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a  b  s  t  r  a  c  t

A  new  rough-wavelet  granular  space  based  model  for land  cover  classification  of  multispectral  remote
sensing image,  is  described  in  the present  article.  In  this  model,  we propose  the  formulation  of  class-
dependent  (CD)  granules  in wavelet  domain  using  shift-invariant  wavelet  transform  (WT).  Shift-invariant
WT  is  carried  out  with  properly  selected  wavelet  base  and  decomposition  level(s).  The  transform  is  used
to  characterize  the feature-wise  belonging  of granules  to different  classes,  thereby  producing  wavelet
granulation  of the  feature  space.  The  wavelet  granules  thus  generated  possess  better  class  discrimina-
tory  information.  The  granulated  feature  space  not  only  analyzes  the  contextual  information  in time  or
frequency  domain  individually,  but also  looks  into  the  combined  time–frequency  domain.  These  charac-
teristics  of  the  generated  CD  wavelet  granules  are  very  useful  in  the  pattern  classification  with  overlapping
classes.  Neighborhood  rough  sets  (NRS)  are  employed  in  the  selection  of  a subset  of  granulated  features
that further  explore  the  local/contextual  information  from  neighbor  granules.  The  model  thus  explores
mutually  the  advantages  of shift-invariant  wavelet  granulation  and  NRS.  The  superiority  of  the  proposed
model  to other  similar  methods  is established  both  visually  and  quantitatively  for  land  cover  classifica-
tion  of  multispectral  remote  sensing  images.  With  experimental  results,  it is  found  that  the  proposed
model  is  superior  with  biorthogonal3.3  wavelet,  and  when  integrated  with  NRS,  it  performs  the  best.

© 2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Granular computing (GrC) refers to that where computation and
operations are performed on information granules (clumps of simi-
lar objects or points). Its nature and applicability has been changed
rapidly from a label to conceptual and computational paradigm of
study that deals with information and knowledge processing [1].
Many researchers [2,3] have used GrC models to build efficient
computational algorithms that can handle huge amount of data,
information and knowledge. These models mainly deal with the
efficiency, effectiveness and robustness of using granules, such as
classes, clusters, subsets, groups and intervals, in problem solving
[4–6].

GrC can be studied based on its notions of representation and
process. However, the main task to be focused is to construct and
describe information granules, a process, called information gran-
ulation [7–9] on which GrC is oriented. Several attempts have
been made to construct information granules specifically in spatial
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domain and applied to various areas, including automatic target
recognition [10], color image segmentation [11], and remote sens-
ing image classification [12]. Multispectral remote sensing images
contain information over a large range of variation of frequencies,
and this too changes over regions. These data have both spec-
tral features with correlated bands and spatial features correlated
in the same band. Simultaneous utilization of these spectral and
spatial (contextual) information in an effective manner can signif-
icantly improve its analysis. There have been several attempts in
utilizing the merits of local information [13] in a band for the clas-
sification of remote sensing images. For example, texture features
[14] extracted from angular second moments, contrast, correla-
tion, entropy and variance based on the grey level co-occurrence
matrices have found wide applications. However, these methods
are computationally expensive. Later on, Gaussian Markov random
fields and Gibbs random fields were proposed to characterize tex-
tures [13]. The aforesaid statistical approaches to texture analysis
are mostly restricted to the analysis of spatial interactions relatively
over small neighborhoods in a single scale/band.

One efficient way to deal with the problems of simultaneous
utilization of spectral and spatial information is to analyze the
image by a number of subsampled approximations of it at different
resolutions, called “multiresolution analysis” [15]. In this regard,
wavelet transform (WT) has received tremendous attention as a
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promising tool for analyzing texture regions of image, in both spa-
tial (time) and spectral (frequency) domains. This characteristic of
the WT  thus encourages one to use it for the extraction of con-
textual information of pixels in remote sensing images by wavelet
granulation (i.e., clump of similar information in WT  domain) of
feature space. Many investigations on texture classification using
WT  have already been reported [13]. The WT,  in general, is catego-
rized as shift/time variant and shift invariant. In shift variant WT
[15], the filtered versions of each (sub)image are downsampled by
a factor of two and it results in a non-redundant analysis process.
Although shift variant WT  is quite attractive for various applica-
tions, it does not maintain the indispensable property of textural
analysis, like time invariance and makes it insufficient for deal-
ing with such problem. The shift-invariant WT,  on the other hand,
does not perform the downsampling operation of shift variant WT
and thus provides a shift invariant analysis in the exploration of
local/contextual information of pixels in an image.

In general, the process of wavelet granulation can be broadly
categorized as class-dependent (CD) and class-independent (CI).
WT is used in both cases for time–frequency representation of pat-
terns and generation of wavelet granulation of the feature space.
WT decomposes the original frequency band of an image into four
equal areas subbands with one-level of decomposition, thereby
producing wavelet granulation of feature space and characterizing
four wavelet granules along the axis. With this process of gran-
ulation, each feature of the pattern is described by four wavelet
granules over the whole space for one-level of WT  decomposition,
and hence called CI method. However, this process of granulation
does not take care of the class belonging information of features
to different classes. This may  lead to a degradation of performance
in pattern classification, particularly for data sets with highly over-
lapping classes. On the other hand, in CD granulation, each feature
explores its class belonging information to different classes. In this
process, features are described by the wavelet granules equal to
4 × L(number of classes) for one-level of WT  decomposition, and
individual class information is restored by the generated wavelet
granules.

Rough set theory, as proposed by Pawlak [8] (henceforth it
will be abbreviated as PaRS), has been proven to be an effec-
tive tool for feature selection, uncertainty handling, knowledge
discovery and rule extraction from categorical data [16]. The the-
ory enables the discovery of data dependencies and performs the
reduction/selection of attributes contained in a data set using the
data alone, requiring no additional information. PaRS can be used
as an effective tool to deal with both vagueness and uncertainty in
data sets and to perform granular computation. PaRS based feature
selection not only retains the representational power of the data,
but also maintains its minimum redundancy [16]. However for the
numerical data, PaRS theory can be used with the discretisation
of data that results in the loss of information and introduction of
noise. To deal with this, neighborhood rough set (NRS) [17,18] is
found to be suitable that can deal with both numerical and categor-
ical data sets without discretisation. The advantage of NRS is that it
facilitates to gather the possible local information through neigh-
bor granules that is useful for a better discrimination of patterns,
particularly in class overlapping environment. Various synergistic
integrations of rough sets and other soft computing tools like fuzzy
sets and artificial neural networks with application specific merits
are described in [19,20].

In this article, we describe a rough-wavelet granular space using
CD wavelet granulation and NRS based feature selection. The model
provides a synergistic integration of the merits of both CD wavelet
granulation and the feature selection capability of the theory of
NRS using neighborhood information. The resulting output of this
judicious integration can be used as an input to any classifier for
pixel classification. To demonstrate the effectiveness of the pro-

posed rough-wavelet granular space based model, we have used
here different classifiers, such as k-nearest neighbor (k-NN) (k = 1,
2 and 3) classifier, maximum likelihood (ML) classifier [21] and
multi-layered perceptron (MLP) [22]. However, other classifiers
may  also be used. We  have demonstrated the potentiality of the
model with two real and one synthetic multispectral remote sens-
ing images having their spectral (band) values as input features.
The superiority of the proposed model to others is validated both
visually and quantitatively. Performance measures such as  ̌ index
[23], Davies–Bouldin (DB) index [24] and computation time are
considered for real life remote sensing images. For the synthetic
noisy remote sensing images, percentage of overall classification
accuracy is computed.

Apart from demonstrating a way  of integrating the merits of
rough sets and wavelet transform for handling overlapping classes,
the significance of the present work lies with the following two
operations: First, based on class dependency knowledge, wavelet
granulated feature space is generated in time–frequency plane
using the shift-invariant WT.  Second, the neighborhood rough sets
are applied on these wavelet granulated features for computing the
approximate reducts that select a subset of features. The exper-
imental results with both synthetic and real life multispectral
remote sensing images revealed that the proposed model preserved
the homogeneity and structure of various regions of remote sens-
ing images and improved the classification accuracy in terms of
various quantitative measures. Different wavelets are used for the
present study. Comparison of results showed that the performance
of the proposed model is further improved with the biorthogo-
nal3.3 (bior3.3) wavelet.

The organization of the article is as follows. A brief description
of shift-invariant WT  and image feature representation is made in
Section 2. Section 3 describes the proposed model for classification
with its characteristic features. Different indexes for performance
measurement are discussed in Section 4. Results and discussion are
included in Section 5. Finally, the concluding remarks are given in
Section 6.

2. Shift-invariant discrete wavelet transform and image
feature representation

The wavelet transform (WT) is primarily developed for the
analysis of non-stationary signals. The transform works on a dual
plane instead of working on a single plane (time or frequency).
The transform performs the decomposition of signal into a num-
ber of scales and each scale represents a particular coarseness
of that signal. The discrete WT  (DWT) has become largely popu-
lar because of its computationally efficient implementation using
the Mallat algorithm [15]. Broadly, the DWT  can be categorized as
shift/time/translation-variant (non-redundant) and shift-invariant
(redundant). Two-dimensional (2D) shift-variant DWT  (SV-DWT)
(extension of one-dimensional SV-DWT) [15] is a separable filter
bank in row and column directions and it performs the one-level
decomposition of an image into four subimages in four equal areas
subbands, as shown in Fig. 1a. H and L in Fig. 1a denote the highpass
and lowpass filters, respectively. ↓2 denotes the downsampling
operation by a factor of 2. The approximate image LL is the low-
frequency component obtained by lowpass filtering of the input
in both row and column directions. The detail images LH, HL and
HH are the high-frequency components including horizontal, verti-
cal and diagonal information, respectively. For more levels of DWT
decomposition, the lower frequency component (LL) is recursively
processed. With this process, the SV-DWT with Q-level of decom-
position generates a total of 3Q + 1 subbands.

The SV-DWT is well-liked for several reasons. Among them, the
compression ability of the transform is better explored with no
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Fig. 1. Two-dimensional wavelet transform for one-level decomposition: (a) SV-DWT and (b) SI-DWT.

loss or redundancy of information between the levels. However,
the major drawback of SV-DWT is its variation in time (i.e., the
coefficients of a delayed information are not a time shifted version
of those of the original), which is particularly important in texture
analysis, e.g., land cover regions in remote sensing image. An appro-
priate solution to this problem is the shift-invariant DWT  (SI-DWT),
where the decomposition is performed without downsampling
operation, and the filter coefficients (L and H) are upsampled (↑2)
by a factor of 2 for using them at next level of decomposition, as
shown in Fig. 1b. As a result, the SI-DWT provides a shift invari-
ant representation of the input. Similar to 2D SV-DWT, 2D SI-DWT
decomposes the original frequency band into four equal areas
subbands with one-level of decomposition and the corresponding
frequency partition is shown in Fig. 2. The sizes of the subimages
obtained by SV-DWT decrease with the increase of decomposition
levels, whereas their sizes remain same as the original using SI-
DWT. This redundant representation of SI-DWT is more demanding
in terms of both memory and time because the subimages obtained
by SV-DWT require inverse transformation to retain the size of
the input image, that is required for pixel-wise processing, as per-
formed in the present study of land cover classification of remote
sensing image.

2.1. Feature representation of multispectral image using SI-DWT

For multispectral remote sensing images we  have used the
spectral (band) values as features. For example, in a four-band

Fig. 2. Two-dimensional WT and its spectral subspaces for one-level decomposition.
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remote sensing image, a pixel F in (x, y) coordinate is repre-
sented by four numeric features and can be expressed as F(x,
y) = [F1(x, y), F2(x, y), F3(x, y), F4(x, y)], where each of the fea-
tures (F1, . . .,  F4) in (x, y) coordinate represents the spectral
values of four-band of images. Thus F is visualized as a point
in four-dimensional vector space. We  perform the DWT  decom-
position of these images up to the desired level (s) and the
corresponding subimages are obtained. Since the pixels of the
subimages at different levels represent the information of the
original pixels, we have used these pixel values to construct
the pattern vector. The subimages are then cascaded so that
the extracted features of the original multispectral image can be
obtained. Fig. 3 shows the cascading of subimages of a single
band image obtained by Q-level of DWT  decomposition. The cas-
cading process can be extended for the subimages of multiband
images.

3. Proposed model for classification

The model has three steps of operation as illustrated in Fig. 4,
namely, wavelet based granule generation, rough set based fea-
ture selection using reducts, and classification based on the selected
features. These are described in Fig. 4.
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3.1. Class-dependent (CD) granule generation

For class-dependent (CD) wavelet granulation of the input pat-
tern of a multispectral remote sensing image, we have used the
shift-invariant discrete wavelet transform (SI-DWT) to character-
ize the feature values. With CD wavelet granulation, L × G number
of granules are used to characterize the feature values of each pat-
tern, where L = total number of classes and G = (3Q  + 1) number of
frequency planes characterizing G number of granules, obtained
from Q level of WT  decomposition. Each feature is thus represented
by L × G number of frequency planes or characterizing L × G wavelet
granules along the axis. The CD granulation explores the class
dependency of a pattern into different classes based on individ-
ual features and the granules thus provide an improved class-wise
representation of input patterns. The granules preserve the inter-
related class information to build an informative granular space
which is potentially useful for improved classification for the data
sets with overlapping classes.

The SI-DWT identifies both scale and space information of the
event simultaneously to build an informative granular space that
helps to enhance the classification performance. Based on the num-

ber of decomposition level(s), each of the input feature spaces of
a particular class is represented by the corresponding number of
equal areas frequency planes; thereby producing CD wavelet gran-
ules in time–frequency plane. A pictorial view of the generated CD
wavelet granules for a two-class data set with one-level WT decom-
position in two-dimensional (F1 and F2) feature space, is shown
in Fig. 5. On the other hand, for class-independent (CI) wavelet
granulation, each feature is represented by G = (3Q + 1) number of
frequency planes or characterized by G number of granules, obtain
from Q level of SI-DWT decomposition. Fig. 5 also shows the CI
wavelet granulation for a two-class data set in two-dimensional
feature space.

Moreover, the selection of decomposition level is a key factor for
the successful application of WT  in the analysis of signals or images.
The decomposition level depends on the type of requirement and
it varies with the problem in hand. To have an objective evalua-
tion, we  computed the average entropy, which provides a measure
of information of the image for each level. We  found that the
average entropy value is not changing significantly after a certain
level of decomposition. For the present experiment, we stopped
the decomposition after second level, as the entropy measure was
not changing much after this level and thus we were not getting
much extra information, even though the cost of computation kept
increasing.

Various distinguishable characteristics like spatio-geometric
information and energy at different scales, which are normally
called the signature of the land covers in remote-sensing images,
are preserved with the DWT  decomposition using orthogonal basis
[15,25] and further improved using biorthogonal bases [26]. Hence,
we have considered biorthogonal group of wavelet bases for the
present study. These bases are usually more desirable than orthog-
onal one because they can maintain linear phase characteristic with
finite number of impulse responses and the mother wavelets have

Fig. 5. Wavelet granule generation.
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high regularity [26]. It is observed from the experimental results
(with the present data sets) that among the biorthogonal (bior)
group of wavelets, bior2.2, bior2.4, bior3.1 and bior3.3 provided
better performance, and thus we have used these wavelets in the
present study.

In the wavelet granulation process, each feature value is rep-
resented by large number of subbands characterizing wavelet
granules along the axis and it results in the increase of feature
dimension. The increased dimension brings great difficulty in solv-
ing many tasks of pattern recognition, as in the present case of
land cover classification of remote sensing image. This motivates
for selecting a subset of relevant and non-redundant features. In
this regard, we have used the neighborhood rough set (NRS) [17,18]
based feature selection method in the second step of the proposed
model (Fig. 4). The advantage in the use of NRS is that it can deal
with both numerical and categorical data. NRS does not require any
discretisation of numerical data and is suitable for the proposed
wavelet granulation of features. Further, the neighboring concept
facilitates to gather the possible local information through neigh-
bor granules that provide a better class discrimination information.
Thus the combination of these two steps of operation can be a bet-
ter framework for the classification of patterns in overlapping class
environment. The proposed model thus takes the advantage of both
CD wavelet granulation using SI-DWT and NRS feature selection
methods.

3.2. Feature selection

This section presents some preliminaries relevant to feature
selection methods using rough sets (proposed by Pawlak) and
neighborhood rough sets (NRS). The details of these theories may
be referred to [8,17,18].

3.2.1. Rough sets (PaRS)
Pawlak’s rough set (PaRS) theory [8] deals with vague concepts

and creates approximate descriptions of objects for data analy-
sis. PaRS is based on the indiscernibility relation that describes
indistinguishable objects of the universe. It works with a pair of
precise concepts, called as lower and upper approximations. The
lower approximation is a description of the domain objects which
are known with certainty to belong to the subset of interest, and the
upper approximation is a description of the objects which possibly
as well as definitely belong to the subset. PaRS have been employed
to remove redundant conditional features, while retaining their
information content. It enables the discovery of data dependencies
and the selection of feature subset contained in a data set using the
data alone, requiring no additional information. The basic opera-
tion involved in PaRS is that it partitions the object space based on
a feature set using some equivalence relation. The partition spaces
thus generated are also known as granules. The generated granules
become the elemental building blocks for information granulation
process used for data analysis. A measure of significance is then
determined by evaluating the change in dependency when a feature
is removed from the set. The higher is the change in dependency,
the more significant is the feature. Based on this significance a
minimum element feature subset (reduct) is searched and located.

Many attempts have been made for finding a reduct of an infor-
mation system. The simplest solution for locating reducts is to
generate all possible subsets and retrieve those with a maximum
rough set dependency degree. However, this approach of finding
solution is highly expensive for large data sets. For such cases, often
one reduct instead of many is required to use for feature reduction.
In this regard, the QUICKREDUCT algorithm described by Chou-
choulas and Shen [27], is popularly used. The algorithm attempts
to calculate a reduct without exhaustively generating all possible
feature subsets. It starts with an empty set and adds one feature at a

Fig. 6. QUICKREDUCT algorithm for feature selection.

time that results in the increase of rough set dependency. The pro-
cess goes on until it produces the maximum possible dependency
value for a data set. The QUICKREDUCT algorithm is summarised
with pseudocode, as shown in Fig. 6.

In the present study, we  have used QUICKREDUCT algorithm
for selecting features generated from the CD wavelet granulation.
The selected features are then used in a classifier for classifying the
input pattern, as in the third step of Fig. 4.

3.2.2. Neighborhood rough sets (NRS)
As mentioned above the information system is denoted by I = (U,

A), where U (the universal set) is a non-empty and finite set of sam-
ples {x1, x2, . . .,  xn}; A = {C ∪ D}, where A is the finite set of features
{a1, a2, . . .,  am}, C is the set of conditional features and D is the set
of decision features. Given an arbitrary xi ∈ U and B ⊆ C, the neigh-
borhood ˚B(xi) of xi with given ˚,  in feature space B is defined as
[18]

˚B(xi) = {xi|xj ∈ U, �B(xi, xj) ≤ ˚} (1)

where � is a distance function.
˚B(xi) in Eq. (1) is the neighborhood information granule cen-

tered with sample xi. In the present study, we have used three
p-norm distances in Euclidean space. These are Manhattan distance
(p = 1), Euclidean distance (p = 2) and Chebychev distance (p = ∞).
The neighborhood granule generation is effected by two  key fac-
tors such as the used distance function � and parameter ˚. The first
one determines the shape and second controls the size of neighbor-
hood granule. For example, with Euclidean distance the parameter
˚ acts as the radius of the circle region developed by � function.
Both these factors play important roles in neighborhood rough sets
(NRS) and can be considered as to control the granularity of data
analysis. The significance of features vary with the granularity lev-
els. Accordingly, the NRS based algorithm selects different feature
subsets with the change of � function and  ̊ value. In the present
study, we have analyzed the effects of three p-norm distances for
a variation of  ̊ values, and selected the best one based on the
performance with the present data sets. However, optimal param-
eters values can be obtained through an optimization technique,
e.g., genetic algorithm.

Thus each sample generates granules with a neighborhood rela-
tion. For a matric space 〈U, �〉, the set of neighborhood granules
{˚(xi) | xi ∈ U} forms an elemental granule system, that covers the
universal space rather than partitions it as in case of PaRS. A picto-
rial view of the process of granule generation (as an example) using
both PaRS and NRS is shown in Fig. 7.

Let X = {a, b, c, d, e, f} be the universal set of five elements
(Fig. 7). Partitioning and covering of set X for generating granules
are made as X1 = {{a, b}, {c, d}, {e, f}} and X2 = {{a,  b}, {a, c, d}, {a,
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{{a,b},{c,d},{e,f}}
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{{a,b},{a,c,d},{a,b,e,f}}

Fig. 7. Example of granule generation using PaRS and NRS.

b, e, f}},  respectively. A partition of the set X is a division of X into
non-overlapping and non-empty “parts” or “blocks” or “cells” that
accommodate all the elements of X. Equivalently, a set X1 of non-
empty sets is a partitions of X if, the intersection of any two  distinct
elements of X1 is empty. On the other hand, a covering of a set X
results into overlapping and non-empty “parts” that accommodate
all the elements of X. That means a set X2 of non-empty sets is a
covering of X if, the intersection of any two distinct elements of X2
is not necessarily empty. It is noted that the partition of space gen-
erated by PaRS can be obtained from NRS with covering principle,
while the other way round is not possible. Moreover, a neighbor-
hood granule degrades to an equivalent class for  ̊ = 0. In this case,
the samples in the same neighborhood granule are equivalent to
each other and the neighborhood rough set model degenerates to
Pawlak’s rough set. Thus NRS can be treated as a generalized case
of PaRS.

The dependency degree of decision feature D on condition fea-
ture set B in a neighborhood information system 〈U, C ∪ D, N〉 with
distance function � and neighborhood size ˚, is defined as

�B(D) = |POSB(D)|
|U| (2)

where |•| denotes the cardinality of a set. �B(D) is the approxima-
tion ability of B to D. For POSB(D) ⊆ U, we have 0 ≤ �B(D) ≤ 1 and
D depends completely on B, and the decision system is consistent
in terms of � and ˚. For �B(D) = 1, D depends on B in the degree
of � . The dependency function measures the approximation power
of a condition feature set. Hence it can be used to determine the
significance of a subset of features (normally called as reduct). Sig-
nificance (SIG) of a subset of features is calculated with the change
of dependency, when a feature is removed from the set of consid-
ered conditional features.

Based on the significance of a feature(s), the subset of features
(reduct) is evaluated. Many sets of reducts can be obtained based
on the significance and any of them will work for the feature reduc-
tion task. In this regard Hu et al. [18] described a forward greedy
search (FGS) algorithm for feature selection using NRS. FGS algo-
rithm begins with an empty reduct. In each step, one feature is
added and the change in dependency (significance) is determined,
when a feature is removed from the set of considered conditional
features. The process is stopped when the significance of reduct is
less than a small value �. The algorithm is summarised with pseu-
docode, as shown in Fig. 8. In the present study, we have used the
forward greedy search algorithm for the selection of features in
the proposed rough-wavelet granulation based model for classifi-
cation.

After the features are selected, we use a classifier as in the third
step of Fig. 4 to classify the input pattern based on the selected
features.

4. Performance measurement indexes

For real life remote sensing image with partially labeled data set,
quantitative indexes like  ̌ index [23] and Davies–Bouldin index
[24], as described next, are used for performance measurement of
classifiers. However, for classification of completely labeled syn-
thetic remote sensing images, percentage of accuracy (PA) is used
as a measure.

Fig. 8. Forward greedy search algorithm for feature seection using neighborhood
rough set.

4.1.  ̌ index

The  ̌ index has been defined by Pal et al. in [23], for assessment
of image segmentation quality.  ̌ is defined as the ratio of the total
variation and within-class variation as

 ̌ =

C∑

i=1

Mi∑

j=1

(xij − x̄)2

C∑

i=1

Mi∑

j=1

(xij − x̄i)
2

(3)

where x̄ is the mean grey value of the image pixels (pattern vector),
Mi is the number of pixels in the i th (i = 1, 2, . . .,  C) class, xij is the
grey value of the jth pixel (j = 1, 2, . . .,  Mi) in class i, and x̄i is the mean
of Mi grey values of the ith class. Since the numerator is constant
for a given image,  ̌ value is dependent only on the denominator.
The denominator decreases with increase in homogeneity within
the class for a fixed number of classes (C). Thus for a given image
and given number of classes, the higher the homogeneity within
the classes and lower the homogeneity between classes, the higher
would be the  ̌ value.

Further, in the present work we have evaluated the correspond-
ing percentage of gain of a classifier (b) compared to classifier (a)
obtained with respect to  ̌ value using the following formula:

Gainb = ˇ  value of classifier b −  ̌ value of classifier a

 ̌ value of classifier a
× 100 (4)

4.2. Davies–Bouldin index

Davies–Bouldin (DB) index for cluster validation has been
defined in [24]. However, here we are using the index for validat-
ing our classification results on partially labeled data sets. The idea
behind DB index is that, for a good partition inter-cluster separa-
tion as well as intra-cluster homogeneity and compactness should
be high. The DB index is based on the evaluation of some measure
of dispersion Si within the ith cluster and the distance between the
prototypes of clusters i and j. The DB index is defined as

DB = 1
K

K∑

i=1

Ri,qt (5)

where K is the number of clusters/classes and
Ri,qt = max j,j /=  i[(Si,q + Sj,q)/dij,t]. Si,q is the q th root of q th moment
of the points in cluster i with respect to their mean or centroid. dij,t
is the Minkowski distance of order t between the centroids that
characterize the extracted classes i and j. The smaller the DB value
the better is the partitioning [24]. The corresponding percentage
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Fig. 9. Original (a) IRS-1A (band-4) enhanced image and (b) SPOT (band-3) enhanced image.

of gain of a classifier over other obtained with respect to DB value
is also calculated similar to Eq. (4).

5. Results and discussion

For demonstrating the effectiveness of the proposed rough-
wavelet granulation based feature selection model, we have used
two real life multispectral (four-band) remote sensing images
obtained from IRS-1A and SPOT satellites. These images bear dif-
ferent characteristics like spatial resolution, number of bands, and
wavelengths, while they have similar land-cover classes. Along
with this, a synthetic multispectral (four-band) remote sensing
image is also used to validate our model.

5.1. Classification criteria

In the present investigation we have compared the performance
of the proposed model with different combinations of wavelet
granulation and rough feature selection methods. Five combina-
tions of classification models are considered as mentioned below.
Image patterns with its original feature representation are fed as
input to these models:

• Model 1: k-nearest neighbor (k-NN with k = 1) classifier,
• Model 2: Class-independent (CI) wavelet granulation + k-NN

(with k = 1) classifier,
• Model 3: Class-dependent (CD) wavelet granulation + k-NN (with

k = 1) classifier,
• Model 4: CD wavelet granulation + PaRS based feature selec-

tion + k-NN (with k = 1) classifier,
• Model 5: CD wavelet granulation + NRS based feature selec-

tion + k-NN (with k = 1) classifier.

The comparative analysis of models is also made with differ-
ent types of biorthogonal wavelets (e.g., bior2.2, bior2.4, bior3.1
and bior3.3) based granulations. Apart from the performance com-
parison with different quantitative measures for both real life
and synthetic remote sensing images, the efficacy of the pro-
posed model of rough-wavelet granulation and feature selection
is justified with the following types of analyses. However, the
experimental results with these analyses are provided only for IRS-
1A image, because similar trend of comparative performance is
observed for the remaining images:

• Variation of classification accuracy with different values of
parameter  ̊ and distances used in NRS based feature selection
for optimal value selection,

• Performance comparison of the proposed model with other clas-
sifiers such as k-NN with k = 3 and 5, maximum likelihood (ML)
classifier and multi-layered perceptron (MLP).

5.2. Classification of images

5.2.1. IRS-1A image
In this section, we describe the performance comparison of dif-

ferent models with real life multispectral remote sensing images,
namely, IRS-1A and SPOT images. Here the classifiers are initially
trained with labeled data of six land cover types and then the said
trained classifiers are applied on the unlabeled image data to par-
tition into six regions.

The IRS-1A image (size 512 × 512) is obtained from Indian
Remote Sensing Satellite [5,23,28]. The image has spatial resolution
of 36.25 m × 36.25 m and wavelength range of 0.45–0.86 �m.  The
whole spectrum range is separated into four spectral bands namely,
blue, green, red and near infrared corresponding to band-1, band-
2, band-3 and band-4 of wavelengths 0.45–0.52 �m, 0.52–0.59 �m,
0.62–0.68 �m and 0.77–0.86 �m,  respectively. Since the image is of
poor illumination, we have presented the enhanced image (band-4)
in Fig. 9a for the convenience of visualizing the content of the image.
However, the algorithms are implemented on the original (poorly
illuminated) image. The image in Fig. 9a covers an area around the
city of Calcutta, India in the near infrared band having six major
land cover classes: pure water (PW), turbid water (TW), concrete
area (CA), habitation (HAB), vegetation (VEG) and open spaces (OS).

IRS-1A image is classified with five different models using k-
NN classifier (k = 1), and the performance comparison in terms of

 ̌ and DB values, is depicted in Table 1. As expected, the ˇ value is
the highest and DB value is the lowest for the training set (Table 1)
compared to other models for both the images (IRS-1A and SPOT).
In the present experiment, we have compared the performance of
models with respect to five criteria, namely, (i) granulated and non-
granulated feature space, (ii) different wavelets based granulation,
(iii) class-dependent (CD) and class-independent (CI) wavelet gran-
ulation, (iv) wavelet and rough-wavelet granulated feature space,
and (v) Pawlak’s rough sets (PaRS) and neighborhood rough sets
(NRS) based feature selection.

As described in Section 3.2.2, performance comparison with the
NRS method of feature selection depends on the distance function
� and parameter  ̊ of the neighborhood granules. In the present
study we  analyzed the performance of model 5 for the variation of
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Table  1
Performance comparison of models using k-NN classifier (k = 1) for IRS-1A and SPOT images with different wavelets (p = 2,  ̊ = 0.30).

Model Wavelet  ̌ value DB value Tc (s)

IRS-1A SPOT IRS-1A SPOT

Training samples – 9.4434 9.3654 0.5432 1.4656
1  – 6.9971 6.8960 0.8005 2.8260 385.56
2  bior2.2 7.4001 7.2376 0.7914 2.6316 410.76
3 bior2.2 7.6911 7.5002 0.7631 2.5172 420.37
4 bior2.2 7.9083 7.8563 0.7434 2.3889 391.32
5  bior2.2 8.4113 8.2179 0.6913 2.3781 399.01

2  bior2.4 7.3435 7.1946 0.8001 2.7132 415.76
3  bior2.4 7.6812 7.4904 0.7732 2.6301 422.23
4 bior2.4 7.9176 7.7878 0.7556 2.4013 390.76
5 bior2.4 8.4383 8.2004 0.7040 2.3135 405.35

2 bior3.1 7.3981 7.2172 0.7984 2.6812 409.84
3 bior3.1 7.6733 7.4025 0.7642 2.5971 419.92
4  bior3.1 7.9122 7.8112 0.7485 2.4002 391.81
5 bior3.1 8.4001 8.2034 0.7003 2.3203 402.78

2  bior3.3 7.4026 7.2501 0.7523 2.6242 414.33
3  bior3.3 7.6997 7.5070 0.7225 2.5013 422.20
4  bior3.3 8.1001 7.8711 0.6838 2.3799 390.11
5 bior3.3 8.4567 8.2308 0.6485 2.3011 400.23

both these parameters. We  plotted the  ̌ values (Fig. 10) of model
5 (using k-NN classifier (k = 1)) for three p-norm distances for a
variation of  ̊ values ([0,1]) in Euclidean space. These are Man-
hattan distance (p = 1), Euclidean distance (p = 2) and Chebychev
distance (p = ∞).  It is observed from Fig. 10 that the  ̌ value varies
with  ̊ for all types of distances. With the increase of  ̊ value the

 ̌ value increases at first, reaches to a peak and then decreases.
Roughly for all the distances, the highest accuracy is obtained for

 ̊ = [0.20, 0.35] with maximum for Euclidean distance. Beyond 0.45,
the neighborhood rough set based model can not select the rele-
vant features capable of distinguishing patterns. The reason is that
with large neighborhood region, the granules accommodate more
neighbors, thereby increasing the possibility of possessing irrel-
evant and contradictory feature information. Further it was seen
that the numbers of selected features are different when  ̊ takes
values in the interval [0.20,0.35], although these features are pro-
ducing similar classification performance. Hence it appears that the
value of  ̊ may  be varied in [0.20,0.35] to find the minimal subset
of features with similar classification performance. Accordingly, for
presenting the results for the remaining data sets, we  have taken
p = 2 (Euclidean distance) and  ̊ = 0.30.

In a comparative analysis from Table 1, it is observed that the
classifiers’ performance with IRS-1A image, measured in terms of

 ̌ values is better for the models using granulated feature space.
For example, model 1 (without granulation) provides  ̌ value of

Fig. 10. Variation of ˇ values of model 5 with the parameter ˚ for three distances.

6.9971, whereas with other models (with granulation) the values
are higher. This reflects the ability of better extraction of contextual
information in time–frequency plane using wavelet granulation of
feature space.

Performance comparison among different wavelets, biorthog-
onal3.3 (bior3.3) is seen to provide improved results compared to
bior2.2, bior2.4 and bior3.1, as shown in Table 1. Table 1 reveals that
the  ̌ value for IRS-1A image, as an example, obtained by model
2 using bior3.3 wavelet is 7.4026, which is higher than the val-
ues 7.4001, 7.3435 and 7.3981 using bior2.2, bior2.4 and bior3.1
wavelets, respectively. Similar trend of improvement with other
models using bior3.3 wavelet is also observed from Table 1.

Performance analysis between CD and CI wavelet granulation
based models (Table 1), the  ̌ value for model 3 (CD model) com-
pared to model 2 (CI model) is higher. For example, with bior3.3
wavelet, model 3 provides a  ̌ value of 7.6997 whereas it is 7.4026
with model 2. Similarly, for other wavelets based granulation,

 ̌ values with model 3 are higher than model 2 (Table 1). This
clearly indicates that CD granules efficiently explored the class-
wise dependency of features to classes and provided an improved
class discrimination information responsible for enhanced accu-
racy.

In another comparison of models with different granular fea-
ture space, it is observed that models 4 and 5 (with rough-wavelet
granulation) provided higher  ̌ values than models 2 and 3 (with
wavelet granulation). For example, the  ̌ values obtained by models
4 and 5 using bior3.3 are 8.1001 and 8.4567, respectively, are higher
than 7.6997 and 7.4016 obtained with models 2 and 3, respectively
(Table 1). This justifies the superiority of the rough-wavelet granu-
lation to wavelet granulation and it is true for all types of wavelets
used here.

In a comparison of models with NRS and PaRS, it is observed from
Table 1 that using bior3.3 wavelet, the  ̌ value for the proposed
model 5 (8.4567), as an example, compared to model 4 (8.1001)
is higher. This is true for all the four wavelet-granulation based
models. This signifies that the NRS based feature selection method
restores better local information from neighborhood granules that
is helpful for improved performance. Thus comparing among the
five models of pattern classification with all possible aspects, the
proposed model (model 5) that explored and incorporated CD
rough-wavelet granular feature space with bior3.3 wavelet and NRS
based feature selection methods provided the best performance. As
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Table 2
Percentage of gain (Eq. (4)) obtained with respect to  ̌ and DB values with IRS-1A and SPOT images (bior3.3 wavelet).

 ̌ gain DB gain

IRS-1A SPOT IRS-1A SPOT

Model 5 over model 1 20.86 19.35 18.98 18.57
Model 5 over model 2 14.23 13.52 13.79 12.31
Model 5 over model 3 9.83 9.64 10.24 8.00
Model  5 over model 4 4.40 4.56 5.16 3.31

Table 3
Performance comparison of models with different classifiers for IRS-1A image (p = 2,  ̊ = 0.30, bior3.3 wavelet).

Model k-NN (k = 3) k-NN (k = 5) ML  MLP

ˇ DB ˇ DB  ̌ DB  ̌ DB

1 6.9910 0.8055 7.001 0.8032 7.0121 0.8002 7.1034 0.7984
2  7.4112 0.7514 7.4042 0.7489 7.4501 0.7501 7.5014 0.7300
3  7.6133 0.7200 7.6246 0.7302 7.5987 0.7132 7.7138 0.7001
4 7.9661  0.6788 7.9803 0.6912 7.9110 0.6802 8.0133 0.6619
5  8.4204 0.6411 8.4412 0.6501 8.4212 0.6431 8.5334 0.6305

a whole the gradation of performance of five models with any of
the wavelets can be established with the following  ̌ relation:

ˇtraining > ˇproposed > ˇmodel4 > ˇmodel3 > ˇmodel2 > ˇmodel1 (6)

We also calculate the percentage of gain with respect to  ̌ value
(Eq. (4))  obtained by the proposed model over others using bior3.3
wavelet, and the results are depicted in Table 2. It is found from
Table 2 that the proposed model obtained the gains of 20.86%,

14.23%, 9.83% and 4.40 over models 1, 2, 3 and 4, respectively, which
is highly appreciable. The superiority of the proposed model is also
validated with the DB index, as shown in Tables 1 and 2.

A comparative analysis with total computational time Tc (given
by the sum of the training and testing times), as required by dif-
ferent models using k-NN classifier (k = 1), is depicted in Table 1.
The Tc values for both the images (IRS-1A and SPOT) are same
because the number of training samples and pixel sizes (512 × 512)

Fig. 11. Classified IRS-1A images with (a) model 1 and (b) model 5 (proposed model).

Fig. 12. (Zoomed) Two  selected regions of classified IRS-1A image with (a and c) model 1 and (b and d) model 5.
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Fig. 13. Classified SPOT images with (a) model 1 and (b) model 5 (proposed model).

of these images are identical. All the simulations are done in MAT-
LAB (Matrix Laboratory) environment in Pentium-IV machine with
3.19 GHz processor speed. It is seen for all the cases that the Tc val-
ues for wavelet granulated models (models 2, 3, 4 and 5) are higher
than those of the non-granulated model (model 1), with improved
performance. Interestingly, models 4 and 5 perform better and at
the same time take less computational time than models 2 and 3 for
all the cases. That means, the incorporation of the rough set theo-
retic feature selection step reduces the computation time. Further,
the Tc values for model 5 (with NRS based feature selection), as
expected, are little higher compared to model 4 (with PaRs based
feature selection) at the cost of improved performance. Similar is
the case between models 2 and 3, where CD granulation (model 3),
as expected, is taking more time than CI granulation (model 2) for
improved performance.

So far we have described the effectiveness of the proposed
rough-wavelet granulation and feature selection model using k-
NN (k = 1) classifier. The effectiveness of the same model is also
described using some other classifiers, e.g., k-NN (k = 3 and 5),
maximum likelihood (ML) classifier and multi-layered perceptron
(MLP). The comparative results of all models with these classifiers
are depicted in Table 3. The superiority of model 5 to others for
different sets of classifiers is evident. Also similar improvement in
performance of the models (using different classifiers) with granu-

lated over non-granulated, CD over CI, bior3.3 wavelet granulation
over other wavelet granulation and NRS based feature selection
over PaRS, is observed, as in the case of k-NN (k = 1) classifier.

In order to demonstrate the significance of granular computing
visually, let us consider Fig. 11a and b depicting the output corre-
sponding to model 1 (without granulation) and model 5 (with CD
granulation and NRS feature selection) using bior3.3 wavelet, say.
It is clear from the figures that the proposed model 5 performed
well in segregating different areas by properly classifying the land
covers. For example, the Bridge (Rabindra Setu) over the south part
of the river is more prominent in Fig. 11b, whereas it is not so in
Fig. 11a. A zoomed version of the said bridge region is shown in
Fig. 12a and b to have a better visualization. Similarly, the regions
such as Saltlake stadium and water bodies are more distinct and well
shaped with model 5, as shown in Fig. 12d (zoomed version). These
observations also justify the significance of the  ̌ and DB indexes
in reflecting the performance of the models automatically without
visual intervention.

5.2.2. SPOT image
The SPOT image (size 512 × 512) shown in Fig. 9b (enhanced

image (band-3)) is obtained from SPOT satellite (Systeme Pour
d’Observation de la Terre) [23]. The image used here has been
acquired in the wavelength range of 0.50–0.89 �m.  The whole spec-

Fig. 14. Synthetic image (band-4): (a) original and (b) noisy (� = 2).
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Fig. 15. Classified synthetic image (for � = 2) by (a) model 1 and (b) model 5 (proposed model).

trum range is decomposed into three spectral bands namely, green
(band-1), red (band-2) and near infrared (band-3) of wavelengths
0.50–0.59 �m,  0.61–0.68 �m,  and 0.79–0.89 �m,  respectively. This
image has a higher spatial resolution of 20 m × 20 m as compared to
IRS-1A. We  have considered in our experiment the same six classes
as in the case of IRS-1A image.

With SPOT image, the comparative results of five models using
k-NN classifier (k = 1) in terms of  ̌ and DB values are shown in
Table 1, which revealed the supremacy of the proposed model
(model 5) and it is found to be most effective with CD granula-
tion using bior3.3 wavelet. The significance of model 5 is further
justified visually from Fig. 13 that illustrates the classified images
corresponding to models 1 and 5. It is seen that some of the regions
(e.g., Garden Reach Lake and Race Course)  are well-structured and
proper-shaped in Fig. 13b compared to Fig. 13a. For example, the
shape and boundary of the Garden Reach Lake have come up much
prominently in Fig. 13b. Similarly, the Race Course in Fig. 13b con-
tains large grass region than in Fig. 13a.

5.2.3. Synthetic image
A four-band synthetic image (size 512 × 512) has been gener-

ated with six major land cover classes similar to the IRS-1A image.
Fig. 14a  shows the synthesized image in the near infrared range
(band-4). All the five models are tested on the corrupted synthetic
image. The synthetic image is corrupted with Gaussian noise (zero
mean and standard deviation (�) = 1, 2, . . .,  6) in all four bands.
Fig. 14b, as an example, shows the noisy version of the original
image with � = 2.

50% of the entire data are used as training set and the rest are
considered as test set. Training set is selected randomly and an
equal percent of samples is collected from each of the classes. We
repeat these splitting sets for ten times and the final result is then
averaged over them. For performance comparison the percentage
of classification accuracy (PA) is calculated with respect to the orig-
inal image (Fig. 14a).

The performance of five models using k-NN classifier (k = 1) in
terms of percentage of accuracy (PA) for different � is shown in
Table 4 for 50% training set. The table revealed the superiority
of model 5 to others for all the noise levels. Since similar trend
of observation, as discussed in the case of IRS-1A image data, is

Table 4
Classification accuracies (PA) of models using k-NN classifier (k = 1) for synthetic
image with different � at 50% training set (p = 2,  ̊ = 0.30).

Classification model PA

� = 1 � = 2 � = 3 � = 4

1 95.32 83.51 73.35 62.01
2 96.89 91.33 78.87 64.72
3  97.41 93.15 80.34 67.71
4 98.02 94.02 82.83 70.02
5  98.74 95.11 85.25 72.51

obtained with other measures for the synthetic remote sensing
image, we have not put those results here. Fig. 15 shows the result-
ing classified images obtained by models 1 and 5 for the noisy input
image with � = 2 (i.e., Fig. 14b). Superiority of model 5 to 1, as indi-
cated in Table 4, is further verified visually from Fig. 15.  Here we
have shown the classified images obtained from these two models,
as an example, because one of them performed the worst and the
other performed the best.

6. Conclusions

In the present article, we  described a rough-wavelet model for
land cover classification of multispectral remote sensing images.
The model formulates a class-dependent (CD) wavelet gran-
ulation of input feature space, where the generated granules
explore the dependency of features into different classes and
make it more suitable for improved class label estimation. For
the granulation process, we  use shift-invariant wavelet, where the
time–frequency plane explores the local/contextual information
of pattern. Shift-invariant wavelet granulation provides transla-
tion invariant representation of features, which is an indispensable
property in textural analysis (e.g., land cover classification of
remote sensing images). The advantage of neighborhood rough
sets that deal with both numerical and categorical data with-
out any discretisation is also realized in the proposed model. The
neighboring concept facilitates to gather the local/contextual infor-
mation through neighbor granules that provide improved class
discrimination information. It may  be mentioned here that wavelet
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granulation of feature space described in [29] for land cover classi-
fication, is similar to the method of class-independent granulation
used here.

With extensive experimental results on both types of real life
and synthetic multispectral remote sensing images, it is found that
the proposed synergistically integrated model performs well with
CD wavelet granulation using shift-invariant wavelet transform
and neighborhood rough sets. The performance of the models with
biorthogonal3.3 wavelet is further encouraging for the data sets
with highly overlapping classes. A critical value of the threshold
for various distances used in NRS, beyond which classification per-
formance falls drastically, is also determined. Inclusion of rough
set theoretic feature selection method not only increases the per-
formance, but also reduces the computational time required for
wavelet granules based classification.

Though the model is described here for multispectral remote
sensing image classification, it can be used for the analysis of other
spatio-temporal patterns wherever wavelet transform is effective.
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