2

i V
)

= (V Si )
∗π(·)(V Si )

= S∗
i

(
V ∗π(·)V

)
Si = S∗

i μ(·)Si ,

which implies μi = T ∗−1

i S∗
i μ(·)Si T

−1
i = R∗

i μ(·)Ri , where Ri = Si T
−1

i . It is clear
that Ri is invertible and since, R∗

i Ri = μi (X) = IH, it follows that Ri is a unitary. This
shows thatμi is unitarily equivalent toμ, as required to conclude thatμ is a C∗-extreme
point in PH(X). ��
Remark 3.4. In the statement of the theorem above, U is a co-isometry. It is not clear at
this point as to whether U can be chosen to be a unitary, as claimed in (Theorem 3.1,
[17]). Of course this is automatic ifHπ is finite dimensional.

The following is an immediate corollary of Theorem 3.3. This can also be deduced
from a result of Loebl and Paulsen (Proposition 26, [25]), which says that projections
are C∗-extreme points in the set of all positive contractions of B(H), although it needs
a bit of effort.

Corollary 3.5. Every spectral measure is a C∗-extreme point in PH(X).

Proof. If μ is a spectral measure then the minimal dilation for μ can be taken to be
(μ, IH,H). For positive D ∈ μ(X)′ with D(= I ∗

HDIH) invertible, we can takeU = IH
and S = D1/2 to satisfy the criterion. ��

Zhou in his thesis [38] gave another characterization of C∗-extreme points for unital
completely positive maps. The result translates to POVM case as follows. Again as there
is a slight change in the statement, we provide the proof.

Corollary 3.6 (Theorem 3.1.5, [38]). Let μ ∈ PH(X). Then μ is C∗-extreme in PH(X)

if and only if for any POVM ν : O(X) → B(H) with ν ≤ μ and ν(X) invertible, there
exists an invertible operator S ∈ B(H) such that ν(A) = S∗μ(A)S for all A ∈ O(X).

Proof. First assume that μ is a C∗-extreme point in PH(X). Let ν : O(X) → B(H)

be a POVM such that ν ≤ μ and ν(X) is invertible. Let (π, V,Hπ ) be the minimal
Naimark dilation for μ. By Theorem 2.8, there exists a positive operator D ∈ π(O(X))′
such that

ν(A) = V ∗ Dπ(A)V for all A ∈ O(X).

Since V ∗ DV = ν(X) and ν(X) is invertible, it follows that V ∗ DV is invertible. There-
fore, by Theorem 3.3 there exists a co-isometry U ∈ π(O(X))′ satisfying U∗U D1/2 =
D1/2 and an invertible operator S ∈ B(H) such that U D1/2V = V S. So for any
A ∈ O(X), we get

ν(A) = V ∗ Dπ(A)V = V ∗ D1/2π(A)D1/2V = V ∗ D1/2π(A)U∗U D1/2V

= V ∗ D1/2U∗π(A)U D1/2V



1246 T. Banerjee, B. V. R. Bhat, M. Kumar

=
(

U D1/2V
)∗

π(A)
(

U D1/2V
)

= (V S)∗π(A)(V S)

= S∗ (
V ∗π(A)V

)
S = S∗μ(A)S.

Conversely, assume the given statement in the ‘only if’ part is true. Letμ = ∑n
i=1 T ∗

i μi
(·)Ti be a proper C∗-convex combination. Then T ∗

i μi (·)Ti ≤ μ for each i . Also, since
T ∗

i μi (X)Ti = T ∗
i Ti and Ti is invertible, it follows that T ∗

i μi (X)Ti is invertible. Hence
by hypothesis, there exists an invertible operator Si ∈ B(H) such that for all A ∈ O(X),
we have

T ∗
i μi (A)Ti = S∗

i μ(A)Si

which when put differently yields

μi (A) = U∗
i μ(A)Ui ,

whereUi = Si T
−1

i . But, sinceU∗
i Ui = U∗

i μ(X)Ui = μi (X) = IH andUi is invertible,
it follows that Ui is a unitary. This shows that μi is unitarily equivalent to μ, as was
required. ��

We wish to mention that the condition of ν(X) being invertible in the corollary
above cannot be dropped. The original statement (Theorem 3.1.5, [38]) is somewhat
ambiguous about the invertibility requirement in the characterization. But it is crucial as
the following example shows. Here T is the unit circle andO(T) is the Borel σ -algebra
of T.

Example 3.7. Consider the normalized POVM μ : O(T) → B(H2) defined by

μ(A) = PH2 MχA |H2
= TχA for all A ∈ O(T),

where H2 is the Hardy space on T and T f = PH2 M f |H2
denotes the Toeplitz operator

for any f ∈ L∞(= L∞(T, l), where l denotes the one-dimensional Lebesgue measure
on T). Here χA denotes the characteristic function for the subset A. It is known that μ

is C∗-extreme in PH2(T) (see Example 7.9). Let C ⊆ T be a Borel subset such that
l(C) �= 0 and l(T\C) �= 0. Consider ν : O(T) → B(H2) defined by

ν(A) = μ(A ∩ C) = PH2 Mχ(A∩C) |H2
= Tχ(A∩C)

for all A ∈ O(T).

It is clear that ν is a POVM and ν ≤ μ. Also ν(T) = TχC is not invertible. We claim
that there is no operator S ∈ B(H) such that ν(·) = S∗μ(·)S. Suppose this is not the
case and S is one such operator. Note that S∗S = ν(T) = TχC . Since l(C) and l(T\C)

are non-zero, we have χC �= 0 and χ(T\C) �= 0 in L∞. It is then a fact due to Coburn
that TχC and Tχ(T\C)

are one-one operators (see Proposition 7.24, [13]) and hence S∗S is
one-one, which further implies that S is one-one. Therefore, again as Tχ(T\C)

is one-one,
it follows the operator Tχ(T\C)

S is one-one. But on the other hand, we have(
T 1/2

χ(T\C)
S
)∗ (

T 1/2
χ(T\C)

S
)

= S∗Tχ(T\C)
S = S∗μ(T\C)S = ν(T\C) = 0

which implies

T 1/2
χ(T\C)

S = 0

and hence Tχ(T\C)
S = 0, leading us to a contradiction.
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3.2. C∗-extreme points with commutative ranges. With these two characterizations of
C∗-extreme points at our disposal, we are now ready to present the main results of this
paper. Gregg [19] shows that if a POVM μ is C∗-extreme in PH(X) (for a compact
Hausdorff space X ) then for any A in O(X), the spectrum of μ(A) is either contained
in {0, 1} (so that μ(A) is a projection) or it is whole of the interval [0, 1]. Our main
observation is that the second situation can be avoided in a variety of cases. The proof uses
straightforward Borel functional calculus, with a carefully chosen family of functions.
These functions are necessarily discontinuous and so C∗-algebra setting and continuous
functional calculus will not suffice.

Theorem 3.8. Let μ be a C∗-extreme point in PH(X). If E ∈ O(X) is such that
μ(A)μ(E) = μ(E)μ(A) for all A ⊆ E inO(X), then μ(E) is a projection. In particular
if μ(E) commutes with all μ(B) for B ∈ O(X), then μ(E) is a projection.

Proof. The second assertion is immediate from the first. So assume the hypothesis in
the first statement. We claim that σ(μ(E)) ∩ (r, s) = ∅ for all 0 < r < s < 1, where
σ(μ(E)) denotes the spectrum of the operator μ(E). As μ(E) is a positive contraction,
it will follow that σ(μ(E)) ⊆ {0, 1}, which in turn will imply that μ(E) is a projection.
So fix 0 < r < s < 1, and define the map f := fr,s : [0, 1] → [0, 1] by

fr,s(t) =
{

1 if t /∈ [r, s],
r

1−r

( 1
t − 1

)
if t ∈ [r, s]. (3.3)

Clearly f is continuous except at one point namely s, and hence it is a Borel measurable
function. So for any operator 0 ≤ T ≤ IH, it follows from spectral theory that f (T ) is
a well defined bounded operator. Further we note for each t ∈ [0, 1], that

0 < α :=
(

r

1 − r

)(
1 − s

s

)
≤ f (t) ≤ 1

and consequently,

α IH ≤ f (T ) ≤ IH. (3.4)

Now consider the map ν : O(X) → B(H) defined by

ν(B) = μ(B ∩ E) f (μ(E)) + μ(B\E) (3.5)

for any B ∈ O(X).
We show that ν is a POVM by observing the following:

• For each B ∈ O(X), our hypothesis says that μ(B ∩ E) and μ(E) commute and it
then implies from spectral theory thatμ(B ∩ E) commutes with f (μ(E)). Therefore,
as both μ(B ∩ E) and f (μ(E)) are positive operators, it follows that their product
μ(E ∩ B) f (μ(E)) is a positive operator, which amounts to saying that ν(B) ≥ 0 in
B(H).

• If B1, B2, . . . is a countable collection of mutually disjoint measurable subsets of
X and B = ∪n Bn , then since μ is a POVM, we have in WOT convergence,

ν(∪n Bn) = μ((∪n Bn) ∩ E) f (μ(E)) + μ((∪n Bn)\E)

= μ(∪n(Bn ∩ E)) f (μ(E)) + μ(∪n(Bn\E))

=
∑

n

[μ(Bn ∩ E) f (μ(E))] +
∑

n

μ(Bn\E)



1248 T. Banerjee, B. V. R. Bhat, M. Kumar

=
∑

n

[μ(Bn ∩ E) f (μ(E)) + μ(Bn\E)]

=
∑

n

ν(Bn).

This shows that μ is countably additive, which in particular implies that the function
B �→ 〈h, ν(B)k〉 is a complex measure on X for all h, k ∈ H.

The observations above imply that ν is a POVM. Further since f (μ(E)) ≤ IH from
(3.4), it follows for each B ∈ O(X), that

ν(B) = μ(B ∩ E) f (μ(E)) + μ(B\E) ≤ μ(B ∩ E) + μ(B\E) = μ(B)

which is to say ν ≤ μ. Also since f (μ(E)) ≥ α IH from (3.4), and μ(E) ≤ IH, we
note that

ν(X) = μ(E) f (μ(E)) + μ(X\E)

≥ αμ(E) + μ(X\E)

= αμ(E) + IH − μ(E)

= IH − (1 − α)μ(E)

≥ IH − (1 − α)IH
= α IH,

which is equivalent to saying that ν(X) is invertible. Therefore, as μ is a C∗-extreme
point in PH(X), it follows from Corollary 3.6 that there exists an invertible operator
T ∈ B(H) satisfying the condition

ν(B) = T ∗μ(B)T for all B ∈ O(X). (3.6)

We note that ν(X) = T ∗T = |T |2 and hence,

|T | = ν(X)1/2 = [μ(E) f (μ(E)) + IH − μ(E)]1/2 (3.7)

where |T | denotes the square root of the positive operator T ∗T . Set S = μ(E). By
taking B = E in (3.6), we have

T ∗ST = T ∗μ(E)T = ν(E) = μ(E) f (μ(E)) = S f (S).

Let T = U |T | be the polar decomposition of T . ThenU is a unitary and |T | is invertible,
as T is invertible. Consequently,

U∗SU = |T |−1S f (S)|T |−1. (3.8)

Now let g : [0, 1] → [0, 1] be the map defined by

g(t) = t f (t)

1 − t + t f (t)
=

{
t if t /∈ [r, s],
r if t ∈ [r, s].

Then g(S) is a well-defined bounded operator and we get

g(S) = S f (S)[IH − S + S f (S)]−1.



POVMs and UCP Maps 1249

Hence (3.7) and (3.8) yield

U∗SU = g(S).

Therefore by spectral mapping theorem (Theorem IX.8.11, [8]), spectrum of S satisfies
the following:

σ(S) = σ(U∗SU ) = σ(g(S)) ⊆ essran(g),

where essran(g) is the essential range of g with respect to the spectral measure corre-
sponding to the operator S. But,

essran(g) ⊆ ran (g) ⊆ [0, r ] ∪ [s, 1],
which implies that σ(S) ⊆ [0, r ] ∪ [s, 1]. This is same as saying σ(S) ∩ (r, s) = ∅,
which is what we wanted to show. ��

A direct application of Theorem 3.8 is possible for C∗-extreme points with commu-
tative range. We say a POVM μ to be commutative if its range is commutative. It has
been shown [22] that a commutative normalized POVM is an extreme point in PH(X)

if and only if it is spectral. A similar kind of result for C∗-extreme points holds true
following the theorem above; if a C∗-extreme point μ in PH(X) is commutative, then
it follows from Theorem 3.8 that μ(A) is projection for all A ∈ O(X) and hence μ is
spectral. Thus we have arrived at the following theorem.

Theorem 3.9. Let μ : O(X) → B(H) be a commutative normalized POVM. Then μ is
C∗-extreme in PH(X) if and only if it is a spectral measure.

3.3. Atomic C∗-extreme points. Theorem 3.8 is quite powerful. Here we have more
applications of it. We examine atomic C∗-extreme points. First consider the following
lemma. Recall our assumption that singletons are measurable subsets.

Lemma 3.10. Let μ be a C∗-extreme point in PH(X). Then μ(E) is a projection for
every atom E for μ. In particular μ({x}) is a projection for all x ∈ X and consequently
μ(A) is a projection for every countable subset A of X.

Proof. If E is an atom for μ then for each B ⊆ E inO(X), either μ(B) = 0 or μ(B) =
μ(E) and hence, μ(B) commutes with μ(E). Therefore Theorem 3.8 is applicable and
it follows thatμ(E) is a projection. This further implies that for each x ∈ X , since either
μ({x}) = 0 or {x} is an atom for μ, μ({x}) is a projection.

Finally let x, y ∈ X be two distinct points and set P = μ({x}) and Q = μ({y}).
Note that

P + Q = μ({x}) + μ({y}) = μ({x, y}) ≤ IH

and hence P ≤ IH − Q. Because P and Q are projections as proved above, it follows
that P(IH − Q) = P , which in turn yields

P Q = 0.

In other words, μ({x}) and μ({y}) are mutually orthogonal projections for any two
distinct points x and y. Therefore, for any at most countable subset A = {x1, x2, . . .} of
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X , the collection {μ({xn})} consists of projections mutually orthogonal to one another
and since

μ(A) =
∑

n

μ({xn}) (in WOT),

we conclude that μ(A) is a projection. ��
The POVMs on finite sets have been natural setting for many applications in quantum

theory. Several researchers have looked into the convexity structure in this set up and the
structure of extreme points is very well studied. They are not always spectral measures.
When it comes to C∗-convexity, it is shown in [16] that only spectral measures are
C∗-extreme whenH is finite dimensional. Here we show that it is true in full generality.

Following the results above, we now give a characterization of all atomicC∗-extreme
points inPH(X). This in particular characterizes allC∗-extreme points inPH(X)when-
ever X is finite.

Theorem 3.11. An atomic normalized POVM μ on a measurable space X is a C∗-
extreme point in PH(X) if and only if μ is spectral. In particular, if X is a countable
measurable space then any C∗-extreme point of PH(X) is spectral.

Proof. We have seen that spectral measures are alwaysC∗-extreme. Conversely, assume
thatμ isC∗-extreme inPH(X). Let {Bi }i∈I be amaximal collection of mutually disjoint
atoms for μ, which exists thanks to Zorn’s lemma. Then Lemma 3.10 says that μ(Bi )

is a projection for each i ∈ I . Also, since Bi ’s are mutually disjoint, it follows from
Proposition 2.4 that {μ(Bi ) : i ∈ I } is a collection of mutually orthogonal projections.
Hence, as H is separable, we conclude that I is countable. Further for any A ∈ O(X),
we have

μ(A) =
∑
i∈I

μ(A ∩ Bi ), (3.9)

otherwise, we would getμ(A\(∪i (A∩ Bi ))) �= 0 and sinceμ is atomic, there is an atom,
say A1 ⊆ A\(∪i (A ∩ Bi )) for μ. But then {Bi }i∈I ∪ {A1} is a collection of mutually
disjoint atoms for μ, which violates the maximality of the collection {Bi }i∈I . Similarly
note from Lemma 3.10 that for any A ∈ O(X), since either μ(A ∩ Bi ) = 0 or A ∩ Bi is
an atom forμ, the collection {μ(A∩ Bi )}i∈I consists of mutually orthogonal projections.
Consequently it follows from equation (3.9), that μ(A) is a projection. This proves that
μ is spectral. Since any POVM on a countable measurable space is atomic, the second
assertion follows. ��

Since all spectralmeasures are also extreme (in the usual sense),wehave the following
corollary. Note that the same is always true for general measurable spaces, wheneverH
is a finite dimensional Hilbert space ([16]).

Corollary 3.12. If X is a countable (in particular, finite) measurable space, then every
C∗-extreme point in PH(X) is extreme.

3.4. The case of finite dimensional Hilbert space. We end this section by recording the
case of finite dimensional Hilbert spaces and general measurable spaces. This set up
has been widely studied by several researchers. We recall that it is proved in [16] for a
compact Hausdorff space X and a finite dimensionalH, that every C∗-extreme point in
PH(X) is spectral. We extend this result to full generality using Theorem 3.11.



POVMs and UCP Maps 1251

Theorem 3.13. Let H be a finite dimensional Hilbert space and X a measurable space.
Then any C∗-extreme point in PH(X) is spectral.

Proof. Firstly, finite dimensionality ofH ensures that everyC∗-extreme point inPH(X)

is also extreme (Proposition 2.1, [16]). Nowwe show that every extreme point inPH(X)

is atomic (see Lemma 2, [6] for topological spaces) as follows: ifμ is extreme inPH(X)

and (π, V,Hπ ) is the minimal Naimark dilation for μ, then the map

D �→ V ∗ DV

from π(O(X))′ to B(H) is one-to-one by Theorem 2.9. Since H is finite dimensional,
B(H) is a finite dimensional algebra and henceπ(O(X))′ is a finite-dimensional algebra.
Therefore, since π(O(X)) ⊆ π(O(X))′ andHπ = [π (O(X)) VH], it follows thatHπ

is also finite-dimensional.
Consequently {π(A) : A ∈ O(X)} is a commuting family of projections on a finite

dimensional Hilbert spaceHπ and hence it is a finite set. This implies that π is atomic.
Then by Proposition 2.14, μ is also atomic. Thus we have shown that every C∗-extreme
point in PH(X) is atomic. The proof is complete in view of Theorem 3.11. ��
Remark 3.14. In the theorem above, we noticed that any spectral measure acting on a
finite dimensional Hilbert space is atomic.

4. Mutually Singular POVMs

4.1. Mutual singularity. The notion of mutual singularity of positive measures is very
familiar from classical measure theory. We consider the similar notion of mutually
singular POVMs. Our main aim here is to discuss the behaviour of C∗-extremity for
direct sumsofmutually singular POVMs.This helps us in characterization ofC∗-extreme
points, as we show that every C∗-extreme POVM can be decomposed into a direct sum
of an atomic and a non-atomic normalized POVM.

Definition 4.1. Let H1,H2 be Hilbert spaces and X a measurable space. Two POVMs
μi : O(X) → B(Hi ), i = 1, 2, are called mutually singular, denoted μ1 ⊥ μ2, if there
exist disjoint measurable subsets X1 and X2 of X such that μi (A) = μi (A ∩ Xi ) for all
A ∈ O(X).

The following proposition is a direct consequence of the classical case. It is a well-
known fact that an atomic finite positive measure is always mutually singular to a non-
atomic positive measure. We use it below.

Proposition 4.2. Let μi : O(X) → B(Hi ), i = 1, 2 be two POVMs such that μ1 is
atomic and μ2 is non-atomic. Then they are mutually singular.

Proof. Consider strictly positive density operators Si on Hi such that T �→ tr(Si T ) (tr
denotes trace) are faithful normal states on B(Hi ) for i = 1, 2. Then λi : O(X) →
[0,∞) defined by

λi (A) = tr(μi (A)Si ) for all A ∈ O(X),

are positive measures which, for any A ∈ O(X) satisfy

μi (A) = 0 if and only if λi (A) = 0. (4.1)

This in particular implies that λ1 is atomic and λ2 is non-atomic. Therefore, asmentioned
above, λ1 is mutually singular to λ2 (Theorem 2.5, [24]). This in turn implies due to
(4.1) that μ1 is mutually singular to μ2. ��
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4.2. Disjoint spectral measures. Inspired by the notion of disjointness for representa-
tions of C∗-algebras (see [1,2]), we introduce a similar notion for spectral measures.
We do not know whether this concept has been studied before. We establish here that
singularity and disjointness of spectral measures are in fact same.

Let π : O(X) → B(Hπ ) be a spectral measure and let H be a closed subspace of
Hπ such that H is invariant (and hence reducing) under π(A) for all A ∈ O(X). Then
the mapping A �→ π(A)|H gives rise to another spectral measure from O(X) to B(H),
and is called a sub-spectral measure of π .

Definition 4.3. Two spectral measures πi : O(X) → B(Hπi ), i = 1, 2 are called
disjoint if no non-zero sub-spectral measure of π1 is unitarily equivalent to any sub-
spectral measure of π2.

Let λ : O(X) → [0,∞] be a σ -finite measure such that L2(λ) is a separable Hilbert
space. Consider the map πλ : O(X) → B(L2(λ)) defined by

πλ(A) = MχA for all A ∈ O(X), (4.2)

where MχA is the multiplication operator by the characteristic function χA. It is straight-
forward to verify that πλ is a spectral measure. Also πλ(A) = 0 if and only if λ(A) = 0
for any A ∈ O(X). Such spectral measures are known as canonical spectral measures.

We first prove that the notion of singularity and disjointness are same in the case of
canonical spectral measures. The proof here follows the same technique which is usually
employed for representations (see Theorem 2.2.2, [2]).

Lemma 4.4. Let λ1 and λ2 be two σ -finite positive measures on X. Then λ1 is mutually
singular to λ2 if and only if πλ1 and πλ2 are disjoint.

Proof. Let πλ1 and πλ2 be disjoint spectral measures. Assume to the contrary that λ1
and λ2 are not mutually singular. Then by Lebesgue decomposition theorem, there is
a non-zero σ -finite positive measure, say λ, such that λ is absolutely continuous with
respect to both λ1 and λ2. Using Radon–Nikodym derivative dλ

dλi
of λ with respect to λi ,

it is not hard to see that πλ is unitarily equivalent to πλi (·)|Ki
, whereKi = ran(πλi (Ci ))

and Ci = {x ∈ X; dλ
dλi

(x) > 0}. It is clear that since λi (Ci ) �= 0, we haveKi �= 0 which

contradicts disjointness of πλ1 and πλ2 . The proof of the converse is contained in the
next theorem. ��

We use the familiar notion of direct sum in the next theorem and in subsequent
results. The direct sum of a collection {μi : O(X) → B(Hi )}i∈I of POVMs is the map
⊕iμi : O(X) → B(⊕iHi ) defined by

(⊕iμi )(A) = ⊕iμi (A) for all A ∈ O(X). (4.3)

It is immediate that ⊕iμi is a POVM. Further it is normalized if and only if each μi is
normalized. Also⊕iμi is a spectral measure if and only if each μi is a spectral measure.
Similar to an equivalent criterion for disjointness of representations (Proposition 2.1.4,
[2]), we have the following result for spectral measures. This also shows that the notions
of singularity and disjointness are same.

Theorem 4.5. Let πi : O(X) → B(Hπi ), i = 1, 2 be two spectral measures. Then the
following are equivalent:

(1) π1 and π2 are mutually singular.
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(2) π1 is disjoint to π2.
(3) If for T ∈ B(Hπ1,Hπ2), T π1(A) = π2(A)T for all A ∈ O(X), then T = 0.

Proof. (1) �⇒ (3): Let C1 and C2 be disjoint measurable subsets such that πi (A) =
πi (A ∩ Ci ) for all A ∈ O(X) and i = 1, 2. Let T ∈ B(Hπ1,Hπ2) be such that
T π1(A) = π2(A)T for all A ∈ O(X). Then, since π1(C1) = IHπ1

and π2(C1) = 0, it
follows that

T = T π1(C1) = π2(C1)T = 0.

(3) �⇒ (2): if π1 and π2 are not disjoint, then there are non-zero closed subspaces
Ki of Hπi invariant under πi (A) for all A ∈ O(X), and a unitary U : K1 → K2 such
that

Uπ1(A)|K1
= π2(A)|K2

U for all A ∈ O(X).

Extend U to Hπ1 by assigning 0 on Hπ1 � K1, and call it Ũ . Then it is immediate that
Ũ �= 0 and Ũπ1(A) = π2(A)Ũ for all A ∈ O(X), violating the condition in part (3).

(2) �⇒ (1): Let π1 and π2 be disjoint. By Hahn-Hellinger Theorem (Theorem 7.6,
[30]), there exists a collection, say {λi

n}n∈N∪{∞}, of σ -finite positive measures (possibly
zero measures) mutually singular to one another such that, upto unitary equivalence, we
have

πi =
⊕

n∈N∪{∞}
n · πλi

n

for i = 1, 2. Here n · πλi
n denotes the direct sum of n copies of πλi

n (when n = ∞,
the direct sum is countably infinite). Because π1 and π2 are disjoint, each πλ1n must be
disjoint to πλ2m for m, n ∈ N∪ {∞}. It then follows from Lemma 4.4 that λ1n is mutually
singular to λ2m as positive measures. Therefore for each n, m, there exist measurable
subsets X1

nm and X2
nm satisfying X1

nm ∩ X2
nm = ∅ and

λ1n(A) = λ1n(A ∩ X1
nm) and λ2m(A) = λ2m(A ∩ X2

nm),

for all A ∈ O(X). Set

X1 = ∪n ∩m X1
nm and X2 = ∪m ∩n X2

nm .

Then by usual set theory rules:

X1 ∩ X2 =
(
∪n ∩m X1

nm

)
∩

(
∪k ∩l X2

lk

)
= ∪n ∪k

[(
∩m X1

nm

)
∩

(
∩l X2

lk

)]
⊆ ∪n ∪k

(
X1

nk ∩ X2
nk

)
= ∅,

by using X1
nk ∩ X2

nk = ∅. Further for any A ∈ O(X) and fixed n, since λ1n(A ∩ X1
nm) =

λ1n(A) for all m, we have

λ1n(A) ≥ λ1n(A ∩ X1) ≥ λ1n(∩m

(
A ∩ X1

nm)
)

= lim
l

λ1n

(
∩l

m=1(A ∩ X1
nm)

)
= λ1n(A),
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where limit is taken in WOT. This implies λ1n(A ∩ X1) = λ1n(A). Similarly, we get

λ2m(A ∩ X2) = λ2m(A) for each m. Put differently, we obtain πλi
n (A ∩ Xi ) = πλi

n (A),

which further implies that

πi (A ∩ Xi ) =
⊕

n∈N∪{∞}
n · πλi

n (A ∩ Xi ) =
⊕

n∈N∪{∞}
n · πλi

n (A) = πi (A),

for each A ∈ O(X) and i = 1, 2. Since X1 and X2 are disjoint, we conclude that π1 is
mutually singular to π2. ��
Remark 4.6. In Theorem 4.5, we assumed that the spectral measures act on separable
Hilbert spaces. But the implication (1) �⇒ (3) is true even for non-separable Hilbert
spaces and the proof is similar. To see this, let πi : O(X) → B(Ki ), i = 1, 2 be
two mutually singular spectral measures concentrated on measurable subsets Xi with
X1∩X2 = ∅. HereKi need not be separable. Let T ∈ B(K1,K2) be such that T π1(A) =
π2(A)T for all A ∈ O(X). Then, since π1(X1) = π1(X) = IK1 and π2(X1) = 0, we
have T = T π1(X1) = π2(X1)T = 0. We use this fact in the next theorem.

4.3. Direct sums and C∗-extreme points. Weexplore the properties of beingC∗-extreme
or extreme for direct sums of mutually singular POVMs. Generally it is enough to look
at individual components to obtain the same property for direct sums.

Theorem 4.7. Let {μi : O(X) → B(Hi )}i∈I be a countable collection of normalized
POVMs for some indexing set I such that μi and μ j are mutually singular for i �= j
in I . Then μ = ⊕iμi is C∗-extreme (extreme) in P⊕iHi (X) if and only if each μi is
C∗-extreme (extreme) in PHi (X).

Proof. For each i ∈ I , let (πi , Vi ,Hπi ) be the minimal Naimark dilation for μi . Set
H = ⊕iHi and Hπ = ⊕iHπi and let π = ⊕iπi : O(X) → B(Hπ ) and V = ⊕i Vi :
H → Hπ . Clearly π is a spectral measure and V is an isometry. It is straightforward to
check that

[π(O(X))VH] = Hπ and μ(A) = V ∗π(A)V for all A ∈ O(X).

This implies that (π, V,Hπ ) is the minimal Naimark dilation for μ. Also for i �= j in I ,
since μi is mutually singular to μ j , it follows from Proposition 2.6 that πi is mutually
singular to π j . Now we claim that

π(O(X))′ = ⊕iπi (O(X))′ = {⊕i Si ; Si ∈ πi (O(X))′
}
.

Let S ∈ π(O(X))′ ⊆ B(⊕iHπi ). Then S = [Si j ] for some Si j ∈ B(Hπ j ,Hπi ). For any
A ∈ O(X), therefore

[Si j ] (⊕iπi (A)) = (⊕iπi (A)[Si j ]
that is

[Si jπ j (A)] = [πi (A)Si j ]
and hence

Si jπ j (A) = πi (A)Si j for all i, j ∈ I.
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In particular, this says that Sii ∈ πi (O(X))′ for all i ∈ I . Also since πi and π j are
mutually singular for i �= j , it follows from Remark 4.6 that

Si j = 0 for i �= j.

Thus

S = [Si j ] = ⊕i Sii ∈ ⊕iπi (O(X))′.

This proves that π(O(X))′ ⊆ ⊕iπi (O(X))′. The other inclusion of our claim is obvious.
In order to prove the equivalent assertions of C∗-extremity, we use the claim above

and the necessary and sufficient criterion of Theorem 3.3 throughout the proof without
always mentioning them. First assume that μ is C∗-extreme in PH(X). Fix j ∈ I and
let D j ∈ π j (O(X))′ be positive such that V ∗

j D j Vj is invertible. Define

D = ⊕i Di

by assigning Di = IHπi
for i �= j . It is clear that D is positive and D ∈ π(O(X))′.

Since

V ∗ DV = ⊕i V ∗
i Di Vi

and V ∗
i Di Vi is invertible for all i , it follows that V ∗DV is invertible. Therefore, as μ

is C∗-extreme in PH(X), we get a co-isometry U ∈ π(O(X))′ with U∗U D1/2 = D1/2

and an invertible operator T ∈ B(H) such that U D1/2V = V T . Then T = [Ti j ] for
some Ti j ∈ B(H j ,Hi ) and U = ⊕iUi for Ui ∈ πi (O(X))′. Since U is a co-isometry,
each Ui is a co-isometry. Also, since

⊕iU
∗
i Ui D1/2

i = (⊕iU
∗
i

)
(⊕iUi )

(
⊕i D1/2

i

)
= U∗U D1/2 = D1/2 = ⊕i D1/2

i ,

it follows that

U∗
i Ui D1/2

i = D1/2
i for all i.

Further, since

⊕iUi D1/2
i Vi = U D1/2V = V T = (⊕i Vi )[Ti j ] = [Vi Ti j ], (4.4)

it follows for i �= j that, Vi Ti j = 0 and hence Ti j = V ∗
i Vi Ti j = 0. This amounts to

saying that T = ⊕i Tii and its invertibility, in particular, implies that Tj j is invertible in
B(H j ). Also (4.4) yields

U j D1/2
j V j = Vj Tj j .

AsU j is a co-isometry in π j (O(X))′ satisfyingU∗
j U j D1/2

j = D1/2
j and Tj j is invertible

in B(H j ) such thatU j D1/2
j V j = Vj Tj j , we conclude thatμ j is C∗-extreme inPH j (X).

Conversely, assume that eachμi isC∗-extreme inPHi (X). Let D ∈ π(O(X))′ bepos-
itive such thatV ∗ DV is invertible. Then D is of the form⊕i Di for some Di ∈ πi (O(X))′.
Clearly each Di is positive. Since V ∗ DV is invertible and V ∗DV = ⊕i V ∗

i Di Vi , it fol-
lows that V ∗

i Di Vi is invertible for all i ∈ I . Again, as μi is C∗-extreme in PHi (X),
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we obtain a co-isometry Ui ∈ πi (O(X))′ with U∗
i Ui D1/2

i = D1/2
i and an invertible

operator Ti ∈ B(Hi ) such that Ui D1/2
i Vi = Vi Ti . Set

U = ⊕iUi and T = ⊕i Ti .

Then U ∈ π (O(X))′ and U is a co-isometry, as each Ui is a co-isometry. Likewise T
is invertible in B(H), since each Ti is invertible. Further we note that

U∗U D1/2 = ⊕iU
∗
i Ui D1/2

i = ⊕i D1/2
i = D1/2.

Similarly we get

U D1/2V = ⊕iUi D1/2
i Vi = ⊕i Vi Ti = V T .

Thus we conclude that μ is C∗-extreme in PH(X).
The case of equivalent assertions of extremity can be proved similarly, using the

claim above and Theorem 2.9. Assume that μ is extreme in PH(X). Fix j ∈ I and let
D j ∈ π j (O(X))′ be such that V ∗

j D j Vj = 0. Define

D = ⊕i Di

by assigning Di = 0 for i �= j . Clearly then V ∗ DV = 0. Hence, as μ is extreme in
PH(X), it follows that D = 0, which in particular implies D j = 0. This proves that μ j
is extreme in PH j (X).

For the converse, assume that each μi is extreme in PHi (X). Let D ∈ π(O(X))′
be such that V ∗DV = 0. Again by the claim above, we have D = ⊕i Di for some
Di ∈ πi (O(X))′. Also the expression V ∗ DV = 0 implies

V ∗
i Di Vi = 0 for each i.

Hence as μi is extreme, it follows that Di = 0 for each i , which in turn shows D = 0.
Thus we conclude that μ is extreme in PH(X). The proof is now complete. ��

The following corollary is just an explicit description of the theorem above.

Corollary 4.8. Let μ ∈ PH(X) and let {Bi } be a collection of disjoint measurable
subsets such that X = ∪i Bi and μ(Bi ) is a projection for each i . Let Hi = ran(μ(Bi ))

and define μi : O(X) → B(Hi ) by μi (A) = μ(Bi ∩ A)|Hi
for all A ∈ O(X). Then

μ is C∗-extreme (extreme) in PH(X) if and only if each μi is C∗-extreme (extreme) in
PHi (X).

Proof. Let (π, V,Hπ )be theminimalNaimarkdilation forμ. Sinceμ(Bi ) is a projection
for each i and Bi ’s are mutually disjoint, it follows from Proposition 2.4 thatμ(Bi )’s are
mutually orthogonal projections. Also eachHi is a reducing subspace for all μ(A), A ∈
O(X) by Proposition 2.4 and hence μi is a well-defined normalized POVM. Further,
since X = ∪i Bi , we have H = ⊕iHi and μ = ⊕iμi . The assertions now are direct
consequence of Theorem 4.7. ��

As we mentioned earlier in Theorem 2.13, every POVM decomposes uniquely as a
sum of atomic and non-atomic POVMs. Additionally if μ is C∗-extreme then we show
that this decomposition can be made into a direct sum of atomic and non-atomic POVMs
such that each of the components is C∗-extreme. The following theorem effectively
provides a proof of Theorem 2.13 and then discusses its role in identifying C∗-extreme
POVMs. The proof here follows almost the same procedure which can be found in
[24,27].
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Theorem 4.9. Let μ be a C∗-extreme point in PH(X). Then μ = μ1 ⊕ μ2 where μ1
is an atomic normalized POVM and μ2 is a non-atomic normalized POVM and they
are mutually singular. Such a decomposition is unique. Furthermore μ1 and μ2 are
C∗-extreme and in particular μ1 is spectral.

Proof. Let {B j } j∈J be a maximal collection of mutually disjoint atoms for μ, which
exists due to Zorn’s lemma. As in the proof of Theorem 3.11, since μ is C∗-extreme,
we note using Lemma 3.10 that μ(B j ) is a projection for each j . Also {μ(B j )} j∈J
are mutually orthogonal by Proposition 2.4. Since H is separable, it follows that J is
countable. This further implies that if we set X1 = ∪ j∈J B j , then since

μ(X1) =
∑
j∈J

μ(B j ), (4.5)

μ(X1) is a projection. Now set X2 = X\X1. For i = 1, 2, let Hi = ran(μ(Xi )), and
define the operator valued measures μi : O(X) → B(Hi ) by

μi (A) = μ(A ∩ Xi )|Hi
= μ(A)|Hi

for all A ∈ O(X).

It is clear that each μi is a normalized POVM. Also H = H1 ⊕ H2 and

μ = μ1 ⊕ μ2.

Now we show that μ1 is atomic. Assume that μ1(A) �= 0 for some A ∈ O(X). Then
μ(A ∩ X1) �= 0 and, since

μ(A ∩ X1) =
∑
j∈J

μ(A ∩ B j ),

it follows that μ(A ∩ B j ) �= 0 for some j and hence μ1(A ∩ B j ) �= 0. Therefore, as
B j is an atom for μ, A ∩ B j is an atom for μ. Consequently, as μ1(A ∩ B j ) �= 0, it
follows that A ∩ B j is an atom for μ1. Thus we have got an atom contained in the subset
A with μ1(A) �= 0, which shows that μ1 is atomic. To prove that μ2 is non-atomic, let
if possible, A be an atom for μ2. Since μ2 is concentrated on X2, A ∩ X2 is an atom for
μ2 and hence A ∩ X2 is an atom for μ. But then {B j } j∈J ∪ {A ∩ X2} is a collection of
mutually disjoint atoms for μ, violating the maximality of the collection {B j } j∈J . Thus
we conclude that μ2 is non-atomic. It is clear that μ1 and μ2 are mutually singular.

To show the uniqueness, let ν1 ⊕ ν2 be another such decomposition with atomic
ν1 ∈ PK1(X) and non-atomic ν2 ∈ PK2(X) where H = K1 ⊕ K2. We shall show
that Ki = Hi and νi = μi for i = 1, 2. Let Y1 and Y2 be disjoint measurable subsets
such that νi (A) = νi (A ∩ Yi ) for all A ∈ O(X). We know from Proposition 4.2 that
μ1 ⊥ ν2 and μ2 ⊥ ν1 and so Y1 and Y2 can be chosen so that Y1 ∩ X2 = Y2 ∩ X1 = ∅.
Therefore for each i = 1, 2, since both μi and νi are concentrated on Xi ∪ Yi and
(X1 ∪Y1)∩ (X2 ∪Y2) = ∅, we can assume without loss of generality, that Xi = Yi (just
replace Xi , Yi by Xi ∪ Yi ). Further note that

IKi = νi (Yi ) = μ(Yi )|Ki
= μ(Xi )|Ki

= PHi |Ki
,

where PHi denotes the projection of H onto Hi . This implies Ki ⊆ Hi . By symmetry,
we have Hi ⊆ Ki . Hence Ki = Hi . Similarly for all A ∈ O(X), we get

νi (A) = νi (A ∩ Yi ) = μ(A ∩ Yi )|Ki
= μ(A ∩ Xi )|Hi

= μi (A ∩ Xi ) = μi (A)

showing that νi = μi . The second statement follows from Theorem 4.7 and Theorem
3.11. ��
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Remark 4.10. In the theorem above, we cannot expect a similar kind of direct sum
decomposition for a normalized POVM which is not C∗-extreme. To see an example,
let λ1 and λ2 be two probability measures on some measurable space X such that λ1 is
atomic while λ2 is non-atomic. Let T ∈ B(H) be a positive contraction which is not a
projection. Consider the POVMμ ∈ PH(X) defined byμ(·) = λ1(·)T +λ2(·)(IH−T ).
One can easily verify that no decomposition of μ into a direct sum of atomic and non-
atomic normalized POVMs exists.

One reason for us to study the notion of mutually singular POVMs is the following
result. Its proof follows from Theorem 4.9 and Theorem 4.7. Since we have already
characterized all atomic C∗-extreme points (Theorem 3.11), it says in particular that it is
sufficient to look for the characterization of non-atomicC∗-extreme points to understand
the general situation.

Corollary 4.11. Let μ : O(X) → B(H) be a normalized POVM and let X1 = ∪i∈I Bi
be the union of a maximal collection {Bi }i∈I of mutually disjoint atoms for μ. Let
X2 = X\X1. Then μ is C∗-extreme in PH(X) if and only if

(1) the operators μ(X1) and μ(X2) are projections and,
(2) μ = μ1 ⊕ μ2 such that μi is C∗-extreme in PHi (X),

where Hi = ran(μ(Xi )) and μi = μ(·)|Hi
for i = 1, 2.

5. Measure Isomorphic POVMs

We digress a bit from the earlier developments and explore C∗-extreme properties from
the perspective of measure isomorphism. In classical measure theory, this notion has
been examined extensively. The idea is to neglect measure zero subsets in considering
isomorphisms. One consequence is that most questions about abstract measure spaces
get reduced to questions about sub σ -algebras of the Borel σ -algebra of the unit interval
[0, 1]. In a sense this space is universal.

Measure isomorphism for POVMs seems to have been first studied in [12]. Our aim
here is quite limited to investigate preservation of some natural properties of POVMs,
especially C∗-extremity, under this isomorphism. Here too we see the role of the unit
interval.

Let X be a measurable space and H a Hilbert space. Let μ : O(X) → B(H) be a
POVM. For each A ∈ O(X), let [A]μ denote the set

[A]μ := {B ∈ O(X);μ(A\B) = 0 = μ(B\A)}
= {B ∈ O(X);μ(B) = μ(A) = μ(B ∩ A)}.

Consider

�(μ) := {[A]μ; A ∈ O(X)
}
.

Then �(μ) is a Boolean σ -algebra under the following operations:

[A]μ\[B]μ =[A\B]μ (5.1)

[A]μ ∩ [B]μ =[A ∩ B]μ (5.2)

for any A, B ∈ O(X). Define μ̃ : �(μ) → B(H) by

μ̃([A]μ) = μ(A) for all A ∈ O(X),

which is well defined by virtue of the very definition of [A]μ. If there is no possibility
of confusion, we shall still denote μ̃ by μ only.
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Definition 5.1 ([12]). For i = 1, 2, let Xi be two measurable spaces and let H be a
Hilbert space. Two POVMs μi : O(Xi ) → B(H) are called measure isomorphic and
denoted by μ1 ∼= μ2, if there exists a Boolean isomorphism � : �(μ1) → �(μ2) i.e.
� is bijective and both � and �−1 preserve the operations in (5.1) and (5.2):

�
([A1]μ1\[B1]μ1

) = �([A1]μ1)\�([B1]μ1),

�
([A1]μ1 ∩ [B1]μ1

) = �
([A1]μ1

) ∩ �
([B1]μ1

)
etc. (5.3)

such that μ1 (A1) = μ2
(
�([A1]μ1)

)
for all A1, B1 ∈ O(X1).

The following theorem compares some natural properties of POVMs under measure
isomorphism.

Theorem 5.2. Let μi : O(Xi ) → B(H), i = 1, 2 be two normalized POVMs such that
they are measure isomorphic. Then we have the following:

(1) μ1 is a spectral measure if and only if μ2 is a spectral measure.
(2) μ1 is atomic (non-atomic) if and only if μ2 is atomic (non-atomic).
(3) μ1 is C∗-extreme (extreme) in PH(X1) if and only if μ2 is C∗-extreme (extreme) in

PH(X2).

Proof. Let � : �(μ1) → �(μ2) be a Boolean isomorphism satisfying μ1(A1) =
μ2(�([A]μ1)) for all A1 ∈ O(X1). By symmetry, it is enough to prove the statements
in just one direction.

(1) This is straightforward by isomorphism. If μ2 is a spectral measure then for
any A1 ∈ O(X1), μ2(�([A1]μ1)) is a projection. Since μ1(A1) = μ2

(
�([A1]μ1)

)
, it

follows that μ1(A1) is a projection and hence μ1 is a spectral measure.
(2) Firstly we claim that if A1 is an atom for μ1, then A2 is an atom for μ2 for any

A2 ∈ �([A1]μ1). To see this, first note that μ2(A2) = μ1(A1) �= 0. Let A′
2 ⊆ A2 be a

measurable subset. Then for any A′
1 ∈ �−1([A′

2]μ2), we have

�
([A′

1 ∩ A1]μ1

) =�
([A′

1]μ1

) ∩ �
([A1]μ1

) = [A′
2]μ2 ∩ [A2]μ2

=[A′
2 ∩ A2]μ2 = [A′

2]μ2 = �([A′
1]μ1)

and hence [A′
1 ∩ A1]μ1 = [A′

1]μ1 , which in turn implies

μ1(A′
1 ∩ A1) = μ1(A′

1). (5.4)

But since A1 is atomic for μ1, we have

either μ1(A′
1 ∩ A1) = 0 or μ1(A′

1 ∩ A1) = μ1(A1)

and therefore from (5.4),

either μ1(A′
1) = 0 or μ1(A′

1) = μ1(A1).

Since A1 ∈ �−1([A2]μ2) and A′
1 ∈ �−1([A′

2]μ2), it follows that

either μ2(A′
2) = 0 or μ2(A′

2) = μ2(A2).

This shows our claim that A2 is an atom for μ2.
Now assume that μ1 is atomic. To show that μ2 is atomic, let A2 ∈ O(X2) be such

that μ2(A2) �= 0. If A1 ∈ �−1([A2]μ2), then μ1(A1) = μ2(A2) �= 0. Since μ1 is



1260 T. Banerjee, B. V. R. Bhat, M. Kumar

atomic, A1 contains an atom for μ1, say A′
1. Fix A′

2 ∈ �([A′
1]μ1). Then A′

2 is an atom
for μ2 by the claim above. As above we show that μ2(A′

2 ∩ A2) = μ2(A′
2), which

implies that A′
2 ∩ A2 is an atom for μ2 contained in A2. This proves that μ2 is atomic.

Similarly if μ1 is non-atomic, then there is no atom for μ1, and again it follows from
the claim above that there is no atom for μ2, which is equivalent to saying that μ2 is
non-atomic.

(3) Assume that μ2 is C∗-extreme in PH(X2). To show that μ1 is C∗-extreme in
PH(X1), letμ1(·) = ∑n

j=1 T ∗
j μ

j
1(·)Tj be a proper C∗-convex combination inPH(X1).

For each j , define μ
j
2 : O(X2) → B(H) by

μ
j
2(A2) = μ

j
1

(
�−1 ([A2]μ2

))
for all A2 ∈ O(X2).

For μ
j
2 to be well defined, we need to show that μ

j
1(A1) = μ

j
1(A′

1) for any A1, A′
1 ∈

�−1([A2]μ2). So fix A1, A′
1 ∈ �−1([A2]μ2). Then [A1]μ1 = [A′

1]μ1 and hence, we get

μ1(A1\A′
1) = 0 = μ1(A′

1\A1).

Therefore, since T ∗
j μ

j
1(·)Tj ≤ μ1(·), it follows that

T ∗
j μ

j
1(A1\A′

1)Tj = 0 = T ∗
j μ

j
1(A′

1\A1)Tj

which, as Tj is invertible, yields

μ
j
1(A1\A′

1) = 0 = μ
j
1(A′

1\A1).

This implies the requirement for well-definedness of μ
j
2. Also note that

μ
j
1(A1) = μ

j
1

(
�−1(�([A1]μ1)

)
= μ

j
2(�([A1]μ1)), (5.5)

for all A1 ∈ O(X1). Further for any A2 ∈ O(X2), we have

n∑
j=1

T ∗
j μ

j
2(A2)Tj =

n∑
j=1

T ∗
j μ

j
1

(
�−1([A2]μ2)

)
Tj = μ1

(
�−1([A2]μ2)

)
= μ2(A2).

Subsequently, since μ2 is C∗-extreme in PH(X2), there exists an unitary operator U j ∈
B(H) such that μ2(·) = U∗

j μ
j
2(·)U j for each j . It then follows for all A1 ∈ O(X1), that

μ1(A1) = μ2(�([A1]μ1)) = U∗
j μ

j
2(�([A1]μ1))U j = U∗

j μ
j
1(A1)U j ,

where the last equality is due to (5.5). This proves that μ1 is unitarily equivalent to each
μ

j
1 which consequently implies that μ1 is C∗-extreme in PH(X1). That μ1 is extreme

if and only if μ2 is extreme follows similarly. ��
In the proof of part (2) of the theorem above, we observed the following:

Proposition 5.3. Let μi : O(Xi ) → B(H), i = 1, 2 be two measure isomorphic POVMs
with Boolean isomorphism � : �(μ1) → �(μ2). Then A1 is an atom for μ1 if and only
if any representative of �([A1]μ1) is an atom for μ2.
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Let μ : O(X) → B(H) be a POVM. We say μ is countably generated if there exists
a countable collection of subsets F ⊆ O(X) such that for any A ∈ O(X), there exists
B ∈ σ(F) satisfying [A]μ = [B]μ. Here σ(F) denotes the σ -algebra generated by F .
The following result has been borrowed from [3].

Theorem 5.4 (Proposition 59, [3]). If μ : O(X) → B(H) is a countably generated
POVM, then μ is measure isomorphic to a POVM ν : O([0, 1]) → B(H).

Recall that when X is a separable metric space, thenO(X) is its Borel σ -algebra and
in this case, any POVM on X is countably generated. What the theorem above basically
says is that, to study C∗-extreme points in PH(X) for a separable metric space X , it is
sufficient to just characterize the C∗-extreme points in PH([0, 1]) in view of Theorem
5.2. This result will also help us find an example (see Example 7.9) of a C∗-extreme
point in PH(X) which is not spectral, when H is infinite dimensional.

Now we consider measure isomorphism of POVMs induced from a bimeasurable
map. Recall that for measurable spaces X1 and X2, a function f : X1 → X2 is called
measurable if f −1(A2) ∈ O(X1) whenever A2 ∈ O(X2). Note that for any measurable
space X and a measurable subset Y ⊆ X , Y itself inherits the natural measurable space
structure from X with the σ algebra {A ∩ Y ; A ∈ O(X)}.
Theorem 5.5. For i = 1, 2, let Xi be two measurable spaces and let Yi ⊆ Xi be
measurable subsets. Let f : Y1 → Y2 be a bijective map such that both f and
f −1 are measurable. Given a normalized POVM μ1 : O(X1) → B(H) satisfying
μ1(A1) = μ1 (A1 ∩ Y1) for all A1 ∈ O(X1), define μ2 : O(X2) → B(H) by
μ2(A2) = μ1

(
f −1(A2 ∩ Y2)

)
for all A2 ∈ O(X2). Then μ1 and μ2 are measure

isomorphic.

Proof. We claim that the map � : �(μ1) → �(μ2) defined by

�([A1]μ1) = [ f (A1 ∩ Y1)]μ2 for all A1 ∈ O(X1), (5.6)

is a Boolean isomorphism. First note that

μ1(A1) = μ1(A1 ∩ Y1) = μ1

(
f −1 ( f (A1 ∩ Y1))

)
= μ2 ( f (A1 ∩ Y1)) (5.7)

for all A1 ∈ O(X1). This implies that μ1(A1) = 0 if and only if μ2( f (A1 ∩ Y1)) = 0
for any A1 ∈ O(X1). Therefore if [A1]μ1 = [A′

1]μ1 for some A1, A′
1 ∈ O(X1), then

[ f (A1 ∩ Y1)]μ2 = [ f (A′
1 ∩ Y1)]μ2 . This proves the well-definedness of �. Similarly by

symmetry, we prove that � is injective. That � is onto is straightforward by noting that

�
(
[ f −1(A2 ∩ Y2)]μ1

)
= [A2 ∩ Y2]μ2 = [A2]μ2

for any A2 ∈ O(X2). This shows that � is a Boolean isomorphism as claimed. Further
from (5.6) and (5.7), we have

μ2(�([A1]μ1)) = μ2( f (A1 ∩ Y1)) = μ1(A1)

for any A1 ∈ O(X1). Thus we conclude that μ1 and μ2 are measure isomorphic. ��
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Now we apply these results to the study of C∗-extreme POVMs. Consider the map
g : [0, 1) → T given by g(t) = e2π i t for t ∈ [0, 1), where T is the unit circle. It is clear
that g is a bijective map such that both g and g−1 are Borel measurable. Therefore for
any Hilbert space H, normalized POVMs μ ∈ PH([0, 1]) with μ({1}) = 0 are in one-
to-one correspondence with PH(T) through measure isomorphism, by Theorem 5.5. In
particular, since singletons under non-atomic POVMs have zero measure, it follows that
non-atomic POVMs in PH([0, 1]) are measure isomorphic to non-atomic POVMs in
PH(T).

Next if X is a separablemetric space, then non-atomic POVMs inPH(X) aremeasure
isomorphic to non-atomic POVMs in PH([0, 1]) from Theorem 5.4 and Theorem 5.2,
which in turn are measure isomorphic to non-atomic POVMs in PH(T) as seen above.
Thus we conclude in view of Theorem 5.2 that, characterizing the non-atomic C∗-
extreme points in PH(X) is equivalent to characterizing non-atomic C∗-extreme points
in PH([0, 1]) or PH(T). Also we already know the structure of atomic C∗-extreme
points. Therefore what we observed from the discussion above andCorollary 4.11 is that,
to characterize C∗-extreme points of PH(X), it is enough to understand the behaviour
of C∗-extreme points of PH([0, 1]) or PH(T).

6. POVMs on Topological Spaces

The results presented in this article so far have been for POVMs on general measurable
spaces. Our attention now shifts toward the particular case of topological spaces. For
the whole section, we assume that X is a Hausdorff topological space. As mentioned
earlier, in this case O(X) will denote the Borel σ -algebra of X .

6.1. Regular POVMs. An additional property of a POVM that can be studied when X
is a topological space, is that of regularity. The assumption of regularity shall be useful
once we discuss the correspondence between POVMs and completely positive maps in
Sect. 7. Recall that a positive measure λ is regular if it is inner regular (or tight) with
respect to compact subsets and outer regular with respect to open subsets:

λ(A) = sup{λ(E) : E compact with E ⊆ A}
= inf{λ(G) : G open with A ⊆ G},

for every A ∈ O(X).

Definition 6.1. A POVM μ : O(X) → B(H) on a topological space X is said to be
regular ifμh,h as defined in equation (2.1), is a regular positive measure for each h ∈ H.

The issue of regularity does not arise for complete separable metric spaces (Theorem
3.2, [29]), as all Borel measures are automatically regular.

The following lemma says that regularity is preserved under the minimal Naimark
dilation.

Lemma 6.2. Let μ : O(X) → B(H) be a POVM with the minimal Naimark dilation
(π, V,Hπ ). Then μ is regular if and only if π is regular.

Proof. If π is regular then, since μh,h = πV h,V h for each h ∈ H, it is clear that μ is
regular. For the converse, assume that μ is regular. First note that, if k = π(B)V h for
some B ∈ O(X), h ∈ H, then for any A ∈ O(X),

πk,k(A) = 〈π(B)V h, π(A)π(B)V h〉 = 〈h, V ∗π(A)π(B)V h〉 = μh,h(A ∩ B).
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Since A �→ μh,h(A ∩ B) is regular, it follows that ππ(B)V h,π(B)V h is regular. Conse-
quently, πk,k is regular for all k ∈ span{π(A)V h : A ∈ O(X), h ∈ H}. Now fix ε > 0
and B ∈ O(X). Then for general k ∈ Hπ , let {k0} be in span{π(A)V h : A ∈ O(X), h ∈
H} such that

‖k − k0‖ <
√

ε/2.

Since πk0,k0 is regular as shown above, there is a compact subset C and an open subset
O with C ⊆ B ⊆ O such that

〈k0, π(O\C)k0〉 < ε/4.

Thus

〈k, π(O\C)k〉 = ‖π(O\C)1/2k‖2 ≤ 2‖π(O\C)1/2k0‖2 + 2‖π(O\C)1/2(k0 − k)‖2
≤ 2〈k0, π(O\C)k0〉 + 2‖k0 − k‖2 < 2 (ε/4 + ε/4) = ε.

Since ε and B are arbitrary, we conclude that πk,k is regular. ��
Remark 6.3. Ifμ is a regular POVM, then it is easy to check that T ∗μ(·)T is also regular
for any T ∈ B(H). Moreover, if ν is a POVM such that ν ≤ μ, then ν is also regular.

6.2. Regular atomic and non-atomic POVMs. We now discuss the structure of atomic
and non-atomic regular POVMs. Just like that in classical theory, we show that every
atom for a regular POVM is concentrated on a singleton up to a set of measure 0 and
that every atomic regular POVM is concentrated on a countable subset. First step in that
direction is the following lemma.

Lemma 6.4. Let π : O(X) → B(Hπ ) be a regular spectral measure satisfying π(A) =
IHπ

or 0 for each A ∈ O(X) (here Hπ could be non-separable). Then there exists a
unique x ∈ X such that π = δx (·)IHπ

, where δx denotes the Dirac measure concentrated
at x.

Proof. For each A ∈ O(X), let λ(A) = 0 or 1 accordingly so that π(A) = λ(A)IHπ
.

Clearly λ is a regular probability measure, as π is regular (e.g. λ = πh,h for any unit
vector h ∈ Hπ ).

Whence by inner regularity, there is a compact subset C ⊆ X such that λ(C) > 0
and thus, λ(C) = 1. We claim to find an element x ∈ C such that λ = δx . Suppose this
is not the case, then λ({x}) = 0 for each x ∈ C (otherwise, λ({x}) = 1 = λ(C) for
some x). Therefore it follows from outer regularity of λ, that there is an open subset Ex
containing x such that λ(Ex ) < 1/2 and thus, λ(Ex ) = 0. Since {Ex }x∈C is an open
cover for the compact subset C , there exist finitely many points x1, . . . , xn ∈ C such
that C ⊆ ∪n

i=1Exi . But then we have

λ(C) ≤
n∑

i=1

λ(Exi ) = 0,

leading us to a contradiction. Thus λ = δx for some x ∈ X and hence π = δx (·)IHπ
.

The uniqueness is obvious as λ(X) = λ({x}) = 1. ��
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It is well-known that the lemma above fails to be true (even on compact Hausdorff
spaces) for finite positive measures, if we drop the regularity assumption (see Example
7.1.3, [5]).

The following theorem and the subsequent corollary give characterization of all
atomic and non-atomic regular POVMs.

Theorem 6.5. Let μ : O(X) → B(H) be an atomic regular POVM. Then there exists a
countable subset {xn} of X and positive operators {Tn} in B(H) such that

μ(A) =
∑

n

δxn (A)Tn (6.1)

for each A ∈ O(X).

Proof. Let (π, V,Hπ ) be the minimal Naimark dilation for μ. Since μ is atomic, π is
also atomic by Proposition 2.14. Also π is regular by Lemma 6.2. We claim that there
exists a countable subset {xn} of X and orthogonal projections {Pn} on Hπ such that
π(A) = ∑

n δxn (A)Pn for all A ∈ O(X). Then the required assertion will follow by
taking Tn = V ∗ Pn V ∈ B(H).

Let {Bi }i∈I be amaximal collection ofmutually disjoint atoms forπ , whose existence
is ensured by Zorn’s lemma. Note that, since π(Bi ) �= 0, we have μ(Bi ) �= 0 for all
i ∈ I by Proposition 2.6. Hence it follows from Remark 2.3 that I must be countable.
Furthermore for each A ∈ O(X), we have

π(A) =
∑
i∈I

π(A ∩ Bi ), (6.2)

otherwise there would exist an atom for π , say A1 ⊆ A\(∪i (A ∩ Bi )) which is disjoint
to each Bi , violating the maximality of the collection {Bi }i∈I .

Now for each i ∈ I , we set Pi = π(Bi ) and Hi = ran(Pi ). Note that each Hi is a
reducing subspace for π(A) for all A ∈ O(X) and therefore, the map πi : O(X) →
B(Hi ) given by

πi (A) = π(A ∩ Bi )|Hi
= π(A)|Hi

for all A ∈ O(X),

is a well defined regular spectral measure. Also for each A ∈ O(X), as Bi is an atom
for π , we have

either π(A ∩ Bi ) = 0 or π(A ∩ Bi ) = π(Bi )

that is

either πi (A) = 0 or πi (A) = IHi .

Therefore by Lemma 6.4 there is an element xi ∈ Bi such that πi = δxi (·)IHi . Equiva-
lently for each A ∈ O(X), we have

π(A)Pi = δxi (A)Pi

and hence (6.2) yields

π(A) =
∑
i∈I

π(A ∩ Bi ) =
∑
i∈I

π(A)π(Bi ) =
∑
i∈I

δxi (A)Pi .

This shows our claim, completing the proof. ��
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Corollary 6.6. Let μ : O(X) → B(H) be a regular POVM. Then

(1) for any atom B for μ, there exists a (unique) x ∈ B such that μ(B) = μ({x}).
(2) μ is atomic if and only if there exists a countable subset Y ⊆ X such that μ(Y ) =

μ(X).
(3) μ is non-atomic if and only if μ({x}) = 0 for all x ∈ X.

Proof. The proof of (1) is actually ingrained in the proof of Theorem 6.5; if B is an
atomic subset for μ, then it is atomic for π and then we actually showed above that
π(B) = π({x}) for some x ∈ B. To prove (2), first note that any POVM concentrated on
a countable subset is atomic and hence the ‘if’ part follows. The converse follows from
Theorem 6.5, by taking Y = {xn}. The ‘only if’ of Part (3) is trivial. To prove the ‘if’
part of (3), since every atom is concentrated on a singleton by Part (1), the hypothesis
implies that μ has no atom, which is equivalent to saying that μ is non-atomic. ��
Corollary 6.7. Let {μn} be a countable collection of regular POVMs and let μ = ⊕nμn.
Then μ is atomic (non-atomic) if and only if each μn is atomic (non-atomic).

Proof. We use Corollary 6.6 to prove the assertions. If μ is atomic, then there is a
countable subset Y such that μ(Y ) = μ(X). In particular μn(Y ) = μn(X) for each n,
which implies thatμn is atomic. Conversely if eachμn is atomic, thenμn(Yn) = μn(X)

for some countable subset Yn . If Y = ∪nYn , then Y is countable and μ(Y ) = μ(X),
concluding that μ is atomic. The equivalence of non-atomicity follows similarly. ��

6.3. Regular C∗-extreme POVMs. For any topological space X and a Hilbert space H,
denote the collection of all regular normalized POVMs fromO(X) toB(H) byRPH(X).
Note that RPH(X) ⊆ PH(X) and RPH(X) is itself a C∗-convex set in the sense that

n∑
i=1

T ∗
i μi (·)Ti ∈ RPH(X),

whenever μi ∈ RPH(X) and Ti ’s are C∗-coefficients for 1 ≤ i ≤ n. In a fashion
similar to Definition 3.2, we can define C∗-extreme points of RPH(X). The following
proposition says that, for a regular normalized POVM μ, it does not matter whether we
are considering C∗-extremity of μ inRPH(X) or in PH(X).

Proposition 6.8. Let μ : O(X) → B(H) be a normalized regular POVM. Then μ is
C∗-extreme (extreme) in PH(X) if and only if μ is C∗-extreme (extreme) in RPH(X).

Proof. If we show that every proper C∗-convex combination for μ in PH(X) is also
a proper C∗-convex combination in RPH(X) and vice versa, then we are done. So let
μ(·) = ∑n

i=1 T ∗
i μi (·)Ti be a properC∗-convex combination inPH(X) forμi ∈ PH(X).

Note that, since T ∗
i μi (·)Ti ≤ μ(·) for each i , it follows from Remark 6.3 that T ∗

i μi (·)Ti
is regular. Again by the same remark, since

μi (·) = T ∗−1 (
T ∗μi (·)Ti

)
T −1

i ,

it follows that μi is regular. Thus μi ∈ RPH(X), which shows that
∑n

i=1 T ∗
i μi (·)Ti is

also a proper C∗-convex combination for μ in RPH(X). Since RPH(X) ⊆ PH(X),
the converse of the claim is immediate. The assertions about extreme points follow
similarly. ��
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We have already seen the following result for countable measurable spaces in The-
orem 3.11 without the assumption of regularity. The extension to uncountable discrete
spaces requires regularity in a crucial way.

Proposition 6.9. Let X be a discrete (possibly uncountable) space. Then every regular
POVM on X is atomic. Moreover, a normalized POVM in RPH(X) is C∗-extreme if and
only if it is spectral.

Proof. Firstly let λ be a regular Borel positive measure on X. By regularity of λ, for
each n ∈ N there is a compact subset Cn such that λ(X\Cn) < 1/n. Set C = ∪nCn .
Since X is discrete, each of Cn is a finite subset and hence C is countable. Note that

λ(X\C) ≤ λ(X\Cn) ≤ 1/n,

for each n and hence, λ(X\C) = 0. This says that every regular Borel positive measure
on X is concentrated on a countable subset and so it is atomic.

Now let μ : O(X) → B(H) be a regular POVM. Then as observed above, μh,h is
concentrated on a countable subset for each h ∈ H. Let {hn} be an orthonormal basis
forH. Then for each n ∈ N, there are countable subsets, say Bn such that

μhn ,hn (X\Bn) = 0.

Set B = ∪n Bn , then for each n ∈ N, we have

μhn ,hn (X\B) ≤ μhn ,hn (X\Bn) = 0.

Consequently for all h ∈ H, we have

μh,h(X\B) = 〈h, μ(X\B)h〉 =
∑

n

|〈hn, h〉|2〈hn, μ(X\B)hn〉 = 0

and hence μ(X\B) = 0. Since B is countable, we conclude that μ is concentrated on a
countable subset and so μ is atomic. Thus if μ is a C∗-extreme point inRPH(X), then
it is spectral by Theorem 3.11. ��
Remark 6.10. Let X̃ = X ∪{∞} be the one-point compactification of a discrete space X
and let μ : O(X̃) → B(H) be a normalized regular POVM. Then the restriction μ|O(X)

of μ to O(X) is also regular and hence concentrated on a countable subset, as seen in
Proposition 6.9. In particular, μ itself is concentrated on a countable subset and hence is
atomic. Therefore, we conclude from Theorem 3.11 that any regular normalized POVM
on X̃ is C∗-extreme in PH(X̃) if and only if it is spectral.

6.4. Topology onPH(X). As earlier X is a topological space and P OV MH(X) denotes
the collection of all POVMs from O(X) to B(H). Now we define a topology on this
set. We shall call this topology as ‘bounded-weak’ inspired from a topology defined on
the collection of all completely positive maps on a C∗-algebra with the same name. The
reason for this nomenclature will be apparent in the next section. We have observed that
the set PH(X) of normalized POVMs is a C∗-convex set. Our aim now is to show a
Krein–Milman type theorem for C∗-convexity in this topology on PH(X).

Let Cb(X) denote the space of all bounded continuous functions on X . Recall that
μh,k is the complex measure as in (2.1) for any POVM μ. We define the topology by
defining convergence of nets.
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Definition 6.11. Given a netμi andμ in P OV MH(X), we sayμi → μ in P OV MH(X)

in bounded weak topology if ∫
X

f dμi
h,k →

∫
X

f dμh,k

for all f ∈ Cb(X) and h, k ∈ H.

Notice that the topology on P OV MH(X) is the smallest topology which makes the
maps: μ �→ ∫

X f dμh,k from P OV MH(X) to C, continuous for all f ∈ Cb(X) and
h, k ∈ H. It is then immediate to verify that, for a given μ ∈ P OV MH(X), sets of the
form

O =
{
ν ∈ P OV MH(X);

∣∣∣∣
∫

X
fi dνhi ,ki −

∫
X

fi dμhi ,ki

∣∣∣∣ < ε, 1 ≤ i ≤ n

}
, (6.3)

where fi ∈ Cb(X), hi , ki ∈ H for 1 ≤ i ≤ n, ε > 0, form a basis around μ in
P OV MH(X). The definition here reminds us the weak topology considered in classi-
cal probability theory. Moreover, we shall see in Sect. 7 that this definition is directly
connected to the bounded weak topology on the collection of completely positive maps
on a commutative C∗-algebra.

It should be added here that one can define a topology on P OV MH(X) in several
ways. For example, for a net μi of POVMs and a POVM μ, we could define the con-
vergence μi → μ by saying that μi (A) → μ(A) in WOT (or σ -weak topology) for all
A ∈ O(X). This topology is certainly stronger than the bounded weak topology defined
above. This topology has been considered in [23].We could have also defined a topology
just by considering Cc(X), the space of all compactly supported continuous functions,
instead of Cb(X) in the definition. In this case, we would get a weaker topology than we
originally defined. Nevertheless in this case, one can show along the lines of classical
probability theory that this topology agrees with bounded weak topology on PH(X)

whenever X is a locally compact Hausdorff space.
Our main focus for this topology is the set of normalized POVMs. In general, the

set PH(X) is not Hausdorff; for an example, one can consider the classically famous
Dieudonnémeasureλ (which is not regular) on the compactHausdorff space X = [0, ω1]
equipped with order topology, where ω1 is the first uncountable ordinal (see Example
7.1.3, [5]). One can show that

∫
X f dλ = f (ω1) = ∫

X f dδω1 for all f ∈ Cb(X)

and hence the distinct elements λ(·)IH and δω1(·)IH in PH(X) are not separated by
open subsets. However the topology restricted to RPH(X) is Hausdorff whenever X
is a locally compact Hausdorff space, which is a consequence of uniqueness of regular
Borel measures in Riesz-Markov theorem.

Remark 6.12. As in classical probability theory, for a locally compact Hausdorff space
(moregenerally for completely regular space, seeLemma8.9.2, [5]), the set {δx (·)IH; x ∈
X} is closed inRPH(X) and it is homeomorphic to X. Using this or otherwise, one can
show that RPH(X) is compact if and only if X is compact.

6.5. A Krein–Milman type theorem. Now we move on to prove the main result of this
section. It is well known that, in a locally convex topological vector space, a convex
compact set is the closure of convex hull of its extreme points. This is known as Krein–
Milman theorem.We here establish a similar kind of result for C∗-convexity in the sense
that PH(X) is the closure of C∗-convex hull of its C∗-extreme points. A Krein–Milman
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type theorem was proved in [16] when X is a compact Hausdorff space andH is a finite
dimensional Hilbert space. We generalize it to arbitrary topological spaces and arbitrary
Hilbert spaces.Moreover, in our case the compactness ofPH(X) is not required.We first
consider the following proposition, whose proof follows the same argument as normally
used in classical measure theory. We provide the proof for the sake of completeness.

Proposition 6.13. Let X be a topological space and H a Hilbert space. Then the col-
lection of all normalized POVMs concentrated on finite subsets is dense in PH(X).

Proof. Let μ ∈ PH(X), and E be a typical open set in PH(X) containing μ of the form

E =
{
ν ∈ PH(X);

∣∣∣∣
∫

X
fi dνhi ,ki −

∫
X

fi dμhi ,ki

∣∣∣∣ < ε, 1 ≤ i ≤ n

}
,

for some fixed fi ∈ Cb(X), hi , ki ∈ H, i = 1, . . . , n and ε > 0. We shall obtain an
element in E concentrated on a finite subset, which will imply the required result. Now
for each i ∈ {1, . . . , n}, get simple functions gi on X satisfying

sup
x∈X

| fi (x) − gi (x)| < ε/2M,

where M is a positive constant with M > supi ‖hi‖‖ki‖. Since gi ’s are simple functions,
there is a finite partition {Ai j } of X and scalars {ci j } ⊆ C (where j varies over some
finite indexing set, say �i for each 1 ≤ i ≤ n) such that

gi =
∑
j∈�i

ci jχAi j

for each i . Pick xi j ∈ Ai j and set

ν =
n∑

i=1

∑
j∈�i

δxi j (·)μ(Ai j ).

It is clear that ν is a POVM concentrated on a finite subset. Also we have

ν(X) =
n∑

i=1

∑
j∈�i

μ(Ai j ) = μ(X) = IH,

and hence ν is normalized. We claim that ν ∈ E . Firstly note that

∫
X

f dν =
n∑

i=1

∑
j∈�i

f (xi j )μ(Ai j )

for any bounded Borel measurable function f on X (here
∫

X f dν ∈ B(H) is the op-
erator satisfying

〈
h,

(∫
X f dν

)
k
〉 = ∫

X f νh,k for all h, k ∈ H). Therefore for each
m ∈ {1, . . . , n}, we have

∫
X

gmdν =
n∑

i=1

∑
j∈�i

gm(xi j )μ(Ai j ) =
∑
j∈�m

cmjμ(Amj ) =
∫

X
gmdμ.
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Thus we get the following:∣∣∣∣
∫

X
fi dνhi ,ki −

∫
X

fi dμhi ,ki

∣∣∣∣ ≤
∣∣∣∣
∫

X
fi dνhi ,ki −

∫
X

gi dνhi ,ki

∣∣∣∣ +
∣∣∣∣
∫

X
gi dνhi ,ki −

∫
X

gi dμhi ,ki

∣∣∣∣
+

∣∣∣∣
∫

X
gi dμhi ,ki −

∫
X

fi dμhi ,ki

∣∣∣∣
≤

∫
X

| fi − gi | d|νhi ,ki | +
∫

X
|gi − fi | d|μhi ,ki |

≤
(
sup
x∈X

| fi (x) − gi (x)|
) (|νhi ,ki |(X) + |μhi ,ki |(X)

)
≤ (ε/2M) (2‖hi ‖‖ki ‖)
< ε

for i = 1, . . . , n, where |μhi ,ki | and |νhi ,ki | denote the total variation of the complex
measures μhi ,ki and νhi ,ki respectively and we have used the fact that |μhi ,ki |(X) ≤
‖hi‖‖ki‖, which is straightforward to verify. It then follows that ν ∈ E, completing the
proof. ��
Definition 6.14. For a given subset M of PH(X), the C∗-convex hull of M is the set
defined by{

n∑
i=1

T ∗
i μi (·)Ti : μi ∈ M, Ti ∈ B(H) for 1 ≤ i ≤ n such that

n∑
i=1

T ∗
i Ti = IH

}
.

(6.4)

Theorem 6.15 (Krein–Milman type theorem). Let X be a topological space and H a
Hilbert space. Then the C∗-convex hull of Dirac spectral measures (i.e. δx (·)IH for
x ∈ X) is dense in PH(X). In particular, the C∗-convex hull of all C∗-extreme points is
dense in PH(X).

Proof. Fix μ ∈ PH(X). By Proposition 6.13, there is a net μi ∈ PH(X) such that
μi → μ in PH(X) and each μi is concentrated on a finite subset. Therefore if we show
that each μi is in the C∗-convex hull of Dirac spectral measures, then we are done. So
assume without loss of generality, that μ ∈ PH(X) is concentrated on a finite subset,
say {x1, . . . , xn}. If Ti = μ({xi }), then it is immediate that

μ =
n∑

i=1

δxi (·)Ti .

Set Si = Ti
1/2 ∈ B(H) for each i . Then

n∑
i=1

S∗
i Si =

n∑
i=1

Ti = μ(X) = IH

and

μ(·) =
n∑

i=1

S∗
i δxi (·)Si ,

which confirms that μ is a C∗-convex combination of Dirac spectral measures. ��
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It is obvious that Dirac spectral measures are regular. Therefore, Theorem 6.15 along
with Proposition 6.8 give us the following version of Krein–Milman theorem for regular
POVMs. Its usefulness shall be apparent when we discuss unital completely positive
maps in the next section.

Corollary 6.16. Let X be a topological space and H a Hilbert space. Then the C∗-
convex hull of all regular spectral measures (in particular, regular C∗-extreme points)
is dense in RPH(X).

7. Applications to Completely Positive Maps

Wenow apply the results we have obtained in previous sections for POVMs, to the theory
of completely positive maps on unital commutative C∗-algebras. That there is a strong
relationship between these two topics is folklore.

IfA is a commutative unital C∗-algebra then by Gelfand–Naimark theorem, there is
a compact Hausdorff space X (called spectrum ofA) such thatA = C(X), the space of
all continuous functions on X . Therefore for the rest of this section, we assume that X
is a compact Hausdorff space.

7.1. Completely positive maps. Like before let B(H) be the algebra of all bounded
operators on a Hilbert space H. For any C∗-algebra A, a linear map φ : A → B(H)

is called positive if φ(a) ≥ 0 in B(H) whenever a ≥ 0 in A. The map φ is called a
completely positive (CP) map if φ ⊗ idn : A ⊗ Mn → B(H) ⊗ Mn is a positive map
for every n ∈ N (here, idn stands for the identity map on n × n matrix algebra Mn). The
well-known Stinespring’s theorem (Theorem 4.1, [33]) ensures that, if φ : A → B(H)

is a completely positive map, then there exists a triple (ψ, V,K) where K is a Hilbert
space, ψ : A → B(K) is a unital ∗-homomorphism and V ∈ B(H,K) such that

φ(a) = V ∗ψ(a)V for all a ∈ A, (7.1)

and satisfies the minimality condition: K = [ψ(A)VH]. Moreover any such triple is
unique up to unitary equivalence. In our case, the algebra C(X) being commutative,
complete positivity of linear maps on C(X) is same as positivity (Theorem 3.11, [33]).

7.2. Correspondence between POVMs and CP maps. Let X be a compact Hausdorff
space andH aHilbert space.Wenow review the correspondence between regular POVMs
on X and completely positive maps on C(X) (see Chapter 4, [33]). Because most of the
subsequent results hinge upon this correspondence, we give a detailed description.

Given a regular POVM μ : O(X) → B(H), consider for any f ∈ C(X), the map
B f : H × H → C defined by

B f (h, k) =
∫

X
f dμh,k for all h, k ∈ H

where μh,k denotes the complex measure, as in (2.1). It is straightforward to check
that B f is a sesquilinear form satisfying ‖B f ‖ ≤ ‖ f ‖‖μ(X)‖ and therefore, by Riesz
Theorem (Theorem II.2.2, [8]) we obtain a unique bounded operator, call it φμ( f ) ∈
B(H), satisfying B f (h, k) = 〈h, φμ( f )k〉. Further it is immediate that φμ( f ) ≥ 0 in
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B(H), whenever f ≥ 0 in C(X). Hence, the induced map φμ : C(X) → B(H) defines
a completely positive map via the assignment

〈h, φμ( f )k〉 =
∫

X
f dμh,k for all f ∈ C(X) and h, k ∈ H. (7.2)

On the other hand, given a completely positive map φ : C(X) → B(H), consider for
each h, k ∈ H, the bounded linear functional on C(X) := f �→ 〈h, φ( f )k〉. Then
by the application of Riesz-Markov representation theorem, we obtain a unique regular
Borel measure νh,k satisfying

〈h, φ( f )k〉 =
∫

X
f dνh,k for all f ∈ C(X)

and ‖νh,k‖ ≤ ‖φ‖‖h‖‖k‖. Now for each bounded Borel measurable function g, consider
the map: (h, k) �→ ∫

X gdνh,k from H × H to C, which is sesquilinear as above and
bounded by ‖φ‖‖g‖. Hence again by Riesz Theorem, we obtain a unique bounded
operator φ̃(g) ∈ B(H) satisfying

〈h, φ̃(g)k〉 =
∫

X
gdνh,k for all h, k ∈ H. (7.3)

Note that φ̃(g) ≥ 0 in B(H) whenever g ≥ 0 in B(X), the collection of all bounded
Borel measurable functions on X . In particular for A ∈ O(X), if we set

μφ(A) = φ̃(χA), (7.4)

where χA ∈ B(X) is the characteristic function of the subset A, then μφ(A) is a positive
operator in B(H) and satisfies

νh,k(A) = 〈h, μφ(A)k〉 for all h, k ∈ H.

Because νh,h is a regular Borel positive measure for each h ∈ H, it is immediate that μφ

defines a regular POVM which satisfies the equality μφ(X) = φ(1), where 1 denotes
the constant function 1 on X .

Remark 7.1. For any POVM (not necessarily regular) μ, one can define a completely
positive map φ satisfying (7.2) in a similar way. However, the regular measure μφ

corresponding to φ that we got above, could significantly be different than the original
μ. More precisely, there may exist more than one Borel POVM on a compact Hausdorff
space X (certainly, non-metrizable), say μ1 and μ2, such that

∫
X f dμ1 = ∫

X f dμ2
for all f ∈ C(X) (see the discussion just before Remark 6.12). Therefore to maintain
uniqueness, we shall always assume the POVM to be regular whenever we talk about
the correspondence between a POVM and a completely positive map.

The following theorem summarises some basic properties of this correspondence.
See (Proposition 4.5, [33]), [20,21] for some discussions on this.

Theorem 7.2. Let X be a compact Hausdorff space and let H be a Hilbert space. Then
the correspondence described above between B(H) valued regular POVMs on X and
completely positive maps on C(X), satisfies the following:

(1) φμφ = φ and μφμ = μ.
(2) φ(1) = μφ(X).
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(3) μ is a projection valued measure if and only if φμ is a ∗-homomorphism.
(4) φμ1+μ2 = φμ1 + φμ2 and μφ1+φ2 = μφ1 + μφ2 .
(5) φT ∗μ(·)T = T ∗φμ(·)T and μT ∗φ(·)T = T ∗μφ(·)T for any T ∈ B(H).

Proof. Part (1) is just uniqueness of the correspondence and part (2) follows from the
discussion above. To show (3), first assume that φμ is a ∗-homomorphism. Then for all
f, g ∈ C(X) and h, k ∈ H, we have∫

X
f gdμh,k = 〈h, φμ( f g)k〉 = 〈h, φμ( f )φμ(g)k〉 =

∫
X

f dμh,φμ(g)k .

Since f ∈ C(X) is arbitrary, it follows from uniqueness of regular Borel measures in
Riesz-Markov theorem that gdμh,k = dμh,φμ(g)k , as complex measures. Equivalently
for any A ∈ O(X), we have ∫

A
gdμh,k = μh,φμ(g)k(A),

that is ∫
X

gχAdμh,k = 〈h, μ(A)φμ(g)k〉 = 〈μ(A)h, φμ(g)k〉 =
∫

X
gdμμ(A)h,k .

Again, since g ∈ C(X) is arbitrary, we conclude that χAdμh,k = dμμ(A)h,k , as complex
measures. Equivalently for any B ∈ O(X), we get∫

X
χA∩Bdμh,k =

∫
X

χAχBdμh,k = μμ(A)h,k(B) = 〈μ(A)h, μ(B)k〉,

which further implies

〈h, μ(A ∩ B)k〉 = 〈h, μ(A)μ(B)k〉.
Since h, k ∈ H are arbitrary, we conclude that

μ(A ∩ B) = μ(A)μ(B) for all A, B ∈ O(X),

which shows thatμ is a projection valuedmeasure. The converse of the statement follows
just by reversing of the argument above.

Part (4) directly follows from the assignment in (7.2). To show part (5): let T ∈ B(H)

and set ν(·) = T ∗μ(·)T . For any h, k ∈ H and B ∈ O(X), then

〈h, ν(B)k〉 = 〈h, T ∗μ(B)T k〉 = 〈T h, μ(B)T k〉
which equivalently says νh,k = μT h,T k , as complex measures. Therefore for any f ∈
C(X), we have

〈h, φν( f )k〉 =
∫

X
f dνh,k =

∫
X

f dμT h,T k = 〈T h, φμ( f )T k〉 = 〈h, T ∗φμ( f )T k〉

which proves that φν = T ∗φμ(·)T . The other equality follows similarly. ��
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It is crucial that for a compact Hausdorff space X , if μ is a regular POVM with a
Naimark dilation (π, V,Hπ ) then (φπ , V,Hπ ) is a Stinespring dilation for the corre-
spondingCPmapφμ (follows directly frompart (5) of Theorem7.2). Further,minimality
conditions match:

[π(O(X))VH] = [φπ(C(X))VH] (7.5)

and therefore, the Stinespring dilation φμ = V ∗φπ(·)V is minimal if and only if the
Naimark dilation μ = V ∗π(·)V is minimal. Here we have some additional technical
properties of this correspondence which are quite useful for us.

Proposition 7.3. Let X be a compact Hausdorff space and μ : O(X) → B(H) a
regular POVM. Then μ(O(X))′ = φμ(C(X))′. Moreover, μ(A) ∈ WOT-φμ(C(X)) and
φμ( f ) ∈ WOT-spanμ(O(X)) for all A ∈ O(X) and f ∈ C(X) and in particular,
WOT-φμ(C(X))=WOT-spanμ(O(X)).

Proof. First assume T ∈ μ(O(X))′. Then μ(A)T = T μ(A) for all A ∈ O(X) and
hence

〈T ∗h, μ(A)k〉 = 〈h, T μ(A)k〉 = 〈h, μ(A)T k〉,
for all h, k ∈ H, which is equivalent toμT ∗h,k = μh,T k , as complexmeasures. Therefore
for all f ∈ C(X), it follows that

〈T ∗h, φμ( f )k〉 =
∫

X
f dμT ∗h,k =

∫
X

f dμh,T k = 〈h, φμ( f )T k〉.

Since h, k ∈ H are arbitrary, we conclude that

T φμ( f ) = φμ( f )T for all f ∈ C(X),

which implies T ∈ φμ(C(X))′. Thus we have proved the inclusion μ(O(X))′ ⊆
φμ(C(X))′. The other way of the inclusion is similarly proved just by reversing the
implications above.

Now let (π, V,Hπ ) be the minimal Naimark dilation for μ. To show that μ(A) ∈
WOT-φμ(C(X)) for A ∈ O(X), firstly note that

π(O(X))′′ = φπ(C(X))′′,

the double commutant of the respective sets inB(Hπ ), which follows fromfirst part of the
proof. Therefore, since π(A) ∈ π(O(X)) and π(O(X)) ⊆ π(O(X))′′ = φπ(C(X))′′,
it follows from double commutant theorem (Theorem IX.6.4, [8]) for the ∗-algebra
φπ(C(X)), that there is a net { fi } in C(X) such that

φπ( fi ) → π(A) in WOT.

This implies

φμ( fi ) = V ∗φπ( fi )V → V ∗π(A)V = μ(A) in WOT

and so we conclude that μ(A) ∈ WOT-φμ(C(X)). Other assertions follow similarly. ��
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7.3. C∗-extreme points of UCP maps on commutative C∗-algebras. For a unital C∗-
algebra A and a Hilbert space H, let UC PH(A) denote the collection of all unital
completely positive maps from A to B(H). It is clear that UC PH(A) is a convex set.
The seminal paper by Arveson [1] studies the extreme points ofUC PH(A) and provides
an abstract characterization. Several authors have looked into the classical convexity
([7,31,32,37] and [4]) of UC PH(A) and its subclasses. Many others have considered
different versions of convexity on UC PH(A), e.g. [9,14,15,17,18,25,26,38] and [19].

The main focus of this paper has been on the notion of C∗-convexity. Farenick
and Morenz [15] first studied the C∗-convexity structure of UC PH(A). They gave
a complete characterization of all C∗-extreme points of UC PH(A), whenever H is
finite dimensional. In [17], an abstract characterization of all C∗-extreme points were
given, which we have presented in Theorem 3.3 in the language of POVMs. In [19],
Gregg obtained a necessary criterion for C∗-extreme points in UC PH(A), when A is
a commutative unital C∗-algebra. We carry forward this investigation of C∗-convexity
structure of UC PH(C(X)) by using the tools that we have developed for POVMs and
its correspondence with completely positive maps.

More formally, UC PH(C(X)) is a C∗-convex set in the sense that

n∑
i=1

T ∗
i φi (·)Ti ∈ UC PH(C(X))

whenever φi ∈ UC PH(C(X)) and Ti ∈ B(H) with
∑n

i=1 T ∗
i Ti = IH. In a way similar

to C∗-extreme points for POVMs in Definition 3.2, we define C∗-extreme points of
UC PH(C(X)) (see [15]) as follows:

Definition 7.4. A map φ ∈ UC PH(C(X)) is C∗-extreme if, whenever φ = ∑n
i=1 T ∗

i
φi (·)Ti for φi ∈ UC PH(C(X)) with invertible operators Ti ∈ B(H) satisfying∑n

i=1 T ∗
i Ti = IH, then φi is unitarily equivalent to φ i.e. φ = U∗

i φi (·)Ui for some
unitary operator Ui ∈ B(H) for every i.

The correspondence of regular POVMs and completely positive maps described
above clearly preserves classical aswell asC∗-convexity structures.Recall thatRPH(X)

denotes the collection of all regular Borel normalized POVMs on X .

Theorem 7.5. A normalized regular POVM μ is C∗-extreme (extreme) in RPH(X) (or
in PH(X)) if and only if φμ is C∗-extreme (extreme) in UC PH(C(X)).

Proof. The proof follows fromTheorem7.2, because classical,C∗-convex combinations
and unitary equivalences are preserved under the correspondence. ��

Following the discussions above, we are now ready to deduce some results for
UC PH(C(X)). As noticed in Proposition 6.8, a regular normalized POVM μ is a C∗-
extreme point in PH(X) if and only if μ is a C∗-extreme point inRPH(X). Therefore,
it follows from Theorem 7.5 that μ is C∗-extreme in PH(X) if and only if φμ is C∗-
extreme inUC PH(C(X)). Thus, whenever X is a compact Hausdorff space, we have got
freedom to bring back all the results on C∗-extreme points in PH(X) into the language
of UC PH(C(X)). We frequently make use of Theorem 7.2 and Theorem 7.5. Before
going forward, we recall the following known fact.

Theorem 7.6. (Proposition 1.2, [15]) Every unital ∗-homomorphism is a C∗-extreme
point in UC PH(C(X)).
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Now let X be a countable compact Hausdorff space. Then we saw in Theorem 3.11
that every C∗-extreme point in PH(X) is spectral. Since spectral measures correspond
to unital ∗-homomorphisms, here is the corresponding result.

Theorem 7.7. Let A be a commutative unital C∗-algebra with countable spectrum and
let φ be a map in UC PH(A). Then φ is C∗-extreme if and only if φ is a ∗-homomorphism.

We apply this result to the C∗-algebra generated by a single normal operator to have the
following.

Example 7.8. Let N ∈ B(K) be a normal operator on a Hilbert space K with countable
spectrum σ(N ) (in particular, when N is compact). It is known that for such a normal op-
erator, a subspaceH ⊆ K is invariant for N if and only if it is reducing for N (Theorem
1.23, [34]). Consider the unital completely positive map φN : C∗(N ) → B(H) de-
fined by φN (T ) = PHT|H for all T ∈ C∗(N ), where C∗(N ) is the unital C∗-algebra
generated by N . It is easy to verify that φN is a ∗-homomorphism if and only ifH is a re-
ducing subspace for N . Thus since C∗(N ) is isomorphic to C(σ (N )) as C∗-algebra and
σ(N ) is countable, the argument above along with Theorem 7.7 show that the following
conditions are equivalent:

(1) φN is a C∗-extreme point in UC PH(C∗(N )).
(2) φN is a ∗-homomorphism.
(3) H is an invariant subspace of N .
(4) H is a co-invariant subspace of N .
(5) H is a reducing subspace of N .

Next using the results in Sect. 5, we provide here an example of a C∗-extreme point
in PH(X) which is not spectral, whenever X is an uncountable compact metric space
and H an infinite dimensional Hilbert space.

Example 7.9. Consider the normalized POVM ν : O(T) → B(H2) defined by

ν(A) = PH2 MχA |H2
for all A ∈ O(T),

whereH2 denotes the Hardy space on the unit circleT. Here M f denotes the multiplica-
tion operator on L2(T) for any f ∈ L∞(T). Then the corresponding unital completely
positive map φν : C(T) → B(H2) is given by

φν( f ) = PH2 M f |H2
for all f ∈ C(T).

It is known (Example 2, [15]) that φν is a C∗-extreme point in UC PH(C(T)) and
therefore, ν is C∗-extreme in PH2(T) by Theorem 7.5. Also note that ν is not spectral,
since φν is not a ∗-homomorphism. Now let X be an uncountable compact metric space.
Then by well-known theorems of Borel isomorphism (Theorem 2.12, [29]), there exists
a Borel isomorphism f : T → X . Define the normalized POVM μ : O(X) → B(H2)

by

μ(A) = ν( f −1(A)) for all A ∈ O(X). (7.6)

Then Theorem 5.5 along with Theorem 5.2 imply that μ is a C∗-extreme point in
PH2(X) and is not spectral. Thus, since any infinite dimensional separable Hilbert space
is isomorphic toH2, what we have shown is that whenever X is an uncountable compact
metric space and H an infinite dimensional Hilbert space, then PH(X) contains a C∗-
extreme point which is not spectral. The assertion above can be applied to Polish spaces
as well.
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Let E be an uncountable compact subset of C. Then E is a compact metric space. We
consider the normalized POVMμ : O(E) → B(H2) constructed in Example 7.9, which
is already in the minimal Naimark dilation form μ(·) = V ∗π(·)V . If N = ∫

E zdπ ∈
B(Hπ ), then N is a normal operatorwith spectrum E . Also the corresponding completely
positive map φμ : C∗(N ) → B(H2) is of the form φμ(T ) = PH2T|H2 for T ∈ C∗(N ).
Thus we have got an example of a completely positive map of the form φN as discussed
in Example 7.8, which is C∗-extreme but not a ∗-homomorphism.

Now let A be a separable commutative unital C∗-algebra. Then its spectrum is a
separable compact Hausdorff space (TheoremV.6.6, [8]) and hence metrizable, which is
to say A = C(X) for a compact metric space X . Therefore, Example 7.9 and Theorem
7.5 give us the following result for a separable commutative unital C∗-algebra with
uncountable spectrum.

Theorem 7.10. Let A be a separable commutative unital C∗-algebra with uncountable
spectrum and letH be an infinite dimensional separable Hilbert space. Then UC PH(A)

contains a C∗-extreme point which is not a ∗-homomorphism.

The theorem above fails to be true if the separability assumption is removed, as
we see below. If X is a discrete space and X̃ denotes its one-point compactification,
then we saw in Remark 6.10 that every regular POVM in PH(X̃) is atomic, and hence
every C∗-extreme point in RPH(X̃) is spectral. Equivalently, every C∗-extreme point
in UC PH(C(X̃)) is a ∗-homomorphism by Theorem 7.5. Note that, whenever X is an
uncountable discrete space, then X̃ is a non-separable compact Hausdorff space and in
particular,C(X̃) is a non separableC∗-algebra (TheoremV.6.6, [8]). Thus the assumption
of separability of the C∗-algebra A in Theorem 7.10 is crucial. We have obtained the
following:

Theorem 7.11. Let A be a commutative unital C∗-algebra whose spectrum is a one-
point compactification of a discrete space. Then every C∗-extreme point in UC PH(A)

is a ∗-homomorphism.

Next let φ : C(X) → B(H) be a unital completely positive map such that φ(C(X))

is commutative. Then WOT-φ(C(X)) is commutative. Since WOT-φ(C(X)) = WOT-
spanμφ(O(X)) by Proposition 7.3, it follows that WOT-spanμφ(O(X)) is commuta-
tive. In particular, μφ(O(X)) is commutative. Therefore if φ is a C∗-extreme point in
UC PH(C(X)) with commutative range, then μφ is a C∗-extreme point in PH(X) with
commutative range. Then it follows from Theorem 3.9 thatμφ is spectral and hence, φ is
a ∗-homomorphism. Thus we have got the following result. A similar result for extreme
points with commutative range in UC PH(C(X)) holds true (see Corollary 3.6, [37]).

Theorem 7.12. Let A be a commutative unital C∗-algebra and φ : A → B(H) a unital
completely positive map with commutative range. Then φ is C∗-extreme in UC PH(A)

if and only if φ is a ∗-homomorphism.

We now discuss the bounded-weak topology on UC PH(C(X)) and how it is con-
nected to the topology on PH(X) defined earlier (which we called bounded weak topol-
ogy as well). The bounded-weak topology (see [1,33]) on UC PH(C(X)) is given by
the convergence: for a net {φi } and φ in UC PH(C(X)),

φi → φ if and only if φi ( f ) → φ( f ) in WOT

for all f ∈ C(X).
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For a net μi and μ ∈ RPH(X), since φμ( f ) = ∫
X f dμ for all f ∈ C(X), it follows

thatμi → μ inRPH(X) if and only if φμi ( f ) → φμ( f ) inWOT for all f ∈ C(X). The
following proposition is just a rephrasing of the definition of the topology on regular
POVMs, which effectively says that RPH(X) and UC PH(C(X)) are topologically
homeomorphic. Recall that by Riesz-Markov representation theorem, the space of all
regular Borel complex measures M(X) on X is Banach space dual of C(X).

Proposition 7.13. Let μi be a net in RPH(X) and μ ∈ RPH(X). Then the following
are equivalent:

(1) μi → μ in RPH(X) (and, in PH(X)).
(2) φμi → φμ in bounded-weak topology in UC PH(C(X)).

(3) μi
h,k → μh,k in weak*-topology on M(X) for all h, k ∈ H.

In [15], a Krein–Milman type theorem was proved for UC PH(A) with respect to
bounded-weak topology, for arbitrary unitalC∗-algebraA but finite-dimensional Hilbert
spaceH. Here we consider commutative unital C∗-algebras and arbitrary Hilbert spaces
and give a similar kind of result for UC PH(C(X)). As in Definition 6.14, we define the
C∗-convex hull of a subset N ⊆ UC PH(C(X)) by{

n∑
i=1

T ∗
i φi (·)Ti ; φi ∈ N , Ti ∈ B(H) such that

n∑
i=1

T ∗
i Ti = IH

}
.

The followingversionofKrein–Milman type theoremfor commutative unitalC∗-algebras
follows from Corollary 6.16, Theorem 7.5 and Theorem 7.2.

Theorem 7.14. Let A be a commutative unital C∗-algebra and H a Hilbert space. Then
the C∗-convex hull of the collection of all unital ∗-homomorphisms (in particular, C∗-
extreme points) is dense in UC PH(A) with respect to bounded-weak topology.

8. Conclusion

Our original interest was to study C∗-convexity and C∗-extreme points in the setting of
unital completely positivemaps on unital commutativeC∗-algebras. For this purpose, we
have taken recourse in the well-known correspondence between such maps and POVMs
on compact spaces. While doing so, we thought it could be of independent interest to
study C∗-convexity in the setting of POVMs. So we analyze POVMs on general mea-
surable spaces and get several interesting and basic results. Naimark’s dilation theorem
plays a crucial role in our investigation of POVMs, just as Stinespring’s dilation theorem
does for completely positive maps. Below we highlight some of our main results.

The abstract characterizations of C∗-extreme POVMs in Theorem 3.3 and Corollary
3.6 are the building blocks for all the forthcoming results. Our first major result is
Theorem 3.8, which says that for a C∗-extreme POVM μ : O(X) → B(H) and E ∈
O(X), if μ(E) commutes with μ(A) for all A ⊆ E , then μ(E) is a projection. The
significance of this theorem should be clear from the following consequences:

• All C∗-extreme POVMs with commutative ranges are spectral (Theorem 3.9).
• All atomic C∗-extreme POVMs are spectral, and hence all C∗-extreme POVMs on
countable spaces are spectral (Theorem 3.11).

• If dimH < ∞, then all C∗-extreme POVMs are spectral (Theorem 3.13).
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We next study mutually disjoint POVMs and behaviour of C∗-convexity under their
direct sums. Here we show the following:

• Any C∗-extreme POVM decomposes uniquely into a direct sum of an atomic C∗-
extreme POVM and a non-atomic C∗-extreme POVM such that they are mutually
disjoint (Theorem 4.9).

In essence, this implies that in order to get complete picture of C∗-extreme POVMs,
it suffices to understand non-atomic C∗-extreme POVMs, given the fact that we have
already characterized atomic C∗-extreme POVMs.

Our next main result is a version of Krein–Milman theorem for the C∗-convexity
of POVMs on topological spaces. We define an appropriate topology on the C∗-convex
space PH(X) of normalized POVMs, and prove in Theorem 6.15 that

• PH(X) is closure of C∗-convex hull of the set of its C∗-extreme points.

Finally, we apply our observations about POVMs on compact Hausdorff spaces X to the
study of C∗-convexity of the space UC PH(C(X)) of unital completely positive maps
on the commutative C∗-algebra C(X). In particular, we have the following:

• If X is countable (in particular, when C(X) = C
n), then every C∗-extreme points

of UC PH(C(X)) is a ∗-homomorphism (Theorem 7.7).
• If X is uncountable, then UC PH(C(X)) contains a C∗-extreme point which is not
a ∗-homomorphism (Theorem 7.10).

• All C∗-extreme points in UC PH(C(X)) with commutative ranges are ∗-homo-
morphisms (Theorem 7.12).

• (A Krein–Milman type theorem) The space UC PH(C(X)) is closure in bounded-
weak topology of C∗-convex hull of its C∗-extreme points (Theorem 7.14).

We mention here in the passing that the study of POVMs on compact Hausdorff
spaces as done in Sect. 7 extends easily to POVMs on locally compact Hausdorff spaces.
Indeed if X is a locally compact non-compact Hausdorff space, then the set of contractive
POVMs:

CPH(X) = {μ : O(X) → B(H);μ is a POVM and μ(X) ≤ IH}
forms a C∗-convex set. Any μ here extends to a normalized POVM μ̃ on the Borel σ -
algebra of the one point compactification X̃ = X

⋃{∞}, by taking μ̃(∞) = 1− μ(X).

This correspondence between contractive POVMs on X and normalized POVMs on X̃
is bijective and preserves basic properties such as C∗-convexity, regularity, atomicity
etc. Hence results can be easily translated back from the compact case.

We conclude with a question. Our hope is that getting an answer to this question may
shed more light on the structure of C∗-extreme points of UCP maps on commutative
C∗-algebras with non-metrizable spectrum. We have shown that any C∗-extreme point
in PH(N) is spectral, where N is the set of natural numbers. It is also known that any
unital completely positive map on l∞(= l∞(N)) corresponds to finitely additive positive
operator valued measure on N, whereas (countably additive) POVMs correspond to the
normal CP maps on l∞ and hence all normal C∗-extreme points are ∗-homomorphic.
It is not clear as of now how C∗-extreme points in the collection of all finitely additive
POVMs behave. Approaching another way, the spectrum of l∞ is of course the Stone-
Čech compactification of N. Unfortunately this space is not metrizable and our result
on existence of a non-homomorphic C∗-extreme point (Theorem 7.10) is not applicable
and so we are left with the following question:
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Question 8.1. Are C∗-extreme unital completely positive maps on the C∗-algebra l∞
always ∗-homomorphisms?
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