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1
Introduction

This thesis comprises of six chapters related to random social choice theory. We provide a brief
introduction of the chapters below.

1.1 An Extreme Point Characterization of Strategy-proof and Unanimous

Probabilistic Rules over Binary RestrictedDomains

In this chapter, we show that every strategy-proof and unanimous probabilistic rule on a binary restricted
domain has binary support, and is a probabilistic mixture of strategy-proof and unanimous deterministic
rules. Examples of binary restricted domains are single-dipped domains, which are of interest when
considering the location of public bads. We also provide an extension to infinitely many alternatives.

1.2 A Characterization of RandomMin-maxDomains and Its Applications

In this chapter, we show that a random rule on a top-connected single-peaked domain is unanimous and
strategy-proof if and only if it is a random min-max rule. As a by-product of this result, it follows that a
top-connected single-peaked domain is tops-only for random rules. We further provide a characterization
of the random min-max domains.
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1.3 Formation of Committees through RandomVoting Rules

In this chapter, we consider the problem of choosing a committee from a set of finite candidates based on
the preferences of the agents in a society. The preference of an agent over a candidate is binary in the sense
that either she wants the candidate to be included in a(ny) committee or she does not - she is never
indifferent. A collection of preferences of an agent, one for each candidate, is extended to a preference
over all subsets of candidates (i.e., potential committees) in a separable manner. Separability means if an
agents wants a particular candidate to be in some committee, then she wants her to be in every committee.

1.4 A unified characterization of the randomized strategy-proof rules

In this chapter, we show that a large class of restricted domains such as single-peaked, single-crossing,
single-dipped, tree-single-peaked with top-set along a path, Euclidean, multi-peaked, intermediate ([58]),
etc., can be characterized by using betweenness property, and we present a unified characterization of
unanimous and strategy-proof random rules on these domains. We do separate analysis for both the cases
where the number of alternatives is finite or infinite. As corollaries of our result, we show that the domains
we consider in this paper satisfy tops-onlyness and deterministic extreme point property.

1.5 Restricted Probabilistic Fixed Ballot Rules andHybridDomains

In this chapter, we study Random Social Choice Functions (or RSCFs) in a standard ordinal mechanism
design model. We introduce a new preference domain called a hybrid domain which includes as special
cases as the complete domain and the single-peaked domain. We characterize the class of unanimous and
strategy-proof RSCFs on these domains and refer to them as Restricted Probabilistic Fixed Ballot Rules
(or RPFBRs). These RSCFs are not necessarily decomposable, i.e., cannot be written as a convex
combination of their deterministic counterparts. We identify a necessary and sufficient condition under
which decomposability holds for anonymous RPFBRs. Finally, we provide an axiomatic justification of
hybrid domains and show that every connected domain satisfying some mild conditions is a hybrid
domain where the RPFBR characterization still prevails.

1.6 Unanimousandstrategy-proofprobabilisticrules for single-peakedpref-

erence profiles on graphs

In this chapter, we consider the problem where finitely many agents have preferences on a finite set of
alternatives, single-peaked with respect to a connected graph with these alternatives as vertices. A

2



probabilistic rule assigns to each preference profile a probability distribution over the alternatives. First,
all unanimous and strategy-proof probabilistic rules are characterized when the graph is a tree. These rules
are uniquely determined by their outcomes at those preference profiles where all peaks are on leafs of the
tree, and thus extend the known case of a line graph. Second, it is shown that every unanimous and
strategy-proof probabilistic rule is random dictatorial if and only if the graph has no leafs. Finally, the two
results are combined to obtain a general characterization for every connected graph by using its block tree
representation.

3



2
An Extreme Point Characterization of Strategy-proof

andUnanimous Probabilistic Rules over Binary
RestrictedDomains

2.1 Introduction

Suppose that in choosing between red and white wine, half of the dinner party is in favor of red wine while
the other half prefers white wine. In this situation a deterministic (social choice) rule has to choose one of
the two alternatives, where a fifty-fifty lottery seems to be more fair. In general, for every preference
profile a probabilistic rule selects a lottery over the set of alternatives. [57] provides a characterization of
all strategy-proof probabilistic rules over the complete domain of preferences (see also [98]). In
particular, if in addition a rule is unanimous, then it is a probabilistic mixture of deterministic rules. This
result implies that in order to analyze probabilistic rules it is sufficient to study deterministic rules only.

In [81] it is shown that if preferences are single-peaked over a finite set of alternatives then every
strategy-proof and unanimous probabilistic rule is a mixture of strategy-proof and unanimous
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deterministic rules.¹ The same is true for the multi-dimensional domain with lexicographic preferences
([33]). But it is not necessarily true for all dictatorial domains ([35]), in particular, there are domains
where all strategy-proof and unanimous deterministic rules are dictatorial but not all strategy-proof and
unanimous probabilistic rules are random dictatorships.

A binary restricted domain over two alternatives x and y is a domain of preferences where the top
alternative(s) of each preference belong(s) to the set {x, y} (we allow for indifferences); and moreover,
for every preference with top x there is a preference with top y such that the only alternatives weakly
preferred to y in the former and x in the latter preference, are x and y.

Outstanding examples of binary restricted domains are domains of single-dipped preferences with
respect to a given ordering of the alternatives. Single-dipped preferences are of central interest in
situations where the location of an obnoxious facility (public bad) has to be determined by voting: think
of deciding on the location of a garbage dump along a road, such that every inhabitant has a single dip (his
house, or the school of his children, etc.) and prefers a location for the garbage dump as far away as
possible from this dip. [79] have shown the equivalence between individual and group strategy-proofness
in subdomains of single-dipped preferences. They characterize a general class of strategy-proof
deterministic rules. In [68] the problem of locating a single public bad along a line segment when agents’
preferences are single-dipped, is studied. In particular, all strategy-proof and unanimous deterministic
rules are characterized. In [15] it is shown that, when all single-dipped preferences are admissible, the
range of a strategy-proof and unanimous deterministic rule contains at most two alternatives. The paper
also provides examples of sub-domains admitting strategy-proof rules with larger ranges. [7] consider
group strategy-proofness under single-dipped preferences when agents become satiated: above a certain
distance from their dips they become indifferent, and thus they go beyond the binary restricted domain.
Further works on strategy-proofness under single-dipped preferences include [77], [78] [65], and [28].
For strong Nash implementation under single-dipped preferences see [105]. There is also a literature on
this topic when side payments are allowed, e.g., [67] or [92].

In the present paper we show that every strategy-proof and unanimous probabilistic rule over a binary
restricted domain with top alternatives x and y has binary support, i.e., for every preference profile
probability 1 is assigned to {x, y}. We also show that if a strategy-proof and unanimous probabilistic rule
has binary support then it can be written as a convex combination of deterministic rules. Moreover, we
present a complete characterization of such rules, by using so-called admissible collections of committees.

Closely related papers are [66] and [84]. [66] include a characterization of all strategy-proof surjective
deterministic rules for the case of two alternatives with indifferences allowed. Their Theorem 3 is close to
our Theorem 2.3.5 – our theorem is slightly more general since we allow for more than two alternatives.

¹[46] characterize such probabilistic rules for single-peaked preferences where the set of alternatives is the real line.
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[84] show that every probabilistic rule is a convex combination of deterministic rules if there are only two
alternatives and no indifferences are allowed.

The paper is organized as follows. The next section introduces the model and definitions. Section 2.3
contains the main results, Section 2.4 contains an application to single-dipped preference domains, and
Section 2.5 presents an extension to the case where the number of alternatives may be infinite.

2.2 Preliminaries

Let A be a finite set of at least two alternatives and letN = {1, . . . , n} be a finite set of at least two agents.
Subsets ofN are called coalitions. LetW(A) be the set of (weak) preferences over A.² By P and Iwe denote
the asymmetric and symmetric parts of R ∈W(A). For R ∈W(A) by τ(R)we denote set of the first
ranked alternative(s) in R, i.e., τ(R) = {x ∈ A : xRy for all y ∈ A}. In general, the notationD will be
used for a set of admissible preferences for an agent i ∈ N. As is clear from the notation, we assume the
same set of admissible preferences for every agent. A preference profile, denoted by RN = (R1, . . . ,Rn), is
an element ofDn, the Cartesian product of n copies ofD. For a coalition S, RS denotes the restriction of
RN to S. For notational convenience we often denote a singleton set {z} by z.

Definition 2.2.1 A deterministic rule (DR) is a function f : Dn → A.

Definition 2.2.2 ADR f is unanimous if f(RN) ∈ ∩n
i=1τ(Ri) for all RN ∈ Dn such that∩ni=1τ(Ri) ̸= ∅.

Agent i ∈ NmanipulatesDR f at RN ∈ Dn via R′
i if f(R′

i,RN\i)Pif(RN).

Definition 2.2.3 ADR f is strategy-proof if for all i ∈ N, RN ∈ Dn, and R′
i ∈ D, i does not manipulate f at

RN via R′
i .

Definition 2.2.4 A probabilistic rule (PR) is a functionΦ : Dn →△A where△A is the set of probability
distributions over A. A strict PR is a PR that is not a DR.

Observe that a deterministic rule can be identified with a probabilistic rule by assigning probability 1 to
the chosen alternative.

For a ∈ A and RN ∈ Dn, Φa(RN) denotes the probability assigned to a by Φ(RN). For B ⊆ A, we
denote ΦB(RN) =

∑
a∈B Φa(RN).

Definition 2.2.5 A PRΦ is unanimous ifΦ∩n
i=1τ(Ri)(RN) = 1 for all RN ∈ Dn such that∩ni=1τ(Ri) ̸= ∅.

²I.e., for all R ∈W(A) and x, y, z ∈ A, we have xRy or yRx (completeness), and xRy and yRz imply xRz (transitivity). Note
that reflexivity (xRx for all x ∈ A) is implied.
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Definition 2.2.6 For R ∈ D and x ∈ A, the upper contour set of x at R is the set U(x,R) = {y ∈ X : yRx}.
In particular, x ∈ U(x,R).

Agent i ∈ Nmanipulates PR Φ at RN ∈ Dn via R′
i if ΦU(x,Ri)(R′

i,RN\i) > ΦU(x,Ri)(Ri,RN\i) for some
x ∈ A.

Definition 2.2.7 A PRΦ is strategy-proof if for all i ∈ N, RN ∈ Dn, and R′
i ∈ D, i does not manipulateΦ at

RN via R′
i .

In other words, strategy-proofness of a PR means that a deviation results in a (first order) stochastically
dominated lottery for the deviating agent.

For PRs Φj, j = 1, . . . , k and nonnegative numbers λj, j = 1, . . . , k, summing to 1, we define the PR
Φ =

∑k
j=1 Φ

j byΦx(RN) =
∑k

j=1 λ
jΦj

x(RN) for all RN ∈ Dn and x ∈ A. We callΦ a convex combination of
the PRs Φj.

Definition 2.2.8 A domainD is said to be a deterministic extreme point domain if every strategy-proof and
unanimous PR onDn can be written as a convex combination of strategy-proof and unanimous DRs onDn.

For a ∈ A, letDa = {R ∈ D : τ(R) = a}.

Definition 2.2.9 Let x, y ∈ A, x ̸= y. A domainD is a binary restricted domain over {x, y} if

(i) for all R ∈ D, τ(R) ∈ {{x}, {y}, {x, y}},

(ii) for all a, b ∈ {x, y} with a ̸= b, and for each R ∈ Da, there exists R′ ∈ Db such that
U(b,R) ∩ U(a,R′) = {a, b}.

Condition (ii) in the definition of a binary restricted domain is used in the proof of Proposition 2.3.1
below. There, we also provide an example (see Remark 2.3.4) to show that this condition cannot be
dispensed with.

We conclude this section with the following definition.

Definition 2.2.10 Let x, y ∈ A, x ̸= y. A domainD is a binary support domain over {x, y} if
Φ{x,y}(RN) = 1 for every RN ∈ Dn and every strategy-proof and unanimous PRΦ onDn.³

³Note that this domain is identified with the type of strategy-proof and unanimous PRs that it admits.
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2.3 Results

In this section we present the main results of this paper. First we show that every binary support domain is
a deterministic extreme point domain (Corollary 2.3.1). Next we show that every binary restricted
domain is a binary support domain (Theorem 2.3.3). Consequently, every binary restricted domain is a
deterministic extreme point domain (Corollary 2.3.2). Next, we characterize the set of all strategy-proof
and unanimous probabilistic rules on such binary restricted domains.

2.3.1 Binary support domains are deterministic extreme point domains

First we establish a necessary and sufficient condition for a domain to be a deterministic extreme point
domain.

Theorem 2.3.1 A domainD is a deterministic extreme point domain if and only if every strategy-proof and
unanimous strict PR onDn is a convex combination of two other distinct strategy-proof and unanimous PRs.

Proof:
First, letD be an arbitrary domain. Observe that every PR Φ can be identified with a vector inRpm,

where p is the number of different preference profiles, i.e., the number of elements ofDn, andm is the
number of elements of A. Compactness and convexity of a set of PRs are equivalent to convexity and
compactness of the associated subset ofRpm.

We show that the set of all strategy-proof and unanimous probabilistic rules S overDn is compact and
convex.

For convexity, let Φ′,Φ′′ ∈ S and 0 ≤ α ≤ 1, and let the PR Φ be defined by
Φ(RN) = αΦ′(RN) + (1− α)Φ′′(RN) for all RN ∈ Dn. Clearly, Φ is unanimous. For strategy-proofness,
let i ∈ N, RN ∈ Dn and R′

i ∈ D. Then, for all b ∈ A, by strategy-proofness of Φ′ and Φ′′ we have
Φ′

U(b,Ri)(R
′
i,RN\i) ≤ ΦU(b,Ri)(RN) and Φ′′

U(b,Ri)(R
′
i,RN\i) ≤ Φ′′

U(b,Ri)(RN), so that

αΦ′
U(b,Ri)(R

′
i,RN\i) + (1− α)Φ′′

U(b,Ri)(R
′
i,RN\i) ≤ αΦ′

U(b,Ri)(RN) + (1− α)Φ′′
U(b,Ri)(RN),

hence ΦU(b,Ri)(R′
i,RN\i) ≤ ΦU(b,Ri)(RN). Thus, Φ is strategy-proof, and S is convex.

For closedness, consider a sequence Φk, k ∈ N, in S such that limk→∞ Φk = Φ, i.e., for all x ∈ A and
RN ∈ Dn, limk→∞ Φk

x(RN) = Φx(RN). It is easy to see that Φ is unanimous. Suppose that Φ were not
strategy-proof. Then there exist i ∈ N, RN ∈ Dn and R′

i ∈ D such that for some b ∈ A,
ΦU(b,Ri)(R′

i,RN\i) > ΦU(b,Ri)(RN). This means there exists k ∈ N such that
Φk

U(b,Ri)(R
′
i,RN\i) > Φk

U(b,Ri)(RN). This contradicts strategy-proofness of Φk. So, S is closed. Clearly, S is
bounded. Thus, it is compact.
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Since S is compact and convex, by the Theorem of Krein-Milman (e.g., [90]) it is the convex hull of its
(non-empty set of) extreme points. Now, for the if-part of the theorem, for a domainD satisfying the
premise, no strict PR is an extreme point. Thus,D is a deterministic extreme point domain. In fact, it is
also easy to see that every strategy-proof and unanimous deterministic rule is an extreme point of S .

For the only-if part, letD be a deterministic extreme point domain and let Φ be a strategy-proof and
unanimous strict PR onDn. Then there are λ1, . . . , λk, k ≥ 2, with λi > 0 for all i = 1, . . . , k and∑k

i=1 λ
i = 1, and strategy-proof and unanimous DRs f1, . . . , fk onDn with fi ̸= fj for i ̸= j, such that

Φ =
∑k

i=1 λ
ifi. We define Φ′ =

∑k
i=2

λi
1−λ1 f

i. Then Φ = (1− λ1)Φ′ + λ1f1, and Φ′ and f1 are distinct
strategy-proof and unanimous PRs different from Φ. ■

In the following theorem we show that if a strategy-proof and unanimous strict PR has binary support,
then it can be written as a convex combination of two other strategy-proof and unanimous PRs.

Theorem 2.3.2 LetΦ : Dn → Δ(A) be a strategy-proof and unanimous strict PR and let x, y ∈ A such that
Φ{x,y}(RN) = 1 for all RN ∈ Dn. Then there exist strategy-proof and unanimous PRsΦ′,Φ′′ withΦ′ ̸= Φ′′

such thatΦ(RN) =
1
2Φ

′(RN) +
1
2Φ

′′(RN) for all RN ∈ Dn.

Proof: Note that Φ{x,y}(RN) = 1 for all RN ∈ Dn implies that Φ(RN) is completely determined by Φx(RN)

for all RN ∈ Dn. Since Φ is a strict PR, there exists R′
N ∈ Dn such that Φx(R′

N) = p ∈ (0, 1). Let
C = {RN ∈ Dn : Φx(RN) ̸= p}. Since C is finite set, there is an ε ∈ (0, p) such that for all RN ∈ C,
Φx(RN) ̸∈ [p− ε, p+ ε]. We define Φ′ and Φ′′ with support {x, y} by

Φ′
x(RN) =

{
Φx(RN) if RN ∈ C
Φx(RN) + ε otherwise

and Φ′′
x (RN) =

{
Φx(RN) if RN ∈ C
Φx(RN)− ε otherwise.

Clearly, Φ′ ̸= Φ′′ and Φ(RN) =
1
2Φ

′(RN) +
1
2Φ

′′(RN) for all RN ∈ Dn. Unanimity of Φ′ and Φ′′ follows
from unanimity ofΦ. We show thatΦ′ andΦ′′ are strategy-proof. We consider onlyΦ′, the proof forΦ′′ is
analogous. Let i ∈ N, RN ∈ Dn andQi ∈ D. WriteQN = (Qi,RN\i). We consider the following cases.
Case 1 RN,QN /∈ C. Then Φ′

x(RN) = p+ ε = Φ′
x(QN). So i does not manipulate Φ′ at RN viaQi.

Case 2 RN,QN ∈ C. Then Φ′
x(RN) = Φx(RN) and Φ′

x(QN) = Φx(QN). Since i does not manipulate Φ at
RN viaQi, this implies that i does not manipulate Φ′ at RN viaQi.
Case 3 RN /∈ C,QN ∈ C. Then Φ′

x(RN) = Φx(RN) + ε and
Φ′

x(QN) = Φx(QN) /∈ [Φx(RN)− ε,Φx(RN) + ε]. If xPiy (where Pi is the asymmetric part of Ri), then by
strategy-proofness of Φ, Φ′

x(QN) = Φx(QN) ≤ Φx(RN) = Φ′
x(RN)− ε < Φ′

x(RN), so that i does not
manipulate Φ′ at RN viaQi. If yPix, then by strategy-proofness of Φ,
Φ′

x(QN) = Φx(QN) ≥ Φx(RN) + ε = Φ′
x(RN), so that i does not manipulate Φ′ at RN viaQi.
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Case 4 RN ∈ C,QN /∈ C. If xPiy then by strategy-proofness of Φ and the choice of ε,
Φ′

x(QN) = Φx(QN) + ε ≤ (Φx(RN)− ε) + ε = Φx(RN) = Φ′
x(RN), so that i does not manipulate Φ′ at

RN viaQi. If yPix, then by strategy-proofness of Φ,
Φ′

y(QN) = Φy(QN)− ε ≤ Φy(RN)− ε = Φ′
y(RN)− ε < Φ′

y(RN), so that i does not manipulate Φ′ at RN

viaQi. ■

Theorems 2.3.2 and 2.3.1 imply the following result.

Corollary 2.3.1 Every binary support domain is a deterministic extreme point domain.

2.3.2 Binary restricted domains are binary support domains

The main result of this subsection is the following theorem.

Theorem 2.3.3 Every binary restricted domain is a binary support domain.

We first prove the result for two agents and then use induction to prove it for an arbitrary number of
agents.

Proposition 2.3.1 LetD be a binary restricted domain over {x, y}, and letΦ : D2 →△A be a
strategy-proof and unanimous PR.ThenΦ{x,y}(RN) = 1 for all RN ∈ D2.

Proof: By unanimity of Φ it is sufficient to consider the case where RN = (R1,R2)with R1 ∈ Dx and
R2 ∈ Dy.

First assume thatU(y,R1) ∩ U(x,R2) = {x, y}. Suppose that ΦB(RN) > 0 for B = A \ U(y,R1). Then
agent 1 manipulates at RN via some R′

1 ∈ Dy, since by unanimity Φy(R′
1,R2) = 1 and y is strictly preferred

to (every element of) A \ U(y,R1) at the preference R1 of agent 1. Hence, we must have ΦB(RN) = 0 for
B = A \ U(y,R1). Similarly one shows that ΦB′(RN) = 0 for B′ = A \ U(x,R2). Since
U(y,R1) ∩ U(x,R2) = {x, y}, we have Φ{x,y}(RN) = 1.

Next, suppose thatU(y,R1) ∩ U(x,R2) ̸= {x, y}. This, by the definition of a binary restricted domain,
means that there exist R′

1 ∈ Dx and R′
2 ∈ Dy such thatU(y,R1) ∩ U(x,R′

2) = {x, y} and
U(y,R′

1) ∩ U(x,R2) = {x, y}. By the first part of the proof we have Φ{x,y}(R1,R′
2) = 1 and

Φ{x,y}(R′
1,R2) = 1. Let Φx(R1,R′

2) = ε and Φx(R′
1,R2) = ε′. Since R1,R′

1 ∈ Dx and R2,R′
2 ∈ Dy,

strategy-proofness implies Φx(R′
1,R′

2) = Φx(R1,R′
2) = ε and Φy(R′

1,R′
2) = Φy(R′

1,R2) = 1− ε′. This
means Φ{x,y}(R′

1,R′
2) = ε + 1− ε′, which implies ε ≤ ε′. By a similar argument it follows that ε′ ≤ ε.

Hence, ε = ε′. Finally, again since R1,R′
1 ∈ Dx and R2,R′

2 ∈ Dy, we have by strategy-proofness that
Φx(R1,R2) = Φx(R′

1,R2) = ε and Φy(R1,R2) = Φy(R1,R′
2) = 1− ε, and hence Φ{x,y}(R1,R2) = 1,

completing the proof. ■
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Remark 2.3.4 Condition (ii) in Definition 2.2.9 of a binary restricted domain cannot be omitted. Let
A = {x, y, z}, N = {1, 2}, and letD = {R,R′} ⊆W(A) with xPzPy and yP′zP′x (P and P′ are the
asymmetric parts of R and R′, respectively). Hence,D is not a binary restricted domain over {x, y}, since (ii) in
Definition 2.2.9 is not fulfilled. Let (α, β, γ) ∈ Δ(A) be the lottery with probabilities on x, y, and z, respectively.
Define the PRΦ by: Φ(RN) = (1, 0, 0) if RN = (R,R),Φ(RN) = (0, 1, 0) if RN = (R′,R′), and
Φ(RN) = ( 1

3 ,
1
3 ,

1
3) in the two other cases. Then clearlyΦ is unanimous and strategy-proof. Hence,D is not a

binary support domain.

The following proposition treats the case with more than two agents.

Proposition 2.3.2 Let n ≥ 3, letD be binary restricted domain over {x, y}, and letΦ : Dn →△A be a
strategy-proof and unanimous PR.ThenΦ{x,y}(RN) = 1 for all RN ∈ Dn.

Proof: As before,N = {1, . . . , n} is the set of agents. We prove the result by induction. Assume that the
proposition holds for all sets with k < n agents.

LetN∗ = {1, 3, . . . , n} and define the PR g : Dn−1 →△A for the set of agentsN∗ as follows: For all
RN∗ = (R1,R3, . . . ,Rn) ∈ Dn−1,

g(R1,R3, . . . ,Rn) = Φ(R1,R1,R3, . . . ,Rn).

Claim 1 g{x,y}(RN∗) = 1 for all RN∗ ∈ Dn−1.
To prove this claim, first observe that g inherits unanimity from Φ. We show that g also inherits

strategy-proofness. It is easy to see that agents other than 1 do not manipulate g since Φ is strategy-proof.
Let (R1,R3, . . . ,Rn) ∈ Dn−1 andQ1 ∈ D. For all b ∈ A, we have

gU(b,R1)(R1,R3, . . . ,Rn) = ΦU(b,R1)(R1,R1,R3, . . . ,Rn)

≥ ΦU(b,R1)(Q1,R1,R3, . . . ,Rn)

≥ ΦU(b,R1)(Q1,Q1,R3, . . . ,Rn)

= gU(b,R1)(Q1,R3, . . . ,Rn),

where the inequalities follow from strategy-proofness of Φ. The proof of Claim 1 is now complete by the
induction hypothesis.⁴

Thus, by Claim 1, we have Φ{x,y}(RN) = 1 for all RN ∈ Dn with R1 = R2. Our next claim shows that the
same holds if τ(R1) = τ(R2).

⁴We have included the proof of Claim 1 for completeness. It can also be found in [98].
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Claim 2 Let RN be a preference profile such that τ(R1) = τ(R2). Then Φ{x,y}(RN) = 1.
To prove this claim, first suppose that τ(R1) = τ(R2) = {x, y}. Then, if Φ{x,y}(RN) < 1, player 1

manipulates at RN via R2 since by Claim 1, Φ{x,y}(R2,R2,RN\{1,2}) = 1. Now consider the case
τ(R1) = τ(R2) ∈ {x, y}, say τ(R1) = τ(R2) = x. By Claim 1 we have
Φ{x,y}(R1,R1,RN\{1,2}) = Φ{x,y}(R2,R2,RN\{1,2}) = 1. Moreover, since τ(R1) = τ(R2) = xwe have by
strategy-proofness Φx(R1,R1,RN\{1,2}) = Φx(R1,R2,RN\{1,2}) = Φx(R2,R2,RN\{1,2}) = ε (say).

SinceD is a binary restricted domain, if τ(Ri) ̸= y for all i ∈ N \ {1, 2}, then by unanimity
Φ{x,y}(RN) = Φx(RN) = 1, and we are done. Now suppose there is i ∈ N \ {1, 2} such that τ(Ri) = y.
Let R ∈ D be such that τ(R) = y andU(x,R) ∩ U(y,R1) = {x, y}. Such an R exists sinceD is a binary
restricted domain. Consider the preference profile R̄N\{1,2} of the agents inN \ {1, 2} defined as follows:
for all i ∈ N \ {1, 2}

R̄i =

{
R if τ(Ri) = y
Ri otherwise.

By Claim 1, Φ{x,y}(R1,R1, R̄N\{1,2}) = Φ{x,y}(R2,R2, R̄N\{1,2}) = 1. Since τ(R1) = τ(R2) = x, we have
by strategy-proofness Φx(R1,R1, R̄N\{1,2}) = Φx(R1,R2, R̄N\{1,2}) = Φx(R2,R2, R̄N\{1,2}). We show
Φx(R1,R1, R̄N\{1,2}) = ε. First we claim that Φy(R1,R1,RN\{1,2}) = Φy(R1,R1, R̄N\{1,2}). To see this,
consider a player i ∈ N \ {1, 2} such that Ri ̸= R̄i. Then τ(Ri) = τ(R̄i) = y, hence by strategy-proofness
we have Φy(R1,R1,Ri,RN\{1,2,i}) = Φy(R1,R1, R̄i,RN\{1,2,i}). By repeating this argument,
Φy(R1,R1,RN\{1,2}) = Φy(R1,R1, R̄N\{1,2}). Hence, since Φ{x,y}(R1,R1, R̄N\{1,2}) = 1, we obtain
Φx(R1,R1, R̄N\{1,2}) = ε.

Using similar logic it follows that Φy(R1,R2,RN\{1,2}) = Φy(R1,R2, R̄N\{1,2}). We complete the proof by
showing Φy(R1,R2, R̄N\{1,2}) = 1− ε. For this, since Φx(R1,R2, R̄N\{1,2}) = ε, it suffices to show that
Φ{x,y}(R1,R2, R̄N\{1,2}) = 1. Suppose that ΦB(R1,R2, R̄N\{1,2}) > 0 for B = A \ U(y,R1). Then agent 1
manipulates at (R1,R2, R̄N\{1,2}) via R2 since Φ{x,y}(R2,R2, R̄N\{1,2}) = 1. Thus,
ΦU(y,R1)(R1,R2, R̄N\{1,2}) = 1. Next we show that ΦU(x,R)(R1,R2, R̄N\{1,2}) = 1. If not, consider
i ∈ N \ {1, 2} such that R̄i = R. Let R′

i be such that τ(R′
i) = x. Then by strategy-proofness

ΦU(x,R)(R1,R2, R̄N\{1,2}) ≥ ΦU(x,R)(R1,R2,R′
i, R̄N\{1,2,i}). By sequentially changing the preferences of the

players inN \ {1, 2}with y at the top in this manner we construct a preference profile R̂ such that
τ(R̂i) = x for all i ∈ N and ΦU(x,R)(R1,R2, R̄N\{1,2}) ≥ ΦU(x,R)(R̂) = 1. Hence
ΦU(x,R)(R1,R2, R̄N\{1,2}) = 1.

Since ΦU(y,R1)(R1,R2, R̄N\{1,2}) = 1, ΦU(x,R)(R1,R2, R̄N\{1,2}) = 1, andU(y,R1) ∩ U(x,R) = {x, y}, we
have Φ{x,y}(R1,R2,RN\{1,2}) = 1. This completes the proof of Claim 2.

We can now complete the proof of the proposition. Let RN ∈ Dn be an arbitrary preference profile. We
show that Φ{x,y}(RN) = 1. In view of Claim 2, we may assume τ(R1) ̸= τ(R2). Note that if τ(Ri) = {x, y}
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for some i ∈ {1, 2} and ΦA\{x,y}(RN) > 0, then agent imanipulates at RN via Rj, where j ∈ {1, 2}, j ̸= i,
since by Claim 1 we have Φ{x,y}(Rj,Rj,RN\{1,2}) = 1. So we may assume without loss of generality that
τ(R1) = x and τ(R2) = y.

SupposeU(y,R1) ∩ U(x,R2) = {x, y}. If ΦA\U(x,R2)(RN) > 0, then agent 2 manipulates at RN via R1

since, by Claim 1, Φ{x,y}(R1,R1, RN\{1,2}) = 1. Thus, ΦU(x,R2)(RN) = 1, and similarly one proves
ΦU(y,R1)(RN) = 1. Together withU(y,R1) ∩ U(x,R2) = {x, y}, this implies Φ{x,y}(RN) = 1.

Finally, supposeU(y,R1) ∩ U(x,R2) ̸= {x, y}. SinceD is a binary restricted domain there exist
R′

1 ∈ Dx and R′
2 ∈ Dy such thatU(y,R1) ∩ U(x,R′

2) = {x, y} andU(y,R′
1) ∩ U(x,R2) = {x, y}. Since

τ(R1) = τ(R′
1) = x and τ(R2) = τ(R′

2) = y, by strategy-proofness we have
Φx(R1,R2,RN\{1,2}) = Φx(R′

1,R2,RN\{1,2}) and Φy(R1,R2,RN\{1,2}) = Φy(R1,R′
2,RN\{1,2}). By a similar

argument as in the last paragraph of proof of Proposition 2.3.1 we have Φx(R1,R′
2, RN\{1,2}) =

Φx(R′
1,R2,RN\{1,2}). Hence, Φ{x,y}(R1,R2,RN\{1,2}) = Φ{x,y}(R1,R′

2,RN\{1,2}). However,
Φ{x,y}(R1,R′

2,RN\{1,2}) = 1 sinceU(y,R1) ∩ U(x,R′
2) = {x, y}, which completes the proof of the

proposition. ■

Theorem 2.3.3 now follows from Propositions 2.3.1 and 2.3.2. Moreover, we have the following
consequence of Theorem 2.3.3 and Corollary 2.3.1.

Corollary 2.3.2 Every binary restricted domain is a deterministic extreme point domain.

2.3.3 Characterization of strategy-proof and unanimous rules

In this subsection we give a characterization of all strategy-proof and unanimous PRs on a binary
restricted domain. In view of Corollary 2.3.2, it will be sufficient to give a characterization of
strategy-proof and unanimous DRs on a binary restricted domain.

Throughout this subsection letD be a binary restricted domain over {x, y}. For RN ∈ Dn, byNx(RN)

we denote the set of agents i ∈ N such that τ(Ri) = x; byNxy(RN) the set of agents i ∈ N such that
τ(Ri) = {x, y}; and we define

I(RN) = {QN ∈ Dn : Nxy(QN) = Nxy(RN) and Ri = Qi for every i ∈ Nxy(RN)}.

Thus, I(RN) is the (equivalence) class of all preference profiles that share with RN the set of agents who
are indifferent between x and y and have the same preference as in RN.

For RN ∈ DN a committeeW(RN) is a set of subsets ofN such that:

(1) IfNxy(RN) = N thenW(RN) = ∅ orW(RN) = {∅}.

(2) IfNxy(RN) ̸= N thenW(RN) ⊆ 2N\Nxy(RN) satisfies
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(i) ∅ /∈ W(RN) andN \ Nxy(RN) ∈ W(RN),

(ii) for all S,T ⊆ N \ Nxy(RN), if S ⊆ T and S ∈ W(RN), then T ∈ W(RN).

In case (2) in the above definition, a committee is a simple game, elements ofW(RN) are called
winning coalitions, and other subsets ofN \ Nx,y(RN) are called losing coalitions.

A collection of committeesW = {W(RN) : RN ∈ Dn} is an admissible collection of committees (ACC)
if the following three conditions hold:

a) For all RN,QN ∈ Dn, ifQN ∈ I(RN) thenW(QN) =W(RN).

b) For all RN ∈ Dn, i ∈ N \ Nxy(RN), R′
i ∈ D such that τ(R′

i) = {x, y}, and C ∈ W(RN), if i /∈ C,
then C ∈ W(RN\i,R′

i).

c) For all RN ∈ Dn, i ∈ N \ Nxy(RN), R′
i ∈ D such that τ(R′

i) = {x, y}, and C /∈ W(RN), if i ∈ C,
then C \ {i} /∈ W(RN\i,R′

i).

Thus, a collection of committees is admissible if a) each committee depends only on the set of
indifferent agents and their preferences; b) if a coalition is winning and an agent not belonging to it
becomes indifferent, then the coalition stays winning; and c) if a coalition is losing and an agent belonging
to it becomes indifferent, then the coalition without that agent stays losing. Observe that a), b), and c) are
trivially fulfilled ifNxy(RN) = N, i.e., if all agents are indifferent. In particular, in that case I(RN) = {RN}.

With an ACCW we associate a DR fW as follows: for every RN ∈ Dn,

fW(RN) =

{
x ifNx(RN) ∈ W(RN)

y ifNx(RN) /∈ W(RN).

We now show that every strategy-proof and unanimous DR is of the form fW . We just outline the proof
since it is rather standard, and, moreover, the theorem is almost equivalent to Theorem 3 in [66]. A
(nonessential) difference is that the last mentioned result is formulated for the case where A = {x, y}, so
that all preference profiles with the same indifferent agents are equivalent, making our condition a) on an
ACC redundant.

Theorem 2.3.5 LetD be a binary restricted domain. A DR f onDn is strategy-proof and unanimous if and
only if there is an ACCW such that f = fW .

Proof: For the only-if part, let f be a strategy-proof and unanimous DR. For each RN ∈ Dn we define the
setWf(RN) of coalitions as follows. IfNxy(RN) = N thenWf(RN) = {∅} if f(RN) = x andWf(RN) = ∅
otherwise. IfNxy(RN) ̸= N then for every C ⊆ N \ Nxy(RN), C ∈ Wf(RN) if and only if there is a
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QN ∈ I(RN) such that f(QN) = x and C = Nx(QN). ThenWf(RN) is a committee for each RN ∈ DN by
unanimity and strategy-proofness of f. Also, the collectionWf = {Wf(RN) : RN ∈ Dn} is an ACC: a)
follows directly by definition of the committeesWf(RN); and b) and c) follow from unanimity and
strategy-proofness of f. Finally, it is straightforward to check that f = fWf .

For the if-part, letW be an ACC. Then it is easy to check that f = fW is strategy-proof and unanimous.
■

By Corollary 2.3.2 and Theorem 2.3.5 we obtain the following result.

Corollary 2.3.3 LetD be a binary restricted domain. A PR f onDn is strategy-proof and unanimous if and
only if it is a convex combination of DRs of the form f = fW for ACCsW .

Remark 2.3.6 The set of winning coalitionsW(RN)may indeed depend on the preference profile of the
indifferent agents, i.e., the agents in I(RN). Here is an example. Let N = {1, 2, 3}, A = {x, y, v,w} and define:
W(RN) = {{1, 3},N} if Nxy(RN) = ∅;W(RN) = {{1, 3}} if Nxy(RN) = {2};W(RN) = {{2, 3}} if
Nxy(RN) = {1};W(RN) = {{1, 2}} if Nxy(RN) = {3} and vR3w;W(RN) = {{1}, {1, 2}} if
Nxy(RN) = {3} and wP3v; andW(RN) = {∅} if Nxy(RN) = N. Then it is straightforward to verify that fW is
strategy-proof and unanimous.

2.4 Application to single-dipped preferences

In this section we apply our results to single-dipped domains and characterize all strategy-proof and
unanimous PRs on such a domain.

Definition 2.4.1 A preference of agent i ∈ N, Ri ∈W(A), is single-dipped on A relative to a linear ordering
≻ of the set of alternatives if

(i) Ri has a unique minimal element d(Ri), the dip of Ri and

(ii) for all y, z ∈ A, [d(Ri) ⪰ y ≻ z or z ≻ y ⪰ d(Ri)]⇒ zPiy.

LetD≻ denote the set of all single-dipped preferences relative to the ordering≻, and letR≻ ⊆ D≻.
ClearlyD≻ is a binary restricted domain. Moreover,R≻ is a binary restricted domain if it satisfies
condition (ii) in Definition 2.2.9, the definition of a binary restricted domain. Hence, by Corollary 2.3.2
and Theorem 2.3.5 we obtain the following result.

Corollary 2.4.1 Let≻ be a linear ordering over A and letR≻ ⊆ D≻ satisfy (ii) in Definition 2.2.9. Then a
PR onRn

≻ is strategy-proof and unanimous if and only if it it is a convex combination of DRs onRn
≻ of the form

f = fW for ACCsW .
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Consider a single-dipped domain where the alternatives are assumed to be equidistant from each other
and preference is consistent with the distance from the dip. More precisely, when the distance of an
alternative from the dip of an agent is higher than that of another alternative, the agent prefers the former
alternative to the latter. Call such a domain a ‘distance single-dipped domain’. If ties between equidistant
alternatives are broken in both ways, then such a domain is again a binary restricted domain, and
Corollary 2.4.1 applies. However, if ties are broken in favor of the left side (or of the right side) only, then
the domain is no longer a binary restricted domain. Indeed, in Example 2.4.2 we show that there exists a
strategy-proof and unanimous PR that does not have binary support.

Example 2.4.2 Consider the distance single-dipped domain presented in the table below. There are two agents
and four alternatives: think of the alternatives as located on a line in the ordering x1 < x2 < x3 < x4 with equal
distances. Ties are always broken in favor of the left alternative. It is not hard to verify that the PR given in the
table (probabilities in the order x1, x2, x3, x4, and 0 < β < α < 1, 0 < γ < ε < 1 arbitrary) is strategy-proof
and unanimous, but does not have binary support.

1/2 x1x2x3x4 x4x3x2x1 x4x1x3x2 x1x2x4x3

x1x2x3x4 (1, 0, 0, 0) (α − β, β, 0, 1− α) (α, 0, 0, 1− α) (1, 0, 0, 0)
x4x3x2x1 (ε − γ, γ, 0, 1− ε) (0, 0, 0, 1) (0, 0, 0, 1) (ε − γ, γ, 0, 1− ε)
x4x1x3x2 (ε, 0, 0, 1− ε) (0, 0, 0, 1) (0, 0, 0, 1) (ε, 0, 0, 1− ε)
x1x2x4x3 (1, 0, 0, 0) (α − β, β, 0, 1− α) (α, 0, 0, 1− α) (1, 0, 0, 0)

Remark 2.4.3 Other examples of binary restricted domains are single-peaked domains where each peak
can only be one of two fixed adjacent alternatives, or certain single-crossing domains with only two
alternatives that can serve as top alternative. These domains, however, are of limited interest within the
single-peaked and single-crossing domains, respectively.

Of course, there are binary restricted domains which are much larger than and considerably different
from single-dipped domains – an obvious example is the domain of all preferences with x or y or both on
top, or any subdomain including a preference with x on top and y second and a preference with y on top
and x second.

2.5 Infinitely many alternatives

In this section we assume that the set of alternatives Amay be an infinite set, for instance a closed interval
inR. We assume A to be endowed with a σ-algebra of measurable sets; only preferences inW(A) for
which the upper contour setsU(x,R), x ∈ A, are measurable, are considered. A PR Φ assigns to an
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admissible preference profile a probability distribution over the measurable space A, hence a probability
to every measurable set. The set of all such probability distributions will still be denoted as Δ(A). For a
measurable set B ⊆ A, ΦB(RN) denotes the probability assigned to B if the preference profile is RN. All
the introduced concepts and definitions extend in a straightforward manner to this setting. In particular,
Definitions 2.2.1–2.2.7, 2.2.9, and 2.2.10 are literally the same. Also Propositions 2.3.1 and 2.3.2 are still
valid, and thereforeTheorem 2.3.3 still holds: a binary restricted domain over {x, y} (x, y ∈ A) is a binary
support domain. The purpose of this section is to provide a characterization of all strategy-proof and
unanimous PRs on a binary restricted domain.

LetD be a binary restricted domain over {x, y} for some x, y ∈ A. We use some of the notations
introduced in Section 2.3.3. For RN ∈ Dn withNxy(RN) = Nwe let h(RN) = h(RN)(∅) ∈ [0, 1] and for
RN ∈ Dn withNxy(RN) ̸= Nwe let h(RN) : 2N\N

xy(RN) → [0, 1] satisfy h(RN)(∅) = 0,
h(RN)(N \ Nxy(RN)) = 1, and h(RN)(C) ≤ h(RN)(C′) for all C,C′ ⊆ N \ Nxy(RN)with C ⊆ C′; we
assume, moreover, that h(QN) = h(RN)wheneverQN ∈ I(RN) and that

h(RN)(C \ i) ≤ h(R′
N)(C \ i) ≤ h(RN)(C)

whenever i ∈ N \Nxy(RN), R′
N = (RN\i,R′

i) for some R′
i with τ(R′

i) = {x, y}, andC ⊆ N \Nxy(RN)with
i ∈ C. Observe that such an h generalizes the concept of an admissible collection of committees: we call h
a probabilistic admissible collection of committees (PACC). For RN ∈ Dn withNxy(RN) ̸= N, the number
h(RN)(C) can be interpreted as the probability that a coalition C is winning given a profile withNxy(RN)

as the set of agents who are indifferent between x and y and having RNxy(RN) as preference profile;
specifically, if C is the set of agents with x on top, then this probability will be assigned to x. If
Nxy(RN) = N, then h(RN) = h(RN)(∅) is the probability assigned to x.

We say that a PR Φ onDn is associated with a PACC h if (i) Φ{x,y}(RN) = 1 for all RN ∈ Dn; (ii)
Φx(RN) = h(RN)(Nx(RN)) for all RN ∈ Dn.

We have the following result.

Theorem 2.5.1 LetD be a binary restricted domain over {x, y}. A PRΦ onDn is strategy-proof and
unanimous if and only if it is associated with a PACC.

Proof: For the if-part, let PR Φ be a associated with a PACC h. We show that Φ is unanimous and
strategy-proof.

We first show that Φ is unanimous. Consider a profile RN ∈ Dn such that∩i∈Nτ(Ri) ̸= ∅. If
τ(Ri) = {x, y} for all i ∈ N then unanimity holds by definition. Suppose∩i∈Nτ(Ri) = x. Then
Nx(RN) = N \ Nxy(RN). Since h(RN)(N \ Nxy(RN)) = 1, we have Φx(RN) = 1. If∩i∈Nτ(Ri) = y then
Nx(RN) = ∅which implies Φx(RN) = h(RN)(∅) = 0. So, Φy(RN) = 1.
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Next we show that Φ is strategy-proof. Consider a profile RN ∈ Dn. We only need to consider
i ∈ N \ Nxy(RN). Let R′

i ∈ D and write R′
N = (RN\i,R′

i). We distinguish four cases and each time show
that i cannot improve by R′

i . (i) If τ(Ri) = x and τ(R′
i) = y then

Φx(RN) = h(RN)(Nx(RN)) ≥ h(R′
N)(Nx(RN) \ i) = h(R′

N)(Nx(R′
N)) = Φx(R′

N) by definition of h. (ii)
If τ(Ri) = y and τ(R′

i) = x then
Φx(RN) = h(RN)(Nx(RN)) ≤ h(R′

N)(Nx(RN)) = h(R′
N)(Nx(R′

N)) = Φx(R′
N). This implies

Φy(RN) ≥ Φy(R′
N). (iii) If τ(Ri) = x and τ(R′

i) = {x, y}, then, sinceNx(RN) \ i = Nx(R′
i,RN\i), we have

Φx(RN) = h(RN)(Nx(RN)) ≥ h(R′
N)(Nx(R′

N)) = Φx(R′
N). (iv) Finally, if τ(Ri) = y and τ(R′

i) = {x, y},
then Φx(RN) = h(RN)(Nx(RN)) ≤ h(R′

N)(Nx(R′
N)) = Φx(R′

N), which implies Φy(R′
N) ≤ Φy(RN). This

completes the proof that Φ is strategy-proof.

For the only-if part, consider a unanimous and strategy-proof PR Φ onDn. Then Φ{x,y}(RN) = 1 for all
RN ∈ Dn by (the modified version of) Theorem 2.3.3. We show that Φ is associated with a PACC h. If
RN ∈ Dn withNxy(RN) = N, then we define h(RN) = h(RN)(∅) = Φx(RN). Now let RN ∈ Dn with
Nxy(RN) ̸= N. By strategy-proofness, Φ(QN) = Φ(RN) for allQN ∈ Dn withQN ∈ I(RN) and
Nx(QN) = Nx(RN). Therefore, we can define h(RN)(C) = Φx(QN) for anyQN ∈ I(RN) such that
C = Nx(QN). By unanimity of Φ, h(RN)(∅) = 0 and h(RN)(N \ Nxy(RN)) = 1. By strategy-proofness,
h(RN)(C) ≤ h(RN)(C′) for all C,C′ ⊆ N \ Nxy(RN)with C ⊆ C′.

Clearly, h(QN) = h(RN)whenever RN ∈ Dn andQN ∈ I(RN).
Let RN ∈ Dn, i ∈ N \ Nxy(RN), R′

N = (RN\i,R′
i) for some R′

i with τ(R′
i) = {x, y}, and

C ⊆ N \ Nxy(RN)with i ∈ C. ConsiderQN ∈ I(RN)withNx(QN) = C. Then by strategy-proofness we
have h(RN)(C) = Φx(QN) ≥ Φx(QN\i,R′

i) = h(RN\i,R′
i)(C \ i) = h(R′

N)(C \ i). Finally, consider
VN ∈ I(RN)withNx(VN) = C \ i. Again by strategy-proofness we obtain
h(RN)(C \ i) = Φx(VN) ≤ Φx(VN\i,R′

i) = h(RN\i,R′
i)(C \ i) = h(R′

N)(C \ i). ■

We conclude the paper with some thoughts about extending Theorem 2.3.1 and Corollary 2.3.1 to the
case of infinitely many alternatives. As to extending Theorem 2.3.1, which states that a domain is a
deterministic extreme point domain if and only if each strategy-proof and unanimous strict probabilistic
rule can be written as a convex combination of two other strategy-proof and unanimous probabilistic rules,
for the infinite case one may try and find a suitable topology on the set of all such rules so that it becomes
a convex and compact subset of a topological vector space. Then, one could apply a topological version of
the Krein-Milman Theorem (e.g., Theorem III.4.1 in [16]) and conclude that each strategy-proof and
unanimous probabilistic rule is in the closure of the convex hull of the strategy-proof and unanimous
deterministic rules. This, however, does not seem a straightforward exercise, and also does not deliver the
exact analogue of Theorem 2.3.1. Next, Corollary 2.3.1 states that for the case of finitely many alternatives
every binary support domain is a deterministic extreme point domain. This is a direct consequence of
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Theorem 2.3.1 and Theorem 2.3.2, where the latter theorem states that every strategy-proof and
unanimous strict probabilistic rule assigning positive probability to only two alternatives x and y, can be
written as a convex combination of two other such rules. Again, extending this theorem to the case of
infinitely many alternatives does not seem to be a sinecure: the proof for the finite case heavily uses the
fact that if a probability p ∈ (0, 1) is assigned to x at some preference profile, then we can find an interval
around p such that at each other profile either probability p is assigned to x or some probability outside
this interval. A proof along this line seems to break down if there are infinitely many alternatives.
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3
ACharacterization of RandomMin-maxDomains and

Its Applications

3.1 Introduction

3.1.1 Background of the problem

We analyze the classical social choice problem of choosing an alternative from a set of feasible alternatives
based on the preferences of individuals in a society. Such a procedure is known as a deterministic social
choice function (DSCF). Arrow, Gibbard, and Satterthwaite have identified some desirable properties of
such a DSCF such as unanimity and strategy-proofness. A DSCF is strategy-proof if a strategic individual
cannot change its outcome in her favor by misreporting her preferences, and it is unanimous if, whenever
all the individuals have the same most preferred alternative, that alternative is chosen. The classic
[56]-[96] impossibility theorem states that if there are at least three alternatives and the preferences of the
individuals are unrestricted, then the only DSCFs that are unanimous and strategy-proof are dictatorial. A
DSCF is called dictatorial if there exists an individual, called the dictator, whose most preferred alternative
is always chosen by the DSCF.

Although unanimity and strategy-proofness are desirable properties of a DSCF, the assumption of an
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unrestricted domain made in the Gibbard-Satterthwaite Theorem is quite strong. Not only do their exist
many political and economic scenarios where preferences of individuals satisfy natural restrictions such as
single-peakedness, but also the conclusion of the Gibbard-Satterthwaite Theorem does not apply to such
restricted domains. Consequently, domain restrictions turn out to be an obvious and useful way of
evading the dictatorship result in social choice theory.

The single-peaked property is commonly used in a public good location problem. Such a domain
restriction occurs in an environment where strictly quasi-concave utility functions are maximized over a
linear budget set. The study of single-peaked domains can be traced back to [20] where he shows that a
Condorcet winner exists on such domains. Later, [72] and [103] show that a DSCF on a single-peaked
domain is unanimous and strategy-proof if and only if it is amin-max rule. In a recent paper, [2]
characterize all domains on which a DSCF is unanimous and strategy-proof if and only if it is a min-max
rule. They call such domains min-max domains.

The horizon of social choice theory have been expanded by the concept of random social choice functions
(RSCF). An RSCF assigns a probability distribution over the alternatives at every preference profile.
Thus, RSCFs are generalization of DSCFs. The importance of RSCFs over DSCFs has been
well-established in the literature (see, for example, [46], [81]).

The study of RSCFs dates back to [57] where he shows that an RSCF on the unrestricted domain is
unanimous and strategy-proof if and only if it is a random dictatorial rule. A random dictatorial rule is a
convex combination of dictatorial rules. [46] characterize the unanimous and strategy-proof random
rules on maximal single-peaked domains, and [81] show that such a rule is a convex combination of
min-max rules. [87] establish a similar result by using the theory of totally unimodular matrices from
combinatorial integer programming.

3.1.2 Our motivation

Our motivations behind this work are as follows:

• As we have discussed earlier, single-peaked domains are very useful in modeling preferences in
many practical situations. However, to the best of our knowledge, there is no characterization
available in the literature of the unanimous and strategy-proof RSCFs on single-peaked domains
other than the maximal single-peaked domain and minimally rich single-peaked domains. The
maximal single-peaked domain requires that every single-peaked preference is present in the
domain. On the other hand, minimally rich single-peaked domains require presence of ‘extreme’
single-peaked preferences such as the ones in which all the alternatives on the left (right) side of the
top-ranked alternative are preferred to all those on the right (left) side of the same. Both these
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domains are quite demanding for practical purposes. This motivates us to investigate the structure
of the unanimous and strategy-proof RSCFs on other single-peaked domains.

• Min-max rules are quite simple to understand, intuitively appealing, and easy to work with. They
also have desirable properties like tops-onliness and anonymity (a class of min-max rules called
median rules). This motivates us to find all domains on which a rule (RSCF or DSCF) is
unanimous and strategy-proof if and only if it is a min-max rule.

• A domain satisfies the deterministic extreme point (DEP) property if every unanimous and
strategy-proof RSCF on it can be written as a convex combination of the unanimous and
strategy-proof DSCFs on that domain. Such a property of a domain is very useful in finding socially
optimal strategy-proof RSCFs.¹ This is because, if a domain satisfies the DEP property, then the
maximum expected social welfare will always be achieved by some strategy-proof DSCF. This
reduces the problem of finding socially optimal strategy-proof RSCFs to that of finding socially
optimal strategy-proof DSCFs. [55] characterize socially optimal strategy-proof DSCFs on regular
single-crossing domains. It is worth noting that a regular single-crossing domain is single-peaked.
Therefore, if such single-peaked domains satisfy the DEP property, then the same rules as found in
[55] will continue to be optimal amongst the strategy-proof RSCFs. This motivates us to
characterize all single-peaked domains that satisfy the DEP property.

3.1.3 Our contribution

We provide a characterization of the unanimous and strategy-proof RSCFs on top-connected
single-peaked domains. For such domains, there is a prior ordering over the alternatives. The top-set of a
domain consists of those alternatives that appear as a top-ranked alternative in some preference in the
domain. Two alternatives ar and as are called consecutive in the top-set of a domain if both of them
belong to the top-set and no alternative in-between (with respect to the given prior order) them belongs
to the same set. A domain is called top-connected if, for every two alternatives ar and ar+s that are
consecutive in the top-set, there are two preferences P and P′ such that the alternatives ar, ar+1, . . . , ar+s

appear successively from the top in P, and the alternatives ar+s, ar+s−1, . . . , ar appear successively from
the top in P′. For example, if the set of alternatives is {a1, . . . , a10} and the top-set of a domain is
{a3, a5, a8, a9}, then, for instance, alternatives a5 and a8 are consecutive in the top-set of that domain.
Top-connectedness for such a domain requires the presence of preferences such as P = a5a6a7a8 . . . and
P′ = a8a7a6a5 . . ., where by abc . . .we denote a preference in which a is ranked first, b is ranked second, c

¹An RSCF is socially optimal if it maximizes the sum of the expected utilities (ordinal or cardinal, depending on the model)
of the individuals with respect to some prior distribution over the preferences of the individuals of the society.
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is ranked third, and the other alternatives are arbitrarily ranked in the remaining positions. Note that if the
top-set of a domain consists of all alternatives (such a domain is called regular in the literature), then
top-connectedness requires that for every two alternatives of the form ar and ar+1, there are two
preferences P and P′ such that ar is ranked first and ar+1 is ranked second in P, and ar+1 is ranked first and
ar is ranked second in P′. Clearly, top-connectedness is a mild condition for a single-peaked domain. For
instance, single-peaked domains that arise from situations where alternatives are equidistant from each
other and preferences are based on Euclidean distances are top-connected. Thus, our result applies to a
large class of single-peaked domains of practical importance. It is worth noting that [2] provide the
deterministic analogue of our results.

Owing to the importance of the min-max rules and the DEP property, we characterize all random
min-max domains. An RSCF is called random min-max if it can be written as a convex combination of the
min-max rules, and a domain is called random min-max if an RSCF on it is unanimous and strategy-proof
if and only if it is a random min-max rule. Thus, our result shows that a large class of domains of practical
importance satisfies the DEP property.

As a by-product of our result, it follows that every top-connected single-peaked domain is tops-only for
random rules. [30] provide a sufficient condition for a domain to be tops-only for DSCFs, and later [31]
provide the same for RSCFs. However, top-connected single-peaked domains do not satisfy any of these
conditions.

As applications of our result, we obtain a characterization of the unanimous and strategy-proof RSCFs
on minimally rich single-peaked domains, regular single-crossing domains, and Euclidean domains.
Minimally rich single-peaked domains are introduced in [81]. Such domains arise in the problem of
locating a public good where agents are ‘single-minded’ in the sense that either they prefer the left
direction or the right direction. Thus, for such a domain, either all the alternatives on the left side of the
peak are preferred to those on the right side or vice versa. Single-crossing domains are well known for
their frequent applications in models of income taxation and redistribution ([89], [69]), local public
goods and stratification ([102], [48], [51]), and coalition formation ([41], [64]).² [94] provide a
characterization of the unanimous and strategy-proof deterministic rules on such domains. Here, we
provide the same for random rules under regularity. Euclidean domains arise in public good location
problems where agents derive their preferences based on the Euclidean distances of the alternatives from
their own location (which is the peak of the preference). The practical importance of such domains is
well-established in the literature. [78] consider the problem of locating a public bad over
two-dimensional Euclidean space and show that under some mild condition, every unanimous and

²Moreover, models that study the selection of policies in the market for higher education ([52]) and the choice of constitu-
tional and voting rules ([9]) also use single-crossing domains. [93] has a detailed exposition on various applications, interpre-
tations, and scopes of single-crossing domains.
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strategy-proof SCF on such domains is dictatorial.

3.1.4 Organization of the paper

The paper is organized as follows. In Section 3.2, we introduce the basic model. Section 3.3 provides a
characterization of the unanimous and strategy-proof random rules on top-connected single-peaked
domains and Section 3.4 provides a characterization of the random min-max domains. We provide some
applications of our results in Section 3.5. Finally, Section 3.6 concludes the paper.

3.2 Preliminaries

LetN = {1, . . . , n} be a finite set of agents. Except where otherwise mentioned, n ≥ 2. Let
A = {a1, . . . , am} be a finite set of alternatives with a prior ordering≺ given by a1 ≺ · · · ≺ am.
Whenever we write minimum or maximum of a subset of A, we mean it w.r.t. the ordering≺ over A. By
a ⪯ b, we mean a = b or a ≺ b. For a, b ∈ A, we define [a, b] = {c | either a ⪯ c ⪯ b or b ⪯ c ⪯ a}.
By (a, b), we define [a, b] \ {a, b}. For notational convenience, whenever it is clear from the context, we
do not use braces for singleton sets, i.e., we denote the set {i} by i.

3.2.1 Domain of preferences and their properties

A complete, antisymmetric, and transitive binary relation over A (also called a linear order) is called a
preference. We denote byL(A) the set of all preferences over A. For P ∈ L(A) and a, b ∈ A, aPb is
interpreted as “a is strictly preferred to b according to P”. For P ∈ L(A), by P(k)we mean the k-th ranked
alternative in P, i.e., P(k) = a if and only if |{b ∈ A | bPa}| = k− 1. For P ∈ L(A) and a ∈ A, the upper
contour set of a at P, denoted byU(a, P), is defined as the set of alternatives that are as good as a in P, i.e.,
U(a, P) = {b ∈ A | bPa} ∪ a. We denote byD ⊆ L(A) a set of admissible preferences. For a ∈ A, let
Da = {P ∈ D | P(1) = a}. The top-set of a domainD is defined as τ(D) = ∪P∈DP(1). A domainD is
called regular if τ(D) = A.

Definition 3.2.1 A preference P is called single-peaked if for all a, b ∈ A, [P(1) ⪯ a ≺ b or b ≺ a ⪯ P(1)]
implies aPb. A domain is called single-peaked if each preference in the domain is single-peaked, and is called
maximal single-peaked if it contains all single-peaked preferences.

A preference profile, denoted by PN = (P1, . . . , Pn), is an element ofDn = D × · · · × D.
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3.2.2 Social choice functions and their properties

A Random Social Choice Function (RSCF) is a function ϕ : Dn → ΔA, where ΔA denotes the set of
probability distributions on A.

For B ⊆ A and PN ∈ Dn, we define ϕB(PN) =
∑

a∈B ϕa(PN), where ϕa(PN) is the probability of a at
ϕ(PN).

For later reference, we include the following observation.

Remark 3.2.2 For all L, L′ ∈ ΔA and all P ∈ L(A), if LU(x,P) ≥ L′
U(x,P) and L

′
U(x,P) ≥ LU(x,P) for all

x ∈ A, then L = L′.

Definition 3.2.3 An RSCF ϕ : Dn → ΔA is called unanimous if for all a ∈ A and all PN ∈ Dn,

[Pi(1) = a for all i ∈ N]⇒ [ϕa(PN) = 1].

Definition 3.2.4 An RSCF ϕ : Dn → ΔA is called strategy-proof if for all i ∈ N, all PN ∈ Dn, all P′i ∈ D,
and all x ∈ A, ∑

y∈U(x,Pi)

ϕy(Pi, P−i) ≥
∑

y∈U(x,Pi)

ϕy(P
′
i, P−i).

Remark 3.2.5 An RSCF is called a deterministic social choice function (DSCF) if it selects a degenerate
probability distribution at every preference profile. More formally, an RSCF ϕ : Dn → ΔA is called a DSCF if
ϕa(PN) ∈ {0, 1} for all a ∈ A and all PN ∈ Dn. The concepts of unanimity and strategy-proofness for DSCFs
are special cases of the corresponding definitions for RSCFs.

Definition 3.2.6 An RSCF ϕ : Dn → ΔA is called tops-only if ϕ(PN) = ϕ(P′N) for all PN, P′N ∈ Dn such
that Pi(1) = P′i(1) for all i ∈ N.

Next, we define the concept of uncompromisingness for an RSCF. Loosely put, it says that
exaggerating behavior of an agent does not influence the outcome.

Definition 3.2.7 An RSCF ϕ : Dn → ΔA is called uncompromising if ϕB(PN) = ϕB(P
′
i, P−i) for all i ∈ N,

all PN ∈ Dn, all P′i ∈ D, and all B ⊆ A such that B ∩ [Pi(1), P′i(1)] = ∅.

Note that uncompromisingness implies tops-onliness. It says that if an agent moves his/her top-ranked
alternative closer to or farther from an alternative x in a way so that both the initial and the final positions
of his/her top-ranked alternative are different from x, then the probability assigned to x by an RSCF
cannot change.
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Random min-max rules

In this section, we introduce a class of random social choice functions called random min-max rules. [72]
and [103] introduce the concept of min-max rules. Random min-max rules are convex combinations of
these rules. Formal definitions are as follows.

Definition 3.2.8 ADSCF f onDn is called a min-max rule if for all S ⊆ N, there exists βS ∈ A satisfying

β∅ = am, βN = a1, and βT ⪯ βS for all S ⊆ T

such that for each PN ∈ Dn

f(PN) = min
S⊆N

[
max
i∈S
{Pi(1), βS}

]
.

Note that min-max rules are tops-only by definition. In what follows, we provide an example of a
min-max rule.

Example 3.2.9 Let A = {a1, . . . , a10} and N = {1, 2, 3}. Consider the min-max rule, say f, with parameters
as given in Table 3.2.1.

Table 3.2.1: Parameters of the min-max rule f

β β1 β2 β3 β{1,2} β{1,3} β{2,3}
a8 a9 a7 a4 a5 a2

The outcome of the min-max rule at the profile (a5, a3, a8), where a5, a3, and a8 are the top ranked alternatives
of agents 1, 2, and 3, respectively, is determined as follows.

f(PN) = min
S⊆{1,2,3}

[
max
i∈S
{Pi(1), βS}

]
= min

[
max{β∅},max{P1(1), β1},max{P2(1), β2},max{P3(1), β3},

max{P1(1), P2(1), β{1,2}},max{P1(1), P3(1), β{1,3}},max{P2(1), P3(1), β{2,3}},

max{P1(1), P2(1), P3(1)β{1,2,3}}
]

= min
[
a10, a8, a9, a8, a5, a8, a8, a8

]
= a5.

For RSCFs ϕj, j = 1, . . . , k and non-negative numbers λj, j = 1, . . . , k, summing to 1, we define the
RSCF ϕ =

∑k
j=1 λ

jϕj as ϕa(PN) =
∑k

j=1 λ
jϕj

a(PN) for all PN ∈ Dn and all a ∈ A. We call ϕ a convex
combination of the RSCFs ϕj.
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Definition 3.2.10 An RSCF ϕ : Dn → ΔA is called a random min-max rule if ϕ can be written as a convex
combination of some min-max rules.

3.3 A characterization of the unanimous and strategy-proof RSCFs on top-

connected single-peaked domains

Two alternatives are called consecutive in the top-set of a domain if there is no alternative from the top-set
that appears in-between (with respect to the prior order⪯) those two alternatives. More formally, two
alternatives ar and as are called consecutive in τ(D) if (ar, as) ∩ τ(D) = ∅. For a domainD, define the
top-interval I(D) as the set of alternatives [min(τ(D)),max(τ(D))].

Definition 3.3.1 A single-peaked domainD is called top-connected if for every two consecutive alternatives ar
and as in τ(D) withmin(τ(D)) ⪯ ar ≺ as ⪯ max(τ(D)), there exist P ∈ Dar and P′ ∈ Das such that
asPar−1 if ar−1 ∈ I(D) and arP′as+1 if as+1 ∈ I(D).

Remark 3.3.2 Note that top-connectedness does not impose any restriction (except from single-peakedness) on
any preference with the top-ranked alternative asmin(τ(D)) ormax(τ(D)). To see this, take, for instance,
min(τ(D)) = ar ≺ as ⪯ max(τ(D)). Definition 3.3.1 says there must exist a single-peaked preference
P ∈ Dar such that asPar−1 if ar−1 ∈ I(D). However, since ar = min(τ(D)), it must be that ar−1 /∈ I(D).
Therefore, this condition does not apply to P. Similar logic applies to any preference with the top-ranked
alternative asmax(τ(D)).

For a sequence of alternatives b1, . . . , bk, denote by ⟨b1, . . . , bk⟩ . . . a preference where P(l) = bl for all
l = 1, . . . , k. Then, the top-connectedness property of a domainD assures that for every two consecutive
alternatives ar and as in τ(D)with min(τ(D)) ⪯ ar ≺ as ⪯ max(τ(D)), there are two single-peaked
preferences P and P′ such that P = ⟨ar, ar+1, . . . , as−1, as⟩ . . . if ar−1 ∈ I(D) and
P′ = ⟨as, as−1, . . . , ar+1, ar⟩ . . . if as+1 ∈ I(D). For example, if A = {a1, . . . , a15} and
τ(D) = {a3, a4, a5, a8, a10}, then top-connectedness ensures, for instance, that preferences such as
⟨a5, a6, a7, a8⟩ . . . and ⟨a8, a7, a6, a5⟩ . . . are present in the domain. Note that as we mention in Remark
3.3.2, top-connectedness does not impose any restriction (except from single-peakedness) on the
preferences with top-ranked alternatives a3 or a10. Thus, the top-connectedness property of a domainD
guarantees that for every two consecutive alternatives ar and as in τ(D)with
min(τ(D)) ⪯ ar ≺ as ⪯ max(τ(D)), there are two single-peaked preferences P and P′ such that
P|I(D) = ⟨ar, ar+1, . . . , as−1, as⟩ . . . and P′|I(D) = ⟨as, as−1, . . . , ar+1, ar⟩ . . ..³

³For P ∈ L(A) and B ⊆ A, P|B ∈ L(B) is defined as follows: for all a, b ∈ B, aP|Bb if and only if aPb.
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We provide an example of a top-connected single-peaked domain in Example 3.3.3.

Example 3.3.3 Let A = {a1, . . . , a10} be the set of alternatives. Consider the top-connected single-peaked
domainD = {P1, . . . , P9} given in Table 3.3.1. Here, τ(D) = {a3, a4, a7, a9}.

Table 3.3.1

P1 P2 P3 P4 P5 P6 P7 P8 P9

a3 a3 a4 a4 a4 a7 a7 a9 a9

a4 a2 a3 a5 a5 a6 a8 a10 a8

a5 a4 a2 a6 a6 a5 a9 a8 a7

a2 a1 a5 a3 a7 a4 a6 a7 a6

a1 a5 a6 a7 a3 a3 a5 a6 a10

a6 a6 a1 a8 a2 a2 a4 a5 a5

a7 a7 a7 a9 a8 a8 a3 a4 a4

a8 a8 a8 a10 a9 a9 a10 a3 a3

a9 a9 a9 a2 a1 a1 a2 a2 a2

a10 a10 a10 a1 a10 a10 a1 a1 a1

It is worth noting that the number of preferences in a top-connected single-peaked domain can range
from 2|τ(D)| − 1 to 2m−1. Thus, the class of such domains is quite large. It should be further noted that
any single-peaked domainD with |τ(D)| = 2 is a top-connected single-peaked domain. This is because
top-connectedness does not impose any condition on the preferences with top-ranked alternatives
min(τ(D)) or max(τ(D)).

Our next theorem provides a characterization of the unanimous and strategy-proof RSCFs on
top-connected single-peaked domains.

Theorem 3.3.4 An RSCF on a top-connected single-peaked domain is unanimous and strategy-proof if and
only if it is a random min-max rule.

The proof of this theorem is relegated to Appendix 3.7. We provide a brief sketch of it here. First note that
the if part of the theorem follows as a consequence of [72]. This is because, since every top-connected
single-peaked domain is a subset of the maximal single-peaked domain, every min-max rule on such a
domain is unanimous and strategy-proof. Because every randommin-max rule is a convex combination of
min-max rules, such rules will also be unanimous and strategy-proof on top-connected single-peaked
domains.

For the only-if part of the theorem, we first prove a proposition which states that every unanimous and
strategy-proof RSCF on a top-connected single-peaked domain is uncompromising. We use the method
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of induction on the number of agents in proving this. We start with the base case comprising of one agent.
The proposition follows trivially for this case. Assuming that the proposition is true for n− 1 agents, we
proceed to prove it for n agents. First, we consider all preference profiles where two particular agents, say
agents 1 and 2, have the same preferences. Since the restriction of an RSCF, say ϕ, on such profiles can be
thought of an RSCF on a domain with n− 1 agents, it follows from the induction hypothesis that the
restriction of ϕ on these profiles satisfy uncompromisingness (in a suitable sense). Next, we vary the
preferences of agents 1 and 2 in two steps. In the first step, we consider preferences of those agents such
that they have the same top-ranked alternative and show that ϕ satisfies uncompromisingness over these
profiles (in a suitable sense). In the second step, we consider arbitrary preferences of agents 1 and 2 and
complete the proof of the proposition. Finally, we complete the proof of the theorem by showing that
every uncompromising RSCF is a random min-max rule. In proving this, we use results from [46] and
[81].

Remark 3.3.5 It is worth noting that we do not assume tops-onlyness in addition to unanimity and
strategy-proofness for the RSCFs on top-connected single-peaked domains. However, since every random
min-max rule is tops-only, it follows that unanimity and strategy-proofness together guarantee tops-onlyness on
such domains. [31] provide a sufficient condition for a domain to be tops-only for RSCFs.⁴ However,
top-connected single-peaked domains do not satisfy their condition.

Remark 3.3.6 [81] show that every unanimous and strategy-proof RSCF on a minimally rich single-peaked
domain is a random min-max rule. A domain is called minimally rich if for every alternative, there are two
preferences with that alternative at the top such that in one of them all the alternatives on the left side of the
top-ranked alternative are preferred to those on the right side, and in the other one, the converse happens. To the
contrary, a regular top-connected single-peaked domain requires for every alternative, two preferences with it at
the top such that in one of them the alternative that is to the immediate left of the top is preferred to that on the
immediate right, and in the other, the converse happens. Thus, our result improves the result in [81] in a
considerable manner.

Remark 3.3.7 A domainD is said to satisfy deterministic extreme point (DEP) property if every unanimous
and strategy-proof RSCF onDn can be written as a convex combination of unanimous and strategy-proof
DSCFs onDn. It follows fromTheorem 3.3.4 that top-connected single-peaked domains satisfy DEP property.

Remark 3.3.8 [2] provide a characterization of the domains on which a DSCF is unanimous and
strategy-proof if and only if it is a min-max rule. They call these domains min-max domains. It is worth
mentioning that (i) they consider DSCFs, whereas we consider RSCFs, (ii) they assume the domains to be

⁴A domain is called tops-only if every unanimous and strategy-proof RSCF on it is tops-only.
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regular, whereas we allow the domains to be arbitrary, and (iii) they allow the set of admissible preferences to be
different for different individuals, whereas we assume that all the individuals have the same set of admissible
preferences. Thus, under the assumption that all the individuals have the same set of admissible preferences, a
generalized version (to the case of non-regular domains) of the result in [2] follows as a corollary of our result.

3.4 Random min-max domains and their characterization

In this section, we introduce the concept of random min-max domains and provide a characterization of them. A
domain is called random min-max if an RSCF on it is unanimous and strategy-proof if and only if it is a random
min-max rule. Below, we provide a formal definition.

Definition 3.4.1 A domainD is called a random min-max domain if,

• every random min-max rule onDn is strategy-proof, and

• every unanimous and strategy-proof RSCF onDn is a random min-max rule.

Note that Definition 3.4.1 in particular implies that on a random min-max domain, every min-max rule is
strategy-proof and every unanimous and strategy-proof DSCF is a min-max rule.

Now, we present a characterization of the random min-max domains.

Theorem 3.4.2 A domain is a random min-max domain if and only if it is a top-connected single-peaked
domain.

It follows fromTheorem 3.4.2 that if we consider a single-peaked domain that is not top-connected, then there
must be some unanimous and strategy-proof RSCF that is not a min-max rule, and on the other hand, if we
consider a non-single-peaked domain, then some random min-max rule must be manipulable on that domain.
Thus, this theorem provides the full applicability of random min-max rules as unanimous and strategy-proof
random rules.

The proof of this theorem is relegated to Appendix 5.8. We provide a sketch of it here. The if part of the
theorem follows fromTheorem 3.3.4. For the only-if part, we consider an arbitrary non-top-connected domain
and construct a unanimous and strategy-proof RSCF (in fact, a DSCF) that is not a random min-max rule.

In the following, we provide an example to show that our assumption (which is imposed from the outset) of
strict preferences is crucial for our result. In particular, we show that if a top-connected single-peaked domain
allows some preferences with indifferences, then there are unanimous and strategy-proof RSCFs that are not
random min-max rules.
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Example 3.4.3 Consider the following domain:
D = {a1a2a3a4, a2a1a3a4, a2a3a1a4, a2a1a3a4, a3a2a1a4, a3a4a2a1, a4a3a2a1}. Here, we put an overline to
indicate indifferences, for instance, the preference a2a1a3a4 implies that a2 is strictly preferred to a1, a1 is strictly
preferred to both a3 and a4, and a3 and a4 are indifferent. Note thatD is a top-connected single-peaked domain
with an additional preference a2a1a3a4 (i.e.,D \ {a2a1a3a4} is a top-connected single-peaked domain). Consider
the DSCF presented in Table 3.4.1. It is left to the reader to check that it is unanimous and strategy-proof.
However, since f(a2a3a1a4, a4a3a2a1) = a3 and f(a2a1a3a4, a4a3a2a1) = a4, f is not tops-only. This, in particular,
implies that f is not a min-max rule.

Table 3.4.1

1\2 a1a2a3a4 a2a1a3a4 a2a3a1a4 a2a1a3a4 a3a2a1a4 a3a4a2a1 a4a3a2a1

a1a2a3a4 a1 a2 a2 a2 a3 a3 a3

a2a1a3a4 a2 a2 a2 a2 a3 a3 a3

a2a3a1a4 a2 a2 a2 a2 a3 a3 a3

a2a1a3a4 a2 a2 a2 a2 a3 a3 a4

a3a2a1a4 a3 a3 a3 a3 a3 a3 a3

a3a4a2a1 a3 a3 a3 a3 a3 a3 a3

a4a3a2a1 a3 a3 a3 a4 a3 a3 a4

3.5 Applications

As we have explained, top-connected single-peaked domains are very general in nature and many single-peaked
domains of practical importance fall in this category. Here, we present a few such domains. A characterization of
the unanimous and strategy-proof RSCFs on these domains follows fromTheorem 3.3.4.

3.5.1 Minimally rich single-peaked domains

A single-peaked preference P is called left single-peaked if aj ≺ P(1) ≺ ak implies ajPak. Similarly, a
single-peaked preference P is called right single-peaked if aj ≺ P(1) ≺ ak implies akPaj. A domainD is
minimally rich if it contains all left and right single-peaked preferences. In other words, every alternative aj is the
top of at least two preferences P, P′ ∈ D where ajPaj−1 · · · a1Paj+1 · · · Pam and ajP′aj+1 · · · amP′aj−1 · · · P′a1.
This concept was first introduced in [81].

Lemma 3.5.1 Aminimally rich single-peaked domain is a top-connected single-peaked domain.

The proof of this lemma is left to the reader.
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3.5.2 Regular single-crossing domains

Definition 3.5.1 A domainD is called a single-crossing domain w.r.t. an ordering< overD if for all
a, b ∈ A and all P, P′ ∈ D,

[a ≺ b, P < P′, and bPa] =⇒ bP′a.

A domain is called single-crossing if it is single-crossing w.r.t. some ordering over the domain.

Definition 3.5.2 A single-crossing domain D̄ is calledmaximal if there does not exist a single-crossing domain
D such that D̄ ⊊ D.

Note that a maximal single-crossing domain with m alternatives contains m(m− 1)/2 + 1 preferences.⁵

Lemma 3.5.2 A regular maximal single-crossing domain is a top-connected single-peaked domain.

The proof of this lemma is left to the reader.

3.5.3 Euclidean single-peaked domains

For ease of presentation, we assume that the set of alternatives are (finitely many) elements of the interval [0, 1].⁶
Let 0 = a1 < · · · < am = 1 be the alternatives. Assume that the individuals are located at arbitrary locations
in [0, 1] and derive their preferences using Euclidean distances of the alternatives from their own location. We call
such preferences Euclidean. Below, we provide formal definitions of these terms.

Definition 3.5.3 A preference P is called Euclidean if there is x ∈ [0, 1], called the location of P, such that for all
alternatives a, b ∈ A, |x− a| < |x− b| implies aPb. A domain is called Euclidean if it contains all Euclidean
preferences.

Lemma 3.5.3 Every Euclidean domain is a top-connected single-peaked domain.

Proof: Single-peakedness of a Euclidean domain is straight-forward. We show that such a domain is
top-connected. LetD be a Euclidean domain. Then, it is regular by definition. SinceD is regular, it is enough to
show that for all ar with r ∈ {1, . . . ,m− 1}, there exist P and P′ inD such that P(1) = P′(2) = ar and
P(2) = P′(1) = ar+1. Consider two preferences such that both of them have locations at ar+ar+1

2 . Since ar and
ar+1 are at equal distance from their locations, a Euclidean domain does not put any restriction on the relative
preference of ar and ar+1 for those preferences. So, we can have P(1) = P′(2) = ar and P(2) = P′(1) = ar+1.
This completes the proof of the lemma. ■

⁵For details see [93].
⁶With abuse of notation, we denote by [0, 1] the set of real numbers in-between 0 and 1.
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Figure 3.5.1: A graphic illustration of Example 3.5.4
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Note that the Euclidean domains we consider are regular by definition. However, there can be
Euclidean domains such that some particular alternative cannot appear as a top-ranked alternative in any
preference. Such situations can occur when no individual resides in the close vicinity of that location. In
the following example, we consider such a Euclidean domain and show that it admits unanimous and
strategy-proof rules other than random min-max rules.

Example 3.5.4 Suppose that the locations a1, . . . , a5 are arranged on a line as given in Figure 3.5.1. Suppose
further that the individuals reside only in the region marked with blue. Note that this means the location a3 will
never be the best choice for any agent to locate a public good. The Euclidean preferences that can arise in such
situation are as follows: {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a4a3a5a2a1, a4a5a3a2a1, a5a4a3a2a1}. In Table
3.5.1, we provide a DSCF that is unanimous and strategy-proof but not a min-max rule. To see this, assume to
the contrary that it is a min-max rule. Because f(a5a4a3a2a1, a1a2a3a4a5) = a5, it must be that β{2} = a5. Then,
by the definition of min-max rule, it follows that f(a2a1a3a4a5, a1a2a3a4a5) = a2, which contradicts
f(a2a1a3a4a5, a1a2a3a4a5) = a1.

Table 3.5.1

1\2 a1a2a3a4a5 a2a1a3a4a5 a2a3a1a4a5 a4a3a5a2a1 a4a5a3a2a1 a5a4a3a2a1

a1a2a3a4a5 a1 a1 a1 a1 a1 a1

a2a1a3a4a5 a1 a2 a2 a2 a2 a2

a2a3a1a4a5 a1 a2 a2 a2 a2 a2

a4a3a5a2a1 a4 a4 a4 a4 a4 a4

a4a5a3a2a1 a4 a4 a4 a4 a4 a4

a5a4a3a2a1 a5 a5 a5 a5 a5 a5

3.6 Conclusion

In this paper, we have characterized the unanimous and strategy-proof random rules on a large class of
single-peaked domains that we call top-connected single-peaked domains. We have shown that many
single-peaked domains of practical importance fall in this class. Next, we have provided a characterization
of the random min-max domains. These are the domains on which a random rule is unanimous and
strategy-proof if and only if it is a random min-max rule.
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An interesting problem for future work would be a characterization of unanimous and strategy-proof
random rules on single-peaked domains that are not even top-connected. Tops-only property may not
hold on such domains, and consequently such a characterization might turn out to be a hard problem.

Appendix

3.7 Proof of Theorem 3.3.4

Proof: (If part) LetD be a top-connected single-peaked domain and let ϕ be a random min-max rule. By
definition ϕ is unanimous. We need to show ϕ is strategy-proof. SinceD is a single-peaked domain, every
min-max rule is strategy-proof onDn ([72]). It follows by using standard arguments that every convex
combination of strategy-proof deterministic rules is a strategy-proof random rule. Since ϕ is a convex
combination of some min-max rules, the proof of the if part follows.

(Only-if part) LetD be a top-connected single-peaked domain and let ϕ : Dn → ΔA be a unanimous and
strategy-proof RSCF. First we prove a technical lemma which we repeatedly use in our proof.

Lemma 3.7.1 LetD be a domain and let ϕ : Dn → ΔA be a strategy-proof RSCF. Let PN ∈ Dn, P′i ∈ D,
and B,C ⊆ A be such that BPiC, BP′iC, and Pi|C = P′i|C. Suppose ϕC(PN) = ϕC(P

′
i, P−i) and

ϕa(PN) = ϕa(P
′
i, P−i) for all a /∈ B ∪ C. Then, ϕa(PN) = ϕa(P

′
i, P−i) for all a ∈ C.

Proof: First note that since ϕC(PN) = ϕC(P
′
i, P−i) and ϕa(PN) = ϕa(P

′
i, P−i) for all a /∈ B ∪ C,

ϕB(PN) = ϕB(P
′
i, P−i). Suppose b ∈ C is such that ϕb(PN) ̸= ϕb(P

′
i, P−i) and ϕa(PN) = ϕa(P

′
i, P−i) for

all a ∈ Cwith aPib. In other words, b is the maximal element of C according to Pi that violates the
assertion of the lemma. Without loss of generality, assume that ϕb(PN) < ϕb(P

′
i, P−i). However, since

BPiC, ϕB(PN) = ϕB(P
′
i, P−i), and ϕa(PN) = ϕa(P

′
i, P−i) for all a /∈ Bwith aPib, we have

ϕU(b,Pi)(PN) < ϕU(b,Pi)(P
′
i, P−i). This means agent imanipulates at PN via P′i , which is a contradiction. ■

Now we proceed to prove the only-if part. We start with a proposition.

Proposition 3.7.1 The RSCF ϕ : Dn → ΔA is uncompromising.

Proof: Let |N| = 1 and let ϕ : D → △A be a unanimous and strategy-proof RSCF. Then, unanimity
implies uncompromisingness.

Assume that the theorem holds for all sets with k < n agents. We prove it for n agents. Let |N| = n and
let ϕ : Dn →△A be a unanimous and strategy-proof RSCF. SupposeN∗ = N \ {1}. Define the RSCF
g : Dn−1 →△A for the set of votersN∗ as follows: for all PN∗ = (P2, P3, . . . , Pn) ∈ Dn−1,

g(P2, P3, . . . , Pn) = ϕ(P2, P2, P3, P4, . . . , Pn).
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Evidently, g is a well-defined RSCF satisfying unanimity and strategy-proofness (See Lemma 3 in [98]
for a detailed argument). Hence, by the induction hypothesis, g satisfies uncompromisingness. The proof
of Proposition 3.7.1 is completed using a series of lemmas. In the next lemma, we show that ϕ is tops-only
over all profiles PN where agents 1 and 2 have the same top alternative.

Lemma 3.7.2 Let PN, P′N ∈ Dn be two tops-equivalent profiles such that P1, P2 ∈ Dar for some ar ∈ A. Then,
ϕ(PN) = ϕ(P′N).

Proof: Note that since g is uncompromising, g satisfies tops-onlyness. Because g is tops-only and
P1, P2 ∈ Dar , we have g(P1, P−{1,2}) = g(P2, P−{1,2}), and hence ϕ(P1, P1, P−{1,2}) = ϕ(P2, P2, P−{1,2}).
We show that ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2}). Using strategy-proofness of ϕ for agent 2, we have
ϕU(x,P1)

(P1, P1, P−{1,2}) ≥ ϕU(x,P1)
(P1, P2, P−{1,2}) for all x ∈ A, and using that for agent 1, we have

ϕU(x,P1)
(P1, P2, P−{1,2}) ≥ ϕU(x,P1)

(P2, P2, P−{1,2}) for all x ∈ A. Since
ϕ(P1, P1, P−{1,2}) = ϕ(P2, P2, P−{1,2}), it follows from Remark 5.2.3 that
ϕ(P1, P1, P−{1,2}) = ϕ(P1, P2, P−{1,2}). Using a similar logic, we have
ϕ(P′1, P′1, P′−{1,2}) = ϕ(P′1, P′2, P′−{1,2}). Because g is tops-only and PN, P′N are tops-equivalent, we have
g(P1, P−{1,2}) = g(P′1, P′−{1,2}). This implies that ϕ(P1, P1, P−{1,2}) = ϕ(P′1, P′1, P′−{1,2}), and hence
ϕ(P1, P2, P−{1,2}) = ϕ(P′1, P′2, P′−{1,2}). ■

Lemma 3.7.3 Let 1 ≤ r ≤ s ≤ m and let PN, P′N ∈ Dn be such that P1, P2 ∈ Dar and P′1, P′2 ∈ Das , and
Pi(1) = P′i(1) for all i ̸= 1, 2. Then, ϕa(PN) = ϕa(P

′
N) for all a /∈ [ar, as].

Proof: By uncompromisingness of g, we have ga(P1, P−{1,2}) = ga(P′1, P−{1,2}) for all a /∈ [ar, as].
Moreover, since g is tops-only and Pi(1) = P′i(1) for all i ∈ {3, 4, . . . , n}, we have
g(P′1, P−{1,2}) = g(P′1, P′−{1,2}). By the definition of g, g(P1, P−{1,2}) = ϕ(P1, P1, P−{1,2}) and
g(P′1, P−{1,2}) = ϕ(P′1, P′1, P−{1,2}). As P1(1) = P2(1) and P′1(1) = P′2(1), Lemma 5.7.3 implies
ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2}) and ϕ(P′1, P′2, P′−{1,2}) = ϕ(P′1, P′1, P′−{1,2}). Combining all these
observations, we have ϕa(P1, P2, P−{1,2}) = ϕa(P

′
1, P′2, P′−{1,2}) for all a /∈ [ar, as]. ■

Lemma 3.7.4 Let ar ≺ as and let PN, P′N ∈ Dn be such that P1, P2, P′1 ∈ Dar and P′2 ∈ Das , and
Pi(1) = P′i(1) for all i ̸= 1, 2. Then, ϕa(PN) = ϕa(P

′
N) for all a /∈ [ar, as].

Proof: By Lemma 5.7.3, ϕ(P1, P2, P−{1,2}) = ϕ(P′1, P′1, P′−{1,2}). Hence, it suffices to show that
ϕa(P

′
1, P′1, P′−{1,2}) = ϕa(P

′
1, P′2, P′−{1,2}) for all a /∈ [ar, as]. Note that [ar, as] = U(as, P′1) ∩ U(ar, P′2).

Therefore, we prove the above mentioned assertion for a /∈ U(as, P′1) as the proof of the same when
a /∈ U(ar, P′2) follows from symmetric arguments.
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Take a /∈ U(as, P′1). By strategy-proofness of ϕ,

ϕU(a,P′1)
(P′1, P

′
1, P

′
−{1,2}) ≥ ϕU(a,P′1)

(P′1, P
′
2, P

′
−{1,2}) ≥ ϕU(a,P′1)

(P′2, P
′
2, P

′
−{1,2}).

Moreover, by Lemma 5.7.4, ϕa(P
′
1, P′1, P′−{1,2}) = ϕa(P

′
2, P′2, P′−{1,2}) for all a /∈ [ar, as], and hence

ϕB(P
′
1, P′1, P′−{1,2}) = ϕB(P

′
2, P′2, P′−{1,2}) for all B ⊆ A such that [ar, as] ⊆ B. Since a /∈ U(as, P′1) and

P′1(1) = ar, by the definition of single-peakedness, we have [ar, as] ⊆ U(a, P′1), and hence

ϕU(a,P′1)
(P′1, P

′
1, P

′
−{1,2}) = ϕU(a,P′1)

(P′1, P
′
2, P

′
−{1,2}). (3.1)

Let b ∈ A be such that bP′1a and there is there is no c ∈ A such that bP′1c and cP′1a. Then,
[ar, as] ⊆ U(b, P′1), and hence

ϕU(b,P′1)
(P′1, P

′
1, P

′
−{1,2}) = ϕU(b,P′1)

(P′1, P
′
2, P

′
−{1,2}). (3.2)

Subtracting (5.2) from (5.1), we have ϕa(P
′
1, P′1, P′−{1,2}) = ϕa(P

′
1, P′2, P′−{1,2}), which completes the proof

of the lemma. ■

Lemma 3.7.5 ϕ satisfies uncompromsingness.

Proof: First, we show ϕ satisfies uncompromising for agent i ∈ {1, 2}. It is sufficient to show this for agent
1. Consider PN and P′1 such that P1(1) = ar and P′1(1) = as where ar ≺ as and (ar, as) ∩ τ(D) = ∅. We
show that ϕa(PN) = ϕa(P

′
1, P−1) for all a /∈ [ar, as]. Consider P̄1 ∈ Dar and P̂1 ∈ Das where

P̄|I(D) = ⟨ar, . . . , as⟩ . . . and P̂|I(D) = ⟨as, . . . , ar⟩ . . .. Without loss of generality, we assume that
P2(1) = at where as ⪯ at.

Claim 3.7.1 A ϕ(PN) = ϕ(P̄1, P−1).

Note that by Lemma 5.7.3, ϕ(P1, P1, P−{1,2}) = ϕ(P̄1, P̄1, P−{1,2}), and by Lemma 5.7.5,
ϕa(P1, P1, P−{1,2}) = ϕa(P1, P2, P−{1,2}) for all a /∈ [ar, at] and ϕa(P̄1, P̄1, P−{1,2}) = ϕa(P̄1, P2, P−{1,2}) for
all a /∈ [ar, at]. This implies ϕa(P1, P2, P−{1,2}) = ϕa(P̄1, P2, P−{1,2}) for all a /∈ [ar, at]. By
single-peakedness, we have P1|[ar,at] = P′1|[ar,at], and therefore by applying Lemma 5.7.2 with B = ∅ and
C = [ar, at], we have ϕ(P1, P2, P−{1,2}) = ϕ(P̄1, P2, P−{1,2}). This completes the proof of Claim 3.7.1.

Using a similar argument as for Claim 3.7.1, we can show that ϕ(P′1, P−1) = ϕ(P̂1, P−1). Thus, to show
that ϕa(PN) = ϕa(P

′
1, P−1) for all a /∈ [ar, as], it is enough to show ϕa(P̄1, P−1) = ϕa(P̂1, P−1) for all

a /∈ [ar, as]. Note that by Lemma 5.7.4, ϕa(P̄1, P̄1, P−{1,2}) = ϕa(P̂1, P̂1, P−{1,2}) for all a /∈ [ar, as], and by
Lemma 5.7.5, ϕa(P̄1, P̄1, P−{1,2}) = ϕa(P̄1, P2, P−{1,2}) for all a /∈ [ar, at] and
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ϕa(P̂1, P̂1, P−{1,2}) = ϕa(P̂1, P2, P−{1,2}) for all a /∈ [as, at]. Combining all these observations,
ϕa(P̄1, P2, P−{1,2}) = ϕa(P̂1, P2, P−{1,2}) for all a /∈ [ar, at]. Consider b /∈ [τ(D)]. Then b /∈ [ar, at] since
[ar, at] ⊆ I(D). As P̄|I(D) = ⟨ar, . . . , as⟩ . . . and P̂|I(D) = ⟨as, . . . , ar⟩ . . ., this implies that
ϕ[ar,as](P̄1, P2, P−{1,2}) = ϕ[ar,as](P̂1, P2, P−{1,2}). Again by single-peakedness, P̄1|(as,at] = P̂1|(as,at]. Thus, by
applying Lemma 5.7.2 with B = [ar, as] and C = (as, at], we have ϕa(P̄1, P2, P−{1,2}) = ϕa(P̂1, P2, P−{1,2})

for all a /∈ [ar, as]. This shows that ϕ is uncompromising for agents 1 and 2.
Now, we proceed to prove uncompromisingness for the other agents. It is sufficient to show this for

agent 3. Consider PN and P′3 such that P3(1) = ar and P′3(1) = as, where ar ≺ as and (ar, as) ∩ τ(D) = ∅.
We show that ϕa(PN) = ϕa(P

′
3, P−3) for all a /∈ [ar, as]. Consider P̄3 ∈ Dar and P̂3 ∈ Das , where

P̄|I(D) = ⟨ar, . . . , as⟩ . . . and P̂|I(D) = ⟨as, . . . , ar⟩ . . .. Assume P1(1) = ap and P2(1) = aq. We
distinguish two cases.

Case 1. Suppose ap, aq ⪯ ar or as ⪯ ap, aq.
Without loss of generality, we assume that ap, aq ⪯ ar. First we show that ϕ(PN) = ϕ(P̄3, P−3). Note

that by the induction hypothesis, ϕ(P1, P1, P3, P−{1,2,3}) = ϕ(P1, P1, P̄3, P−{1,2,3}). By Lemma 5.7.5,
ϕa(P1, P1, P3, P−{1,2,3}) = ϕa(P1, P2, P3, P−{1,2,3}) for all a /∈ [ap, aq] and
ϕa(P1, P1, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̄3, P−{1,2,3}) for all a /∈ [ap, aq]. Combining all these observations, we
get ϕa(P1, P2, P3, P−{1,2,3}) = ϕa(P1, P2, P̄3, P−{1,2,3}) for all a /∈ [ap, aq]. Since ap, aq ⪯ ar, by
single-peakedness, P3|[ap,aq] = P̄3|[ap,aq]. This implies that ϕ(P1, P2, P3, P−{1,2,3}) = ϕ(P1, P2, P̄3, P−{1,2,3}).
Using a similar logic, we can show ϕ(P1, P2, P′3, P−{1,2,3}) = ϕ(P1, P2, P̂3, P−{1,2,3}). Thus to show that
ϕa(P1, P2, P3, P−{1,2,3}) = ϕa(P1, P2, P′3, P−{1,2,3}) for all a /∈ [ar, as], it is enough to show that
ϕa(P1, P2, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̂3, P−{1,2,3}) for all a /∈ [ar, as]. By the induction hypothesis,
ϕa(P1, P1, P̄3, P−{1,2,3}) = ϕa(P1, P1, P̂3, P−{1,2,3}) for all a /∈ [ar, as]. Again by Lemma 5.7.5,
ϕa(P1, P1, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̄3, P−{1,2,3}) for all a /∈ [ap, aq] and
ϕa(P1, P1, P̂3, P−{1,2,3}) = ϕa(P1, P2, P̂3, P−{1,2,3}) for all a /∈ [ap, aq]. Combining all these observations,
ϕa(P1, P2, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̂3, P−{1,2,3}) for all a /∈ [ap, aq] ∪ [ar, as]. Consider b /∈ [τ(D)]. Then
b /∈ [ap, aq] ∪ [ar, as], and hence ϕb(P1, P2, P̄3, P−{1,2,3}) = ϕb(P1, P2, P̂3, P−{1,2,3}). Since
P̄|I(D) = ⟨ar, . . . , as⟩ . . . and P̂|I(D) = ⟨as, . . . , ar⟩ . . ., this implies that
ϕ[ar,as](P1, P2, P̄3, P−{1,2,3}) = ϕ[ar,as](P1, P2, P̂3, P−{1,2,3}). Since ap, aq ⪯ ar, by single-peakedness
P̄3|[ap,aq]\ar = P̂3|[ap,aq]\ar . Therefore, by applying Lemma 5.7.2 with B = [ar, as] and C = [ap, aq] \ ar, we
have ϕa(P1, P2, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̂3, P−{1,2,3}) for all a /∈ [ar, as]. This completes the proof for
Case 1.

Case 2. Suppose ap ⪯ ar ≺ as ⪯ aq or aq ⪯ ar ≺ as ⪯ ar. Without loss of generality, we assume that

ap ⪯ ar ≺ as ⪯ aq. First we show ϕ(P1, P2, P3, P−{1,2,3}) = ϕ(P1, P2, P̄3, P−{1,2,3}). By using
uncompromisingness for agent 2, we have for all a /∈ [ar, aq],

37



ϕa(P1, P2, P3, P−{1,2,3}) = ϕa(P1, P3, P3, P−{1,2,3}) and ϕa(P1, P2, P̄3, P−{1,2,3}) = ϕa(P1, P3, P̄3, P−{1,2,3}).
Since ap ⪯ ar, by Case 1, ϕ(P1, P3, P3, P−{1,2,3}) = ϕa(P1, P3, P̄3, P−{1,2,3}). Combining all these
observations, ϕa(P1, P2, P3, P−{1,2,3}) = ϕa(P1, P2, P̄3, P−{1,2,3}) for all a /∈ [ar, aq]. As ar ≺ aq, by
single-peakedness, P3|[ar,aq] = P̄3|[ar,as], and hence by strategy-proofness,
ϕ(P1, P2, P3, P−{1,2,3}) = ϕ(P1, P2, P̄3, P−{1,2,3}). Similarly, we can show that
ϕ(P1, P2, P′3, P−{1,2,3}) = ϕ(P1, P2, P̂3, P−{1,2,3}). Thus, to show
ϕa(P1, P2, P3, P−{1,2,3}) = ϕa(P1, P2, P′3, P−{1,2,3}) for all a /∈ [ar, as], it is enough to show that
ϕa(P1, P2, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̂3, P−{1,2,3}) for all a /∈ [ar, as]. Using an argument similar to the
above and the fact that ϕa(P1, P3, P̄3, P−{1,2,3}) = ϕa(P1, P3, P̂3, P−{1,2,3}) for all a /∈ [ar, as], we get
ϕa(P1, P2, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̂3, P−{1,2,3}) for all a /∈ [ar, aq]. Consider b /∈ [τ(D)]. Then,
b /∈ [ar, aq], and hence ϕb(P1, P2, P̄3, P−{1,2,3}) = ϕb(P1, P2, P̂3, P−{1,2,3}). As P̄|I(D) = ⟨ar, . . . , as⟩ . . . and
P̂|I(D) = ⟨as, . . . , ar⟩ . . ., this implies that ϕ[ar,as](P1, P2, P̄3, P−{1,2,3}) = ϕ[ar,as](P1, P2, P̂3, P−{1,2,3}). Since
ar, as ⪯ aq, by single-peakedness, P̄3|(as,aq] = P̂3|(as,aq]. Thus by Lemma 5.7.2 with B = [ar, as] and
C = (as, aq], we have ϕa(P1, P2, P̄3, P−{1,2,3}) = ϕa(P1, P2, P̂3, P−{1,2,3}) for all a /∈ [ar, as]. This completes
the proof for Case 2.

Since Cases 1 and 2 are exhaustive, this shows uncompromisingness for agent 3, and hence completes
the proof of Lemma 3.7.5. ■

The proof of Proposition 3.7.1 follows from Lemma 3.7.5. ■

Now we complete the proof the theorem. Let ar ≺ as be such that ar = min τ(D) and as = max τ(D).
For S ⊆ N define βS = ϕ(PN)where Pi(1) = ar if i ∈ S and Pi(1) = as if i /∈ S. Note that by the
uncompromisingness of ϕ, βS is a probability distribution on A and βS(a) = 0 for all a /∈ [ar, as], and all
S ⊆ N.

First, we show that βS([ak, am]) ≥ βS∪T([ak, am]) for all S,T ⊆ N and all ak ∈ A. Suppose
βS([ak, am]) < βS∪T([ak, am]) for some S,T ⊆ N and some ak ∈ A. Without loss of generality, we can
assume that T = i for some i ∈ N. Let P−i ∈ Dn−1 be such that Pj(1) = ar if j ∈ S and Pj(1) = as if j /∈ S.
Further, let Pi, P′i be such that Pi(1) = ar and P′i(1) = as. By uncompromisingness, βS(a) = βS∪i(a) = 0
for all a /∈ [ar, as]. Therefore, βS([ak, am]) < βS∪i([ak, am]) implies ar ≺ ak ≺ as and

βS([ak, as]) < βS∪i([ak, as]). (3.3)

Since Pi(1) = ar and P′i(1) = as, (3.3) together with the fact that βS(a) = βS∪i(a) = 0 for all a /∈ [ar, as]
implies ϕU(ak−1,Pi)

(PN) < ϕU(ak−1,Pi)
(P′i, P−i). However, then agent imanipulates at PN via P′i , a

contradiction. This shows that βS([ak, am]) ≥ βS∪T([ak, am]) for all S,T ⊆ N and all ak ∈ A.
Define β̂S ∈ Δ[ar, as] for all S ⊆ N such that β̂S(a) = βS(a) for all a ∈ [ar, as]. Let D̂ be the maximal
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single-peaked domain over the alternatives in the interval [ar, as]. For PN ∈ D̂n and ak ∈ [ar, as], we
define S(ak, PN) = {i ∈ N | Pi(1) ∈ [ar, ak]}. Consider the RSCF ϕ̂ : D̂n → Δ[ar, as] such that for all
PN ∈ D̂n and all ak ∈ [ar, as],

ϕ̂[ar,ak]
(PN) = βS(ak,PN)([ar, ak]).

Since ϕa(PN) = ϕ̂a(PN) for all a ∈ [ar, as] and PN with Pi(1) ∈ {ar, as} for all i ∈ N, by Proposition 1
in [81], we have ϕa(PN) = ϕ̂a(PN) for all a ∈ [ar, as] and all PN ∈ Dn. By Theorem 4.1 in [46], ϕ̂ is
unanimous and strategy-proof as D̂ is a single-peaked domain. Hence, by Theorem 3(b) in [81], ϕ̂ can be
written as a convex combination of unanimous and strategy-proof DSCFs f : Dn → A. Again by [103],
every unanimous and strategy-proof DSCFs f : Dn → A is a min-max rule. By definition 3.2.10, this
implies that ϕ̂ is a random min-max rule, and hence ϕ is a random min-max rule.

3.8 Proof of Theorem 3.4.2

(If part) LetD be a top-connected single-peaked domain. By Theorem 3.3.4, an RSCF ϕ is unanimous
and strategy-proof if and only if it is a random min-max rule. Therefore,D is a random min-max domain,
which completes the proof of the if part.

(Only-if part) LetD be a random min-max domain. We prove thatD is a top-connected single-peaked
domain. First we show thatD is a single-peaked domain. Assume for contradiction that there exists
Q ∈ D such thatQ is not single-peaked. Without loss of generality, assume that there exist ar, as with
ar ≺ as ≺ Q(1) such that arQas. Consider the min-max rule f onDn such that βS = ar for all non-empty
S ⊊ N. Consider the profile PN ∈ Dn such that P1 = Q and Pi(1) = as for all i ̸= 1. Then, by the
definition of f, f(PN) = as. Let P′1 ∈ D be such that P′1(1) = ar. Again, by the definition of f,
f(P′1, P−1) = ar. Because arQas, this means agent 1 manipulates at PN via P′1, which contradicts thatD is a
single-peaked domain.

Now, we show that for ar, as ∈ τ(D)with the property that min(τ(D)) ≺ ar ≺ as ≺ max(τ(D)) and
(ar, as) ∩ τ(D) = ∅, there exist P ∈ Dar and P′ ∈ Das such that asPar−1 and arP′as+1. Suppose not and
without loss of generality assume that there exist ar, as ∈ τ(D)with ar ≺ as ≺ max(τ(D)) and
(ar, as) ∩ τ(D) = ∅ such that as+1Par for all P ∈ Das . Consider the DSCF f onDn as follows:

f(PN) =


P1(1) if P1(1) ̸= as,
as if P1(1) = as and asP2as+1,

as+1 otherwise.

It can be verified that f is unanimous and strategy-proof. We show that f is not a min-max rule. In
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particular, we show that f is not uncompromising. This is sufficient as every min-max rule is
uncompromising. Let PN ∈ Dn be such that P2(1) = max(τ(D)). Then, by the definition of f,
f(PN) = as+1 when P1(1) = as, and f(P′1, P−1) = ar when P′1(1) = ar. This clearly violates
uncompromisingness for agent 1. This completes the proof of the only-if part. ■
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4
Formation of Committees through RandomVoting

Rules

4.1 Introduction

A classic paper in the theory of mechanism design is [60]. It considered an exchange economy with at
least two agents and demonstrated the impossibility of constructing an allocation rule that satisfied
strategy-proofness, efficiency and individual rationality. The paper inspired an enormous and rapidly
expanding literature that analyzes socially desirable goals that can be achieved in the presence of private
information and strategic agents, in a wide variety of models. The present paper contributes to that
literature by investigating the structure of rules that permit randomization in the well-known model of
committee formation.

The committee formation model is due to [11]. The problem is one of choosing a committee from a set
of available candidates based on the preferences of agents who have the responsibility of selecting the
committee. The preferences of each agent are assumed to be separable, i.e. if the agent “likes” a candidate,
she strictly prefers a committee where this candidate is included to one where she is excluded, the status
of all other candidates remaining unchanged. A committee formation rule or a social choice function is a
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map that associates every collection of (separable) agent preferences with a committee. Agent preferences
are private information - a fact that necessitates the elicitation of these preferences via voting. A social
choice function is strategy-proof if truth-telling is an optimal strategy for each agent irrespective of her
beliefs about how other agents may vote. The main result of [11] is that strategy-proof social choice
functions (that additionally satisfy a weak efficiency property called unanimity) must be decomposable.
In other words, the decision on each candidate’s inclusion must be taken independently of the decisions
on others and must be based only on preferences that agents have over the candidate (called marginal
preferences). The decomposability condition on social choice function rules out many plausible rules.
For instance, if there are two candidates, we could start with candidate 1 and consider candidate 2 only if 1
is not selected. [26] show that the decomposability property of strategy-proof social choice functions is
very general - it holds for all multi-dimensional models with separable preferences.

In our paper we consider the same model as in [11] but analyzes committee formation rules that
permit randomization. A random social choice functions is a map that associates a collection of
(separable) agent preferences with a probability distribution over committees. Randomization is a natural
way to resolve conflicts of interest amongst agents especially in models where compensation via monetary
transfers is not feasible. The analysis of randomized mechanisms in voting models was initiated in [57].
Once randomization is allowed, the evaluation of truth-telling versus misrepresentation involves the
comparison of lotteries. This evaluation typically involves domain restrictions on preferences over
lotteries (i.e. all preferences over lotteries are not allowed) as a result of which the class of strategy-proof
social choice functions expands (see [35]). ¹

According to our characterization result, a random social choice function is strategy proof and satisfies
unanimity ² if and only if it satisfies the properties of monotonicity and marginal decomposability.
Monotonicity is a familiar property in mechanism design theory. In our model, it requires the probability
of the inclusion of a candidate in every possible committee to be non-decreasing as more agents approve
the candidate. Furthermore, if no agent approves a candidate, the candidate is never selected; on the other
hand, if all agents approve a candidate, she is always selected.

Consider an arbitrary subset of candidates and two preference profiles where all agents agree in their
opinions over this subset of candidates (they may differ in their opinion of other candidates). Marginal
decomposability is satisfied if the marginal probability distribution over the subset of candidates is the
same in the two profiles. Suppose there are three agents and five candidates. Consider the set of the first
three candidates and two preference profiles where all agents agree in their opinions over the first three

¹There are several ways in which this can be done. Here we follow the standard stochastic dominance approach developed
in [57].

²A random social choice function satisfies unanimity if it picks a committee that is first-ranked by all agents, with probability
one.
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candidates. Pick any subset of the first three candidates, say candidates one and three. If marginal
decomposability is satisfies, the probability of candidates one and three being selected in the committee at
the two profiles, must be the same. Note that marginal decomposability only guarantees that marginal
probabilities will be uniquely determined by marginal preferences, but does not say anything about the
joint probability distribution. Thus decomposability in the sense of [26] is not guaranteed. However,
marginal decomposability is equivalent to decomposability when we restrict attention to deterministic
social choice functions thus getting back the decomposability result of [26] in our model.

Finally we consider the special problem of forming a committee with a number of members. A random
social choice function is onto if every committee of the required size s selected with probability one at
some preference profile. We show that every onto and strategy-proof RSCF in this case is a random
dictatorship in an appropriate sense. This result follows from an application of the applying the main
result of [57].

4.2 TheModel

LetM = {1, . . . ,m} be a finite set ofm components. For each component k, Ak = {0, 1} is the set of
alternatives available in component k. For any K ⊆ M, AK =

∏
k∈K A

k, denotes the set of alternatives
available in components in K. The set of (multi-dimensional) alternatives is given by AM. For ease of
presentation, we write A instead of AM. Note that the number of alternatives in A is 2m. Throughout this
paper, we do not use braces for singleton sets.

In the modelM denotes the set of possible candidates from which a committee has to be formed. Thus
each component refers to a possible candidate for a committee, where the numbers 0 and 1 for a
component refer to the social states where the corresponding member is excluded and included in the
committee, respectively. Similarly, every alternative a = (a1, . . . , am) ∈ A refers to a committee in which
the member k is present if and only if ak = 1.

LetN = {1, . . . , n} be a set of finite set of n agents. Each agent i has a strict preference ordering Pi over
the elements of A. We assume that all Pi’s are separable, i.e. for all a−k, b−k ∈ AM−k and all xk, yk ∈ Ak,
(xk, a−k)Pi(yk, a−k) holds if and only if (xk, b−k)Pi(yk, b−k). We denote by Pki the marginal preference
induced by Pi over component k. The existence of marginal preference orderings is guaranteed by
separability. We let τ(Pi) and τ(Pki ) denote the top-ranked alternative in Pi and the top-ranked alternative
in the kth component according to the marginal ordering Pik. In general, rt(Pi) the t-th ranked alternative in
Pi where t ∈ {1, 2, . . . , 2m}. The upper contour set of an alternative a at preference Pi denoted byU(a, Pi)
is defined as follows: U(a, Pi) = {b | bPia} ∪ a. LetD denote the set of all separable preferences over A.
An element PN ofDn is called a (preference) profile.
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A random social choice function (RSCF) ϕ is a mapping ϕ : Dn → ΔAwhere ΔA denotes the set of
probability distributions over A. We define some important properties of an RSCF most of which are
familiar from the literature.

Definition 4.2.1 An RSCF ϕ : Dn → ΔA is unanimous if for all PN and all a ∈ A,

[τ(Pi) = a for all i ∈ N] =⇒ [ϕa(PN) = 1].

If all agents have a common top-ranked committee at a profile, a unanimous RCSF picks that
committee at that profile. It is clearly a weak form of efficiency.

Definition 4.2.2 An RSCF ϕ : Dn → ΔA is strategy-proof if for all i ∈ N, all Pi, P′i ∈ D, and all
P−i ∈ Dn−1, ϕ(Pi, P−i) first order stochastically dominates ϕ(P′i, P−i) according to Pi, that is,

j∑
t=1

ϕrt(Pi)(Pi, P−i) ≥
j∑

t=1

ϕrt(Pi)(P
′
i, P−i) for all j = 1, . . . , 2m.

Our notion of strategy-proofness for RSCFs is the standard one of first-order stochastic dominance
introduced in [57]. No agent can strictly increase the aggregate probability over any upper contour set
according to her true preferences. If it were possible to do, there would exist a utility representation of her
true preferences with the property that the expected utility from misrepresentation strictly exceeds that
from truth-telling.

4.3 Formation of Arbitrary Committees

In this section, we consider the problem of forming a committee by random voting rules. We assume that
there are no restrictions on the committee that is to be formed. ³ A few additional concepts are required
for the analysis.

LetN denote the set of all subsets (power set) ofN. For any K ⊆ M, SK denotes a collection (Sk)k∈K,
where Sk ⊆ N for all k ∈ K. AlsoN K denotes the set of all such collections. Note that the cardinality of
N K is (2n)|K|. We illustrate these notions by means of an example.

Example 4.3.1 Suppose N = {1, 2, 3, 4}, M = {1, 2, 3} and K = {2, 3}. An example of S{2,3} is (S2, S3)

where S2 = {1, 2, 4} and S3 = {2, 3}. Also,N {2,3} is the collection of all (S2, S3) where S2 and S3 are arbitrary
subsets of {1, 2, 3, 4}.

³We will consider one such problem in the next section.
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Consider an arbitrary K ⊆ M and profile PN ∈ Dn. Then SK(PN) denotes an element (Sk)k∈K ofN K

such that for all k ∈ K, we have i ∈ Sk if and only if τ(Pki ) = 1. In other words Sk consists of the agents
who have 1 as the top-ranked element in component k at the profile PN. Hence Sk consists of exactly those
agents who approve candidate k for the committee at the profile PN.

Example 4.3.2 Suppose N = {1, 2, 3, 4} and M = {1, 2, 3}. Consider the profile PN where the top-ranked
alternatives of the agents are as follows: ((1, 0, 1), (0, 0, 1), (1, 1, 0)). Let K = {1, 3} or {1, 2, 3}Then,
S{1,3}(PN) = ({1, 3}, {1, 2}) and S{1,2,3}(PN) = ({1, 3}, {3}, {1, 2}).

For K ⊆ M, aK ∈ AK and PN ∈ Dn, we define ϕaK(PN) =
∑

{b∈A|bK=aK} ϕb(PN). Thus ϕaK(PN) is the
total probability of realizing outcomes whose kth component agrees with the kth component of aK for all
k ∈ K , in the probability distribution ϕ(PN).

4.3.1 Characterization

In this section, we identify properties that characterize unanimous and strategy-proof RSCFs in our
model. The first property is marginal decomposability. Roughly speaking, it says that the marginal
probability distribution generated by the RSCF over an arbitrary set of components depends only on the
preferences of the agents over those components. In particular, it does not change if agents change their
preferences over the other components.

Definition 4.3.3 An RSCF ϕ : Dn → ΔA is marginally decomposable if for all K ⊆ M, PN, P̄N ∈ Dn with
SK(PN) = SK(P̄N), and all aK ∈ AK, we have

ϕaK(PN) = ϕaK(P̄N).

Marginal decomposability is weaker than decomposability as defined in [26]. As mentioned earlier,
marginal decomposability requires the marginal probability distribution over a set of components at a
profile to be completely determined by the marginal preference profile over those components.
Importantly, it does not say anything about the joint probability distribution. Clearly, a marginally
decomposable RSCF is decomposable if the joint probability distribution is given by the product of
marginal probability distributions, i.e. if the joint probability distribution is independent over
components. In our model, unanimity and strategy-proofness imply marginal decomposability; however
they do not imply independence over components.

We illustrate the notion of marginal decomposability by means of the following example.
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Example 4.3.4 Let N = {1, 2} and M = {1, 2}. Consider the RSCF ϕ : Dn → ΔA given in Table 4.3.1.
Here, rows are indexed by the S1(PN) and columns are by S2(PN). The matrix, say X, corresponding to row Ŝ1

and column Ŝ2 gives the value of ϕ(PN), where S1(PN) = Ŝ1, S2(PN) = Ŝ2, and ϕ(0,0)(PN) = X11,
ϕ(0,1)(PN) = X12, ϕ(1,0)(PN) = X21, and ϕ(1,1)(PN) = X22. For instance, ϕ(0,1)((0, 1), (1, 0)) = 0.55, where
((0, 1), (1, 0)) denotes the profile PN with r1(P1) = (0, 1) and r1(P2) = (1, 0).
We argue that ϕ satisfies marginal decomposability. Consider for instance, the row corresponding to the set
{2}. Note that for each matrix X in this row, X21 + X22 = 0.3, that is, the marginal probability that candidate 1
is elected is 0.3, as required by marginal decomposability. It can be readily verified that ϕ satisfies this constant
marginal property for other rows and columns. Consequently the RSCF is marginally decomposable.

1\2 ∅ {1} {2} {1, 2}

∅
( 1 0

0 0
) ( 0.3 0.7

0 0
) (

0.5 0.5
0 0

) ( 0 1
0 0

)
{1}

( 0.4 0
0.6 0

) ( 0.2 0.2
0.1 0.5

) ( 0.3 0.1
0.2 0.4

) ( 0 0.4
0 0.6

)
{2}

( 0.7 0
0.3 0

) ( 0.15 0.55
0.15 0.15

) ( 0.25 0.45
0.25 0.05

) ( 0 0.7
0 0.3

)
{1, 2}

( 0 0
1 0

) ( 0 0
0.3 0.7

) ( 0 0
0.5 0.5

) ( 0 0
0 1

)
Table 4.3.1: Outcomes of ϕ

We now argue that the ϕ is not decomposable in the sense of [26]. For k ∈ {1, 2}, let ϕk be the marginal
RSCF on the k-th component that is induced by ϕ by means of marginal decomposability. In Tables 4.3.2 and
4.3.3, we present ϕ1 and ϕ2, respectively.

1 ϕ1
1

∅ 0
{1} 0.6
{2} 0.3
{1, 2} 1

Table 4.3.2: Outcomes of ϕ1
1

2 ∅ {1} {2} {1, 2}
ϕ2

1 0 0.7 0.5 1

Table 4.3.3: Outcomes of ϕ2
1
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Consider a profile PN with r1(P1) = (0, 1) and r1(P2) = (1, 0), that is, S1(PN) = {2} and S2(PN) = {1}. If
ϕ were decomposable, then ϕ(1,0)(PN)must be 0.3× 0.3 = 0.09. However, as given in Table 4.3.1,
ϕ(1,0)(PN) = 0.15, which means ϕ is not decomposable.

Next, we define a monotonicity property for an RSCF. This is a standard property in the literature on
strategy-proof social choice functions which says that the likelihood of an outcome increases as agents
become more “favourable” to that outcome.

Definition 4.3.5 An RSCF ϕ : Dn → ΔA satisfies the monotonicity property if for all k ∈ M, all
a−k ∈ AM−k and all PN, P̄N ∈ Dn such that Sl(PN) = Sl(P̄N) for all l ∈ M \ k and Sk(PN) ⊆ Sk(P̄N), we
have

(i) ϕ(1,a−k)(PN) ≤ ϕ(1,a−k)(P̄N), and

(ii) if Sk(PN) = ∅ and Sk(P̄N) = N, then ϕ(1,a−k)(PN) = 0 and ϕ(1,a−k)(P̄N) = 1.

Suppose that some agents change preferences in favour of some candidate while maintaining their
position on all other candidates. According to (i) of the monotonicity property, the probability of each
committee including that candidate, must increase. According to (ii) a candidate not approved by any
agent is not selected with certainty a candidate approved by all agents is selected with probability one.
The monotonicity property is illustrated below.

Example 4.3.6 Consider the RSCF ϕ given in Table 4.3.1. We argue that it satisfies monotonicity properties.
To see this, take, for instance, the profiles indexed by ({1}, {2}) and ({1, 2}, {2}). Note that agent 2 has joined
agent 1 in approving candidate 1 from the former profile to the latter, while keeping his/her stand unchanged for
candidate 2. By monotonicity, the probability of each committee that includes candidate 1 must increase
(weakly). This is indeed the case here since ϕ(1,0)({1}, {2}) = 0.2 < ϕ(1,0)({1, 2}, {2}) = 0.5 and
ϕ(1,1)({1}, {2}) = 0.4 < ϕ(1,1)({1, 2}, {2}) = 0.5. It can be directly verifies that ϕ satisfies this conditions for
other relevant cases,. Hence it is monotonic.

Now, we present our characterization result for unanimous and strategy-proof RSCFs. It is shown in
[32] that unanimity and strategy-proofness imply tops-onlyness. We use this fact in our proof.

Theorem 4.3.7 An RSCF ϕ : Dn → ΔA is unanimous and strategy-proof if and only if it is monotone and
marginally decomposable.
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Proof: (If part) Let ϕ : Dn → ΔA be monotone and marginally decomposable. We show ϕ is unanimous
and strategy-proof. Unanimity follows from (ii) in Definition 4.3.5. We proceed to show that ϕ is
strategy-proof.

Take b ∈ A and let Pi and P̄i be two arbitrary preferences of some agent i. It is enough to show that

ϕU(b,Pi)(PN) ≥ ϕU(b,Pi)(P̄i, P−i). (4.1)

We assume without loss of generality that there exists m̂ < m such that r1(Pki ) = 1 and r1(P̄ki ) = 0 for
all k ∈ {1, . . . , m̂} and r1(Pki ) = r1(P̄ki ) for all k ∈ {m̂+ 1, . . . ,m}. For t = 0, 1, . . . , m̂, let Pi(t) ∈ D be
such that r1(Pli(t)) = 1 if l ≤ t, r1(Pli(t)) = 0 if t < l ≤ m̂, and r1(Pli(t)) = r1(Pi) = r1(P̄i) if m̂ < l. Note
that Pi(m̂) = Pi and Pi(0) = P̄i.

Claim 4.3.1 ϕU(b,Pi)(Pi(k), P−i) ≥ ϕU(b,Pi)(Pi(k− 1), P−i) for all k = 1, . . . , m̂.

For all a−k ∈ A−k, marginal decomposability implies

ϕa−k(Pi(k), P−i) = ϕa−k(Pi(k− 1), P−i), (4.2)

while monotonicity implies

ϕ(1,a−k)(Pi(k), P−i) ≥ ϕ(1,a−k)(Pi(k− 1), P−i). (4.3)

Pick k ∈ {1, . . . , m̂}. Since r1(Pli) = 1 for all l ∈ {1, . . . , m̂}, it must be true that (1, a−k)Pi(0, a−k) for
all a−k ∈ A−k. This means (0, a−k) ∈ U(b, Pi) implies (1, a−k) ∈ U(b, Pi). In view of this, we can write
U(b, Pi) = B ∪ C, where B consists of a collection of pairs of alternatives of the form (1, a−k), (0, a−k) for
some a−k ∈ A−k and C consists of alternatives of the form (1, a−k) for some a−k ∈ A−k such that (0, a−k)

is not inU(b, Pi). More formally, B = {(0, a−k), (1, a−k) | (0, a−k) ∈ U(b, Pi)} and
C = {(1, a−k) ∈ U(b, Pi) | (0, a−k) /∈ U(b, Pi)}.

By (4.2),
ϕB(Pi(k), P−i) = ϕB(Pi(k− 1), P−i).

Further, by (4.3),
ϕC(Pi(k), P−i) ≥ ϕC(Pi(k− 1), P−i).

Combining, we have
ϕU(b,Pi)(Pi(k), P−i) ≥ ϕU(b,Pi)(Pi(k− 1), P−i).

This completes the proof of Claim 4.3.1.
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By applying Claim 4.3.1 sequentially for k = m̂, m̂− 1, . . . , 1, we get

ϕU(a,Pi)(Pi(m̂), P−i) ≥ ϕU(b,Pi)(Pi(m̂− 1), P−i) ≥ . . . ≥ ϕU(b,Pi)(Pi(0), P−i),

which shows (4.1).

(Only-if part) Let ϕ : Dn → ΔA be a unanimous and strategy-proof RSCF. It follows from Proposition
2 in [32] that ϕ is tops-only, that is, ϕ(PN) = ϕ(P̄N) for all PN, P̄N ∈ Dn with r1(Pi) = r1(P̄i) for all i ∈ N.

The following claim establishes a crucial property of ϕ.

Claim 4.3.2 Let k ∈ {1, . . . ,m} and let PN, P̄N ∈ Dn be such that Sl(PN) = Sl(P̄N) for all l ∈ M \ k and
Sk(PN) ⊆ Sk(P̄N). Then, for all a−k ∈ AM−k, we have

(i) ϕa−k(PN) = ϕa−k(P̄N), and
(ii) ϕ(1,a−k)(P̄N) ≥ ϕ(1,a−k)(PN).

Proof: Let k ∈ {1, . . . ,m}. Take PN, P̄N ∈ Dn such that Sl(PN) = Sl(P̄N) for all l ∈ M \ k and
Sk(PN) ⊆ Sk(P̄N). It is enough to prove the claim for the case where Sk(P̄N) = Sk(PN) ∪ i for some i ∈ N.
Since ϕ is tops-only, we can further assume that

(i) P−i = P̄−i, and
(ii) for all b−k ∈ AM−k,
(a) (1, b−k) and (0, b−k) are consecutively ranked in both Pi, P̄i, and
(b) (0, b−k)Pi(1, b−k) and (1, b−k)P̄i(0, b−k).⁴
It is easy to verify that Pi and P̄i satisfy separability. Take a−k ∈ A−k. By our assumption on Pi and P̄i,

U((0, a−k), Pi) \ (0, a−k) = U((1, a−k), P̄i) \ (1, a−k).

By applying strategy-proofness at (Pi, P−i) via P̄i and at (P̄i, P−i) via Pi, this means

ϕU((0,a−k),Pi)\(0,a−k)(Pi, P−i) = ϕU((1,a−k),P̄i)\(1,a−k)(P̄i, P−i). (4.4)

Using a similar argument, we have

ϕU((1,a−k),Pi)(Pi, P−i) = ϕU((0,a−k),P̄i)(P̄i, P−i). (4.5)

Subtracting (5.1) from (5.2), we get

ϕa−k(PN) = ϕa−k(P̄i, P−i),

⁴To see that it is possible to construct such a preference ordering, consider a lexicographic (and hence separable) preference
over Awhere k is the lexicographic worst component (details may be found in [33]).
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which proves (i) of Claim 4.3.2.
Since ϕ(0,a−k)(PN) + ϕ(1,a−k)(PN) = ϕ(0,a−k)(P̄i, P−i) + ϕ(1,a−k)(P̄i, P−i) and (1, a−k)P̄i(0, a−k), it

follows by an application of strategy-proofness that ϕ(1,b−k)(P̄N) ≥ ϕ(1,b−k)(PN), which proves (ii) of
Claim 4.3.2. ■

We return to the proof that ϕ satisfies monotonicity and marginally decomposability. Condition (i) in
the definition of monotonicity (Definition 4.3.5) follows from Claim 4.3.2. In what follows, we prove
condition (ii) in Definition 4.3.5.

It suffices to show
∑

a−1∈A−1 ϕ(0,a−1)(PN) = 0 for all PN ∈ Dn with Sk(PN) = ∅. Take PN such that
Sk(PN) = ∅. Without loss of generality, assume k = 1. Let P̄N be the profile such that S2(P̄N) = ∅ and
Sl(P̄N) = Sl(PN) for all l ̸= 2. By Claim 4.3.2, ϕa−2(PN) = ϕa−2(P̄N) for all a−2 ∈ A−2. Note that∑

a−1∈A−1

ϕ(0,a−1)(PN) =
∑

a−{1,2}∈A−{1,2}

ϕ(0,0,a−{1,2})(PN) + ϕ(0,1,a−{1,2})(PN). (4.6)

Take a−2 = (0, a−{1,2}) ∈ A−2. By applying Claim 4.3.2, we have

ϕ(0,a−2)(PN) + ϕ(1,a−2)(PN) = ϕ(0,a−2)(P̄N) + ϕ(1,a−2)(P̄N), (4.7)

Combining (5.5) and (4.7), we have
∑

a−1∈A−1 ϕ(0,a−1)(PN) =
∑

a−1∈A−1 ϕ(0,a−1)(P̄N). Continuing in this
manner, it follows that ∑

a−1∈A−1

ϕ(0,a−1)(PN) =
∑

a−1∈A−1

ϕ(0,a−1)(P̂N), (4.8)

where Sl(P̂N) = ∅ for all l ∈ {1, . . . ,m}. By unanimity, ϕ(0,a−1)(P̂N) = 0 for all a−1 ∈ A−1. This, together
with (5.3), implies

∑
a−1∈A−1 ϕ(0,a−1)(PN) = 0, which shows (ii) in Definition 4.3.5.

Finally we show that ϕ is marginally decomposable. Let K ⊆ M and let PN and P̄N be such that
SK(PN) = SK(P̄N). Assume without loss of generality that K = {k+ 1, . . . ,m} for some k < m. Take
aK ∈ AK. Consider a sequence of profiles {PlN}kl=0 such that P0

N = PN, PkN = P̄N, and for all 1 ≤ l ≤ k,
S{1,...,l}(PlN) = S{1,...,l}(P̄N) and S{l+1,...,m}(PlN) = S{l+1,...,m}(PN). By (i) of Claim 4.3.2, for all 1 ≤ l ≤ k,
ϕb−l(Pl−1

N ) = ϕb−l(PlN) for all b−l ∈ A−l. Since l /∈ K = {k, . . . ,m}, an argument similar to the one used
in the derivation of (5.5), implies ϕaK(P

l−1
N ) = ϕaK(P

l
N). Therefore, ϕaK(PN) = ϕaK(P̄N), completing the

proof of the only-if part. ■

Theorem 4.3.7 suggests a procedure for constructing all unanimous and strategy-proof RSCF onDn.
We can start with marginal probability distributions over all subsets of components that satisfy
monotonicity. We can then arbitrarily specify the appropriate joint probabilities of each alternative that
generate the chosen marginal distributions.
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4.4 Formation of Committees of Fixed Size

In this section, we consider the problem of forming a committee with a predetermined number of
members. The size of a committee is defined as the number of members in it. Formally, the size of an
alternative a ∈ A is |a| = |{k | ak = 1}|. For l < m, A(l) is the set of all committees with size l, i.e.
A(l) = {a ∈ A | |a| = l}. In this section, we consider RSCFs ϕ : Dn → ΔA(l) for some l < m. By
definition, these RSCFs give positive probabilities only to the elements of A(l).

Clearly unanimity is incompatible with this range restriction. We therefore need to replace unanimity
by the onto property.

Definition 4.4.1 An RSCF ϕ : Dn → ΔA(l) is onto if for all a ∈ A(l), there is PN ∈ Dn such that
ϕa(PN) = 1.

Our next theorem characterizes the set of onto strategy-proof RSCFs for selecting a committee with a
predetermined size. It says that every such rule is random dictatorial restricted to A(l).

Definition 4.4.2 ADSCF f : Dn → A(l) is A(l)-restricted dictatorial if there exists i ∈ N such that f(PN)
chooses the most preferred alternative of agent i from the set A(l). An RSCF is called random A(l)-restricted
dictatorial if it is a convex combination of A(l)-restricted dictatorial DSCFs.

Theorem 4.4.3 Let l < m. Then, an RSCF ϕ : Dn → ΔA(l) is onto and strategy-proof if and only if it is
random A(l)-restricted dictatorial.

Proof: First we prove a claim.

Claim 4.4.1 Let PN, P̄N be such that Pi|A(l) = P̄i|A(l) for all i ∈ N. Then ϕ(PN) = ϕ(P̄N).

Proof: We show that ϕ(PN) = ϕ(P̄i, P−i)where Pi|A(l) = P̄i|A(l). Suppose not. Let b ∈ A(l) be such that
ϕb(PN) ̸= ϕb(P̄i, P−i) and ϕa(PN) = ϕa(P̄i, P−i) for all a ∈ A(l)with aPib. In other words, b is the
maximal element of A(l) according to Pi that violates the assertion of the claim. Without loss of generality,
assume that ϕb(PN) < ϕb(P̄i, P−i). However, since ϕa(PN) = ϕa(P̄i, P−i) for all a /∈ A(l)with aPib, we
have ϕU(b,Pi)(PN) < ϕU(b,Pi)(P̄i, P−i). This means agent imanipulates at PN via P̄i, which is a contradiction.
This completes the proof of the claim. ■

Consider an RSCF ϕ : Dn → ΔA(l). For P ∈ D, define P|A(l) ∈ L(A(l)) as follows: for all a, b ∈ A(l),
aP|A(l)b if and only if aPb. LetD|A(l) = {P|A(l) | P ∈ D}. Construct the RSCF ϕ̂ : (D|A(l))n → ΔA(l) as
follows: for all P̂N ∈ D|A(l), ϕ̂(P̂N) = ϕ(PN)where PN ∈ Dn is such that Pi|A(l) = P̂i for all i ∈ N. This is
well-defined by Claim 4.4.1. Because ϕ is strategy-proof, ϕ̂ is also strategy-proof. Moreover, since ϕ is
onto with range A(l), strategy-proofness of ϕ implies ϕ̂ is unanimous. In what follows, we showD|A(l) is
an unrestricted domain.
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Claim 4.4.2 The domainD|A(l) is unrestricted.

Proof: Take P ∈ D such that r1(Pl) = 1 for all l ∈ M. Consider arbitrary a, b ∈ A(l) such that a ̸= b. For
x ∈ {a, b}, let I(x) = {k ∈ M | xk = 1}. By definition, |I(x)| = l for all x ∈ {a, b}. Moreover, since a
and b are distinct, it must be that I(a) and I(b) are also distinct. This, together with the fact that
|I(a)| = |I(b)| = l, implies there must be k, k̂ ∈ M such that k ∈ I(a) \ I(b) and k̂ ∈ I(b) \ I(a). This
means ak = r1(Pk) but ak̂ = r1(Pk̂) and bk = r1(Pk) but bk̂ = r1(Pk̂). Therefore, responsive does not put
any restriction on the relative ordering of a and b at P, and consequently, every preference inD|A(l) can be
achieved by considering a suitable preference with the alternative (1, . . . , 1) as the top-ranked element.
This completes the proof of the claim. ■

SinceD|A(l) is unrestricted and ϕ̂ is unanimous and strategy-proof, it follows from [57] that ϕ̂ is
random dictatorial. By the construction of ϕ̂, this means ϕ is random dictatorial restricted to A(l). This
completes the proof of Theorem 4.4.3. ■

It is known that strategy-proof and onto DSCFs on A(l)-restricted domains are dictatorial (for a general
version of this result, see [14] and [5]). Unfortunately, there is no escape from this negative result is we
consider random rather than deterministic rules.

4.5 Conclusion

In this paper, we have provided a characterization of random unanimous and strategy-proof rules in the
well-known committee formation model in terms of two properties: marginal decomposability and
monotonicity. We also show that if committees of a predetermined size have to be chosen, an onto and
strategy-proof rule must be an appropriate random dictatorship.
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5
A unified characterization of the randomized

strategy-proof rules

5.1 Introduction

5.1.1 Background of the problem

We analyze the classical social choice problem of choosing an alternative from a set of feasible alternatives
based on preferences of individuals in a society. Such a procedure is known as a deterministic social choice
function (DSCF). Some desirable properties of a DSCF are unanimity and strategy-proofness. The classic
[56]-[96] impossibility theorem states that if there are at least three alternatives and the preferences of the
individuals are unrestricted, then every unanimous and strategy-proof DSCF is dictatorial.

Although unanimity and strategy-proofness are desirable properties of a DSCF, the assumption of an
unrestricted domain made in Gibbard-Satterthwaite Theorem is quite strong. Not only do there exist
many political and economic scenarios where preferences of individuals satisfy natural restrictions such as
single-peakedness, single-dippedness, single-crossingness, Euclidean, etc., but also the conclusion of
Gibbard-Satterthwaite Theorem does not apply to such restricted domains.

The study of single-peaked domains can be traced back to [20] where he shows that a Condorcet winner
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exists on such domains. Later, [72] shows that a DSCF on a single-peaked domain is unanimous and
strategy-proof if and only if it is amin-max rule. [79] show that a DSCF on such a domain is unanimous
and strategy-proof if and only if it is amonotone rule between the left-most and the right-most alternatives.
[94] shows that a DSCF on a single-crossing domain is unanimous and strategy-proof if and only if it is an
augmented representative voter scheme. A domain is Euclidean if its alternatives are elements of Euclidean
space and its preferences are based on Euclidean distances. [65] and [78] characterize the unanimous and
strategy-proof DSCFs on Euclidean domains.

The horizon of social choice theory has been expanded by the concept of random social choice functions
(RSCF). An RSCF assigns a probability distribution over the alternatives at every preference profile. The
importance of RSCFs over DSCFs is well-established in the literature (see, for example, [46], [81]).

The study of RSCFs dates back to [57] where he shows that an RSCF on the unrestricted domain is
unanimous and strategy-proof if and only if it is a random dictatorial rule. For the case of continuous
alternatives, [46] characterise unanimous and strategy-proof RSCFs on maximal single-peaked domains,
and [24] and [43] characterise unanimous and strategy-proof DSCFs and RSCFs, respectively, on
multi-dimensional single-peaked domains. [8] characterise efficient and strategy-proof DSCFs on
multi-dimensional single-peaked domains with cardinal preferences when the range is one-dimensional.
Later, [81] show that every unanimous and strategy-proof RSCF on maximal single-peaked domain is a
convex combination of min-max rules. [87] establish a similar result by using the theory of totally
unimodular matrices from combinatorial integer programming. Recently, [82] and [91] characterize
unanimous and strategy-proof RSCFs on single-dipped domains and Euclidean domains, respectively.
However, to the best of our knowledge, unanimous and strategy-proof RSCFs on domains such as
single-crossing, multi-peaked, intermediate ([58]), and single-peaked on trees with top-set along a path
have not yet been characterized in the literature.

5.1.2 Our motivation and contribution

Our main motivation of this paper is to present one unified characterization of unanimous and
strategy-proof RSCFs that summarizes all existing results for both DSCFs and RSCFs and allows for new
ones. We intend to do this under minimal assumption on the domains.

We show that a large class of restricted domains can be modelled by using the concept of betweenness
([74], [75]). Given a prior order over the alternatives, a preference satisfies the betweenness property
with respect to an alternative a if, whenever a lies in-between (with respect to the prior order) the
top-ranked alternative of the preference and some other alternative b, a is preferred to b. A domain
satisfies the betweenness property with respect to an alternative if each preference in it satisfies the
property with respect to that alternative. Consider the set of alternatives that appear as top-ranked for
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some preference in the domain. Assume the betweenness property is satisfied for each such alternatives.
Then, the domain is called generalized intermediate.

We show that in case of finitely many alternatives, an RSCF is unanimous and strategy-proof on a
minimally rich generalized intermediate domain if and only if it is a convex combination of the
tops-restricted min-max rules. A min-max rule is tops-restricted if all its parameters belong to the top-set
of the domain. We also consider the case of infinitely many alternatives and provide a direct
characterization of unanimous and strategy-proof RSCFs on the generalized intermediate domains. It is
worth mentioning that both the formulation of generalized intermediate domains and the proof
techniques required to characterize the RSCFs on those are completely different in the case of infinite
number of alternatives. Finally, we establish that all restricted domains that we have discussed so far,
namely single-peaked, single-crossing, single-dipped, tree-single-peaked with top-set along a path,
Euclidean, multi-peaked, and intermediate are special cases of generalized intermediate domains.

Our result strengthens existing results for DSCFs by dropping the maximality assumption to minimal
richness. Note that in a social choice problem withm alternatives, the number of preferences in the
maximal single-peaked or single-dipped domain is 2m−1 and in a maximal single-crossing domain is
(m(m− 1)/2) + 1, whereas that number can range from 2m− 2 to 2m−1 in a minimally rich single-peaked
domain, from 2 to 2m−1 in a minimally rich single-dipped domain, and from 2m∗ − 2 to (m(m− 1)/2) + 1
in a minimally rich single-crossing domain, wherem∗ is the cardinality of the top-set of the domain.

It follows from our results that minimally-rich generalized intermediate domains satisfy both tops-only
property and deterministic extreme point property. [31] provide a sufficient condition on a domain that
guarantees tops-onlyness for the unanimous and strategy-proof RSCFs on it, however minimally-rich
generalized intermediate domains do not satisfy their condition. A domain is said to satisfy the
deterministic extreme point (DEP) property if every unanimous and strategy-proof RSCF on the domain is
a convex combination of unanimous and strategy-proof DSCFs on it. This property can be utilized in
finding the optimal RSCFs for a society. [55] characterize the optimal DSCFs on single-crossing domains.
Therefore, by means of the DEP property of single-crossing domains, one can extend their result to the
case of RSCFs.

5.1.3 Organization of the paper

The rest of the paper is organized as follows: Section 7.2 introduces the model and basic definitions.
Section 7.3 presents our main result for finitely many alternatives characterizing unanimous and
strategy-proof RSCFs on minimally rich generalized intermediate domains. Section 7.6 introduces the
concept of generalized intermediate domains for infinitely many alternatives and presents a
characterization of unanimous and strategy-proof RSCFs on those. Section 7.5 contains some
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applications of our results. Finally, Section 5.6 concludes the paper. The Appendix gathers all omitted
proofs.

5.2 Preliminaries

LetN = {1, . . . , n} be a finite set of agents. Except where otherwise mentioned, n ≥ 2. Let
A = {a1, . . . , am} be a finite set of alternatives with a prior ordering≺ given by a1 ≺ · · · ≺ am.
Whenever we write minimum or maximum of a subset of A, we mean it with respect to the ordering≺. By
a ⪯ b, we mean a = b or a ≺ b. For a, b ∈ A, we define [a, b] = {c | either a ⪯ c ⪯ b or b ⪯ c ⪯ a} as
the set of alternatives that lie in-between a and b, and for B ⊆ A, we define [a, b]B = [a, b] ∩ B as the
alternatives in B that lie in the interval [a, b]. For notational convenience, whenever it is clear from the
context, we do not use braces for singleton sets, for instance we denote a set {i} by i.

5.2.1 Domain of preferences

A complete, antisymmetric, and transitive binary relation over A (also called a linear order) is called a
preference. We denote byL(A) the set of all preferences over A. For P ∈ L(A) and a, b ∈ A, aPb is
interpreted as “a is strictly preferred to b according to P”. For P ∈ L(A) and 1 ≤ k ≤ m, by rk(P)we
denote the k-th ranked alternative in P, i.e., rk(P) = a if and only if |{b ∈ A | bPa}| = k− 1. Since we
refer to the top-ranked alternative of a preference P very frequently, we use a simpler notation, τ(P), for
that. For P ∈ D and a ∈ A, the upper contour set of a at P, denoted byU(a, P), is defined as the set of
alternatives that are as good as a in P, i.e.,U(a, P) = {b ∈ A | bPa} ∪ a. By Pa, we denote a preference
with a as the top-ranked alternative, that is, Pa is such that τ(Pa) = a. Similarly, by Pa,b, we denote a
preference with a as the top-ranked and b as the second-top-ranked alternatives, that is, Pa,b is such that
τ(Pa,b) = a and r2(Pa,b) = b. For ease of presentation, sometimes we write P ≡ Pa,b to mean τ(P) = a
and r2(P) = b.

We denote byD ⊆ L(A) a set of admissible preferences (henceforth, will be called a domain). For
a ∈ A, letDa = {P ∈ D | τ(P) = a} denote the preferences inD that have a as the top-ranked
alternative. For a domainD, the top-set ofD, denoted by τ(D), is the set of alternatives that appear as a
top-ranked alternative in some preference inD, that is, τ(D) = ∪P∈Dτ(P). Whenever we write
τ(D) = {b1, . . . , bk}, we assume without loss of generality that the indexation is such that b1 ≺ · · · ≺ bk.
A domainD is regular if τ(D) = A.

A preference profile, denoted by PN = (P1, . . . , Pn), is an element ofDn = D × · · · × D that
represents a collection of preferences one for each agent.

For P ∈ L(A) and B ⊆ A, the restriction of P to B, P|B ∈ L(B) is defined as follows: for all a, b ∈ B,
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aP|Bb if and only if aPb. ForD ⊆ L(A), PN ∈ Dn, and B ⊆ A, we define the restriction of the domainD
to B asD|B = {P|B | P ∈ D}, and the restriction of the profile PN to B as PN|B = (P1|B, . . . , Pn|B).

Properties of a domain

In this section, we introduce a few properties of a domain. First, we introduce the concept of a
single-peaked domain. A preference is single-peaked if it decreases as one goes far away (with respect to
the ordering≺) in any particular direction from its peak (top-ranked alternative). More formally, a
preference P is single-peaked if for all a, b ∈ A, [τ(P) ⪯ a ≺ b or b ≺ a ⪯ τ(P)] implies aPb. A domain is
single-peaked if each preference in it is single-peaked, and ismaximal single-peaked if it contains all
single-peaked preferences. For B ⊆ A, a domainD of preferences is a single-peaked domain restricted to
B ifD|B is a single-peaked domain.

A preference P satisfies the betweenness property with respect to an alternative a if for all b ∈ A \ a,
a ∈ [τ(P), b] implies aPb. A domainD satisfies the betweenness property with respect to an alternative a
if each preference P ∈ D satisfies the property with respect to a.

Note that the betweenness property of a preference with respect to an alternative a does not put any
restriction on the relative ordering of two alternatives if both of them are different from a, or if one of
them lies in-between the top-ranked alternative of that preference and a, and the other one is a itself. A
domainD is generalized intermediate if it satisfies the betweenness property with respect to each
alternative in τ(D).

Remark 5.2.1 Note that the generalized intermediate property does not impose any restriction on the relative
ordering of the alternatives outside the top-set of a domain. Furthermore, if a domainD satisfies this property,
thenD|τ(D) is single-peaked, which in particular implies that a regular domain is single-peaked if and only if it is
generalized intermediate.

Note that a maximal generalized intermediate domain requires quite a few preferences to be present in
the domain. In view of this, we require aminimal set of preferences to be present in a generalized
intermediate domain. Our minimal requirement ensures that for two alternatives that are consecutive in
the top-set of a domain,¹ there are two different preferences which (i) rank those two alternatives in the
top-two positions, and (ii) agree on the ranking of the other alternatives.²

To ease our presentation, for two preferences P and P′ inD, we write P ∼ P′ if τ(P) = r2(P′),
r2(P) = τ(P′), and rl(P) = rl(P′) for all l ≥ 3, that is, P and P′ differ only on the ranking of the top two

¹We say two alternatives are “consecutive in the top-set” if (i) they are in the top-set of the domain, and (ii) there is no
alternative in the top-set of the domain that lies strictly in-between (with respect to the prior order≺) those two alternatives.

²This property is known as top-connectedness in the literature ([71], [95], [38]).
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a1 a3 a4 a7 a9 a10

P5

Figure 5.2.1: A graphic illustration of the preference P5 given in Table 5.2.1

alternatives. Recall that throughout this paper, whenever we write τ(D) = {b1, . . . , bk} for a domainD,
we assume b1 ≺ · · · ≺ bk.

A domainD with τ(D) = {b1, . . . , bk} satisfies the minimal richness property if for all
bj, bj+1 ∈ τ(D), there are P ∈ Dbj and P′ ∈ Dbj+1 such that P ∼ P′. Below, we provide an example of a
generalized intermediate domain satisfying the minimal richness property.

Example 5.2.2 Let the set of alternatives be A = {a1, . . . , a10} with prior order a1 ≺ · · · ≺ a10. Consider the
domainD = {P1, . . . , P8} given in Table 5.2.1.

P1 P2 P3 P4 P5 P6 P7 P8

a3 a3 a4 a4 a7 a7 a9 a9

a1 a4 a3 a7 a4 a9 a7 a10

a4 a1 a1 a3 a3 a10 a10 a7

a2 a6 a6 a8 a8 a4 a4 a8

a6 a7 a7 a6 a6 a3 a3 a6

a7 a5 a5 a2 a2 a1 a1 a4

a5 a9 a9 a9 a9 a2 a2 a3

a8 a2 a2 a10 a10 a5 a5 a5

a9 a10 a10 a5 a5 a6 a6 a1

a10 a8 a8 a1 a1 a8 a8 a2

Table 5.2.1

Note that τ(D) = {a3, a4, a7, a9}. To see thatD is a generalized intermediate domain, consider, for
instance, the preference P3. We show that P3 satisfies the betweenness property with respect to each alternative in
{a3, a4, a7, a9}. Consider a7. Observe that τ(P3) = a4 and a7P3aj for all j ∈ {8, 9, 10}. So, P3 satisfies the
betweenness property with respect to a7. Similarly, it can be checked that P3 satisfies the betweenness property
with respect to a3 and a9. It is left to the reader to verify that the other preferences inD satisfy the betweenness
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property with respect to {a3, a4, a7, a9} and that it is minimally rich. In Figure 6.3.1, we present a pictorial
description of the preference P5 ∈ D. □

5.2.2 Social choice functions and their properties

In this section, we define social choice functions and discuss a few properties of those. By ΔA, we denote
the set of probability distributions over A. A random social choice function (RSCF) is a function
ϕ : Dn → ΔA that assigns a probability distribution over A at every preference profile. For a ∈ A and
PN ∈ Dn, we denote by ϕa(PN) the probability of a at the outcome ϕ(PN), and for B ⊆ A, we define
ϕB(PN) =

∑
a∈B ϕa(PN) as the total probability of the alternatives in B at ϕ(PN).

An RSCF is a deterministic social choice function (DSCF) if it selects a degenerate probability
distribution at every preference profile. More formally, an RSCF ϕ : Dn → ΔA is a DSCF if
ϕa(PN) ∈ {0, 1} for all a ∈ A and all PN ∈ Dn.

For later reference we include the following (trivial) observation.

Remark 5.2.3 For all L, L′ ∈ ΔA and all P ∈ L(A), if LU(x,P) ≥ L′
U(x,P) and L

′
U(x,P) ≥ LU(x,P) for all

x ∈ A, then L = L′.

We now introduce some properties of an RSCF that are standard in the literature. An RSCF
ϕ : Dn → ΔA is unanimous if for all a ∈ A and all PN ∈ Dn, [τ(Pi) = a for all i ∈ N]⇒ [ϕa(PN) = 1].
An RSCF ϕ : Dn → ΔA is strategy-proof if for all i ∈ N, all PN ∈ Dn, all P′i ∈ D, and all x ∈ A,
ϕU(x,Pi)(Pi, P−i) ≥ ϕU(x,Pi)(P

′
i, P−i).³ The concepts of unanimity and strategy-proofness for DSCFs are

special cases of the corresponding ones for RSCFs. Two profiles PN, P′N ∈ Dn are tops-equivalent if each
agent has the same top-ranked alternative in those two profiles, that is, τ(Pi) = τ(P′i) for all i ∈ N. An
RSCF ϕ : Dn → ΔA is tops-only if ϕ(PN) = ϕ(P′N) for all tops-equivalent PN, P′N ∈ Dn. An RSCF
ϕ : Dn → ΔA is uncompromising if ϕB(PN) = ϕB(P

′
i, P−i) for all i ∈ N, all PN ∈ Dn, all P′i ∈ D, and all

B ⊆ A such that B ∩ [τ(Pi), τ(P′i)] = ∅. In words, uncompromisingness says that if an agent moves his
peak (top-ranked alternative) from an alternative a to another alternative b, then the probability assigned
by an RSCF to each alternative outside the interval [a, b]will remain unchanged. Note that an
uncompromising RSCF is tops-only by definition.

A class of social choice functions

[72] introduces the concept of min-max rules with respect to a collection of parameters. Tops-restricted

³Our notion of strategy-proofness (which is introduced in [57]) is based on first order stochastic dominance. Informally
speaking, strategy-proofness ensures that if an agent misreports his/her preference, he/she cannot obtain an outcome that first
order stochastically dominates the original one.
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min-max rules are special cases of these rules where the parameters must come from the top-set of the
domain.

A DSCF f : Dn → A is a tops-restrictedmin-max (TM) rule if for all S ⊆ N, there exists βS ∈ τ(D)
satisfying the conditions that β∅ = max(τ(D)), βN = min(τ(D)), and βT ⪯ βS for all S ⊆ T such that

f(PN) = min
S⊆N

[
max
i∈S
{τ(Pi), βS}

]
.

If τ(D) = A, then a TM rule is called a min-max rule. In what follows, we present an example of a TM
rule.

Example 5.2.4 Let A = {a1, . . . , a10} and N = {1, 2, 3}. Consider a domainD with
τ(D) = {a2, a3, a4, a5, a7, a8, a9}. Consider the TM rule, say f, with respect to the parameters given in Table
5.2.2.

β β1 β2 β3 β{1,2} β{1,3} β{2,3}
a8 a9 a7 a4 a5 a2

Table 5.2.2

Let (a5, a3, a8) denote a profile where a5, a3 and a8 are the top-ranked alternatives of agents 1, 2 and 3,
respectively. The outcome of f at this profile is determined as follows.

f(PN) = min
S⊆{1,2,3}

[
max
i∈S
{τ(Pi), βS}

]
= min

[
max{β∅},max{τ(P1), β1},max{τ(P2), β2},max{τ(P3), β3},

max{τ(P1), τ(P2), β{1,2}},max{τ(P1), τ(P3), β{1,3}},max{τ(P2), τ(P3), β{2,3}},

max{τ(P1), τ(P2), τ(P3)β{1,2,3}}
]

= min
[
a10, a8, a9, a8, a5, a8, a8, a8

]
= a5. □

Note that the outcome of a TM rule f always lies in the top-set of the corresponding domain, i.e.,
f(PN) ∈ τ(D) for all PN ∈ Dn. Our next remark says that a TM rule on a domain can be seen as a
min-max rule on the domain obtained by restricting it to its top-set. It further says that the former is
strategy-proof if and only if latter is.
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Remark 5.2.5 Let f : Dn → A be a TM rule. Define f̂ : (D|τ(D))
n → τ(D) such that f̂(PN|τ(D)) = f(PN).⁴

Then, f is strategy-proof if and only if f̂ is strategy-proof.

For DSCFs fj, j = 1, . . . , k and nonnegative numbers λj, j = 1, . . . , k, summing to 1, we define the
RSCF ϕ =

∑k
j=1 λ

jfj as ϕa(PN) =
∑k

j=1 λ
jfja(PN) for all PN ∈ Dn and all a ∈ A. We call ϕ a convex

combination of the DSCFs fj. So, at every profile, ϕ assigns probability λj to the outcome of fj for all
j = 1, . . . , k.

An RSCF ϕ : Dn → ΔA is a tops-restricted randommin-max (TRM) rule if ϕ can be written as a
convex combination of some TM rules onDn. If τ(D) = A, then a TRM rule ϕ : Dn → ΔA is a random
min-max rule.

5.3 Results

5.3.1 Unanimous and strategy-proof RSCFs on generalized intermediate domains

In this subsection, we present our main result characterizing the unanimous and strategy-proof RSCFs on
the minimally rich generalized intermediate domains.

Theorem 5.3.1 LetD be a minimally rich generalized intermediate domain. Then, an RSCF ϕ : Dn → ΔA is
unanimous and strategy-proof if and only if it is a TRM rule.

The proof of this theorem is relegated to Appendix 5.7. We provide a brief sketch of it here. The if part
of the theorem follows from [72]. To see this, first note the following two facts: (i) every minimally rich
generalized intermediate domainD restricted to its top-set τ(D) is a subset of the maximal single-peaked
domain over τ(D), and (ii) every TRM rule onDn is a random min-max rule onDn|τ(D). In view of these
observations, it is enough to show that every random min-max rule is unanimous and strategy-proof on
D|τ(D). From [72], every min-max rule onD|τ(D) is unanimous and strategy-proof, and since every
random min-max rule is a convex combination of min-max rules, such rules are also unanimous and
strategy-proof onD|τ(D).

We prove the only-if part of the theorem in the following two steps. In the first step, we prove a
proposition that states that every unanimous and strategy-proof RSCF on a minimally rich generalized
intermediate domain is uncompromising and assigns probability 1 to the top-set of the domain. We prove
this proposition by using the method of induction on the number of agents. We start with the base case
n = 1. The proposition follows trivially for this case. Assuming that the proposition holds for all cases
where the number of agents is less than n, we proceed to prove it for n agents. First, we consider the set of

⁴This is well-defined since by the definition of a TM rule, f is tops-only and f(PN) ∈ τ(D) for all PN ∈ Dn.
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profiles where agents 1 and 2 have the same preferences. We show that the restriction of ϕ to this set
induces a unanimous and strategy-proof RSCF onDn−1, and claim by means of the induction hypothesis
that the proposition holds (in a suitable sense) on this set of profiles. Next, we show that the same holds
for the profiles where agents 1 and 2 have the same top-ranked alternatives (instead of having the same
preferences). Finally, in order to prove the proposition for profiles where agents 1 and 2 have arbitrary
top-ranked alternatives, we use another level of induction on the “distance” between the top-ranked
alternatives of agents 1 and 2. The distance between two alternatives bj, bj+l ∈ τ(D) is defined as l.
Assuming that the proposition holds for the profiles where the said distance is less than some l̂, we prove
the proposition for the profiles where it is l̂. By induction, this completes the proof of the proposition.

For a clearer picture, we explain the first step of the proof by means of an example. Suppose that
N = {1, 2, 3} and A = {a1, . . . , a10}. LetD be a minimally rich generalized intermediate domain with
τ(D) = {a1, a4, a5, a8, a9}. Note that if we had one agent, then trivially every unanimous and
strategy-proof RSCF onD would be uncompromising and would assign probability 1 to the alternatives
in {a1, a4, a5, a8, a10} at every profile. Suppose (as the induction hypothesis) that the same holds if we had
two agents. Consider all the preference profiles PN, where agents 1 and 2 have the same preferences. We
look at the restriction of a unanimous and strategy-proof RSCF ϕ on these profiles. Since agents 1 and 2
have the same preferences for all these profiles, they can be treated as one agent and ϕ can be seen as an
RSCF for two agents. By some elementary arguments, one can show that ϕ, when seen as a two-agent
RSCF, is unanimous and strategy-proof. So, by the induction hypothesis, ϕ satisfies uncompromisingness
and assigns probability 1 to the set {a1, a4, a5, a8, a9} for all these profiles. Next, we let the preferences of
agents 1 and 2 differ beyond their top-ranked alternatives and extend our proposition to those profiles. We
use Remark 5.2.3 to complete this step. Finally, we proceed to prove the proposition when agents 1 and 2
have arbitrary preferences. Here, we use another level of induction. Suppose (as the induction
hypothesis) that the proposition holds over the profiles for which the top-ranked alternatives of agents 1
and 2 are at distance 1, that is, over the profiles of the form (a1, a4, ·) or (a4, a5, ·) or (a5, a8, ·) or (a8, a9, ·).
Here, by (a1, a4, ·)we mean the profiles at which agent 1’s top-ranked alternative is a1, 2’s top-ranked
alternative is a4, and 3’s top-ranked alternative is arbitrary. We show as the induction step that the same
holds over the profiles of the form (a1, a5, ·) or (a4, a8, ·) or (a5, a9, ·). We prove this as a general step of
the induction, and thereby cover all profiles inD3. The details of the arguments needed to show this step
is quite technical, so we do not discuss it here.

In the second step, we show that every uncompromising RSCF onDn is a random min-max rule. We
use results from [46] and [81] to prove this. Finally, we argue that if a random min-max rule assigns
positive probability only to the alternatives in the top-set of the domain, then it is a TRM rule. This
completes the proof of the only-if part of the theorem.
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Remark 5.3.2 Since every TRM rule is tops-only, it follows from our result that unanimity and
strategy-proofness together guarantee tops-onlyness for the RSCFs on minimally rich generalized intermediate
domains. [31] provide a sufficient condition for a domain to be tops-only for RSCFs.⁵ However, minimally rich
generalized intermediate domains do not satisfy their condition.

Remark 5.3.3 A domainD satisfies the deterministic extreme point (DEP) property if every unanimous and
strategy-proof RSCF onDn can be written as a convex combination of unanimous and strategy-proof DSCFs on
Dn. It follows fromTheorem 5.3.1 that minimally rich generalized intermediate domains satisfy deterministic
extreme point property.

Remark 5.3.4 [10] introduce the notion of top-monotonicity. It can be verified that if every preference in a
domain satisfies the betweenness property, then the corresponding preference profile will satisfy the
top-monotonicity property. Therefore, it follows from [10] that generalized intermediateness guarantees the
existence of voting equilibria, not only under the majority rule but also for the wide class of voting rules analyzed
by [6]. Moreover, these equilibria are closely connected to an extended notion of the median voter.

Remark 5.3.5 It can be verified that minimally rich generalized intermediate domains are semilattice
single-peaked, and hence by Proposition 3 of [29], it follows that they admit unanimous, anonymous, tops-only,
and strategy-proof DSCFs.

5.4 The case of infinite alternatives

In this section, we assume that the set of alternatives A is an infinite set, for instance, a subset ofR.⁶ As it is
mentioned in [10], such a scenario arises in modelling the decision problem to choose a tax rate to
finance a public good ([101]) or a tax rate to finance public schooling in the presence of an option to buy
private schooling [49].

A (weak) preference is defined as a weak order (i.e., complete and transitive binary relations) and is
denoted by R. The strict part of R is denoted by P. We denote the set of all preferences byW(A). We
assume A to be endowed with a σ-algebra of measurable sets. Only preferences for which the upper
contour setsU(x,R), for all x ∈ A, are measurable are considered inW(A). An RSCF ϕ assigns to an
admissible preference profile a probability distribution over the measurable space A, hence a probability
to every measurable set. The set of all such probability distributions will still be denoted by ΔA. For a
measurable set B ⊆ A, ϕB(RN) denotes the probability assigned to B at the preference profile RN. All the
introduced properties of an RSCF extend in a straightforward manner to this setting.

⁵A domain is tops-only if every unanimous and strategy-proof RSCF on it is tops-only.
⁶Throughout this paper,R denotes the set of real numbers.

63



For all the domainsD we consider in this section, we assume that τ(D) comprises of a finite union of
disjoint closed intervals I1, . . . , Ik ofR. Here, an interval can also be a singleton set. We further assume
that for all R ∈ D, there exists a unique top-ranked alternative τ(R) at R, and two alternatives on the same
side of τ(R) cannot be indifferent, that is, for all x, y ∈ Awith x < y ≤ τ(R) or τ(R) ≤ y < x, we have
either xPy or yPx.

We now introduce the concept of generalized intermediate domains in this setting. A domainD is
generalized intermediate if it contains all preferences satisfying the following condition: for all
x, y ∈ τ(D) and all R ∈ Dx, if z < y ≤ x or x ≤ y < z for some z ∈ A, then yPz. In other words, it says
that if an alternative in the top-set of the domain lies in-between the top-ranked alternative of a preference
and another (arbitrary) alternative, then the former alternative is preferred to the latter. Note that (i) the
domain restricted to its top-set is a single-peaked domain, and (ii) there is no restriction on the relative
ordering of two alternatives outside the top-set of the domain.

For a profile RN ∈ Dn and x ∈ R, we define S(x,RN) = {i ∈ N | τ(Ri) ≤ x} as the set of agents
whose top-ranked alternatives at RN are on the (weak) left of x. In what follows, we define the TRM rules
in this context.

An RSCF ϕ : Dn → ΔA is a tops-restricted randommin-max (TRM) rule if for each S ⊆ N, there
exists a probabilistic ballot βS ∈ Δ(τ(D)) such that the following three conditions are satisfied:

(i) β∅ = emax{τ(D)} and βN = emin{τ(D)}.⁷
(ii) For all T,T′ ⊆ N, we have

βT∪T′([min{τ(D)}, x]) ≥ βT([min{τ(D)}, x]) for all x ∈ [min{τ(D)},max{τ(D)}].

(iii) For all RN ∈ Dn and all x ∈ [min{τ(D)},max{τ(D)}], we have

ϕ(RN)([min{τ(D)}, x]) = βS(x,RN)([min{τ(D)}, x]).

The intuition of the tops-restricted random min-max rules for the case of infinite alternatives is quite
similar to that of the tops-restricted min-max rules for the case of finite alternatives. As in the case of
finitely many alternatives, here too these are based on their outcomes at boundary profiles. Following our
earlier notations, we denote the outcome of a boundary profile, where agents in S are at the left most
alternative and the others are at the right most, by βS. Condition (i) ensures that the rule is unanimous
over the boundary profiles. Condition (ii) captures the monotonicity property of the outcomes over the
boundary profiles. This monotonicity is a straightforward implication of strategy-proofness. Finally,
Condition (iii) presents how the rule works as a function of β’s. First note that to find the probabilities of
arbitrary intervals at a profile, it is sufficient to find the probabilities of the intervals of the form
[min{τ(D)}, x]. Now, to find the probability of such an interval at a profile RN, construct the boundary

⁷For x ∈ R, by ex we denote the degenerate probability distribution at x.
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← I1 → ← I2 →

τ(R)

Figure 5.4.1: A graphic illustration of a generalized intermediate preference

profile as follows: move all the agents, whose top-ranked alternatives are on the left of x (that is, less than
or equal to x) at RN, to the left most alternative in τ(D) (thus, these agents constitute the set S), and move
all other agents to the right most alternative in τ(D). Finally, find the probability of the interval
[min{τ(D)}, x] at RN by equating it to the probability of the same interval at the boundary profile
constructed above, that is, by equating it to the probability βS([min{τ(D)}, x]).

Note that there is a basic difference between how we define the tops-restricted random min-max
(TRM) rules for the case of finitely many alternatives and the case of infinitely many alternatives. For the
former case, we present them as convex combinations (or, probability mixtures) of top-restricted
min-max rules. However, for the latter, we provide a direct description of these rules. We do this for the
sake of simplicity as we explain in the following. Observe that there are infinitely many tops-restricted
min-max rules in the case of infinitely many alternatives. So, a convex combination has to be presented
using integration in place of summation. Furthermore, such a presentation will require us to define a
continuous probability distribution over the tops-restricted min-max rules. Such a presentation looks
quite technical, as well as makes it hard to comprehend.

Theorem 5.4.1 LetD be a generalized intermediate domain. Then, an RSCF ϕ : Dn → ΔA is unanimous
and strategy-proof if and only if it is a TRM rule.

The proof of this theorem is relegated to Appendix 5.8. The main challenge in moving from a finite to
infinite/continuous set of alternatives is that for the latter case we allow for indifferences, and
consequently our earlier proof technique fails. In what follows, we provide a brief sketch of the proof.

First, we prove that a unanimous and strategy-proof RSCF on a generalized intermediate domain (i)
assigns total probability 1 at every profile to the alternatives that lie in-between the minimum and the
maximum peaks at that profile, that is, at every profile RN, the interval [min(τ(RN)),max(τ(RN))] gets
probability 1, and (ii) the alternatives in the top-set of the domain gets probability 1, that is, the probability
of τ(D) is 1 at every profile. To show this, we use induction on the number of different peaks at a profile.
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We consider the case of two different peaks as the base case. For this case, the proof of (i) is more or less
straightforward, whereas that of (ii) is somewhat involved. Next, we prove the induction step. Here, we
assume that (i) and (ii) hold for all profiles having at most l different peaks for some l < n, and continue
to prove the same for profiles having l+ 1 different peaks. To complete this induction step, we use another
level of induction on the number of agents whose peaks are the minimum and that whose peaks are the
maximum at a profile. Let us call a profile (k1, k2)-(min,max) profile if at this profile, there are k1 agents
whose peaks are the minimum of that profile and k2 agents whose peaks are the maximum of that profile.
We treat the case of (1, 1)-(min,max) profiles as the base case. As the induction step, we assume that (i)
and (ii) hold for all (k1 − 1, k2)-(min,max) and all (k1, k2 − 1)-(min,max) profiles and proceed to show
that the same holds for all (k1, k2)-(min,max) profiles. Let us explain that the induction step is
compatible with our base case. Suppose that we have shown (i) and (ii) for all (1, 1)-(min,max) profiles
and we want to show it for (2, 1)-(min,max) profiles. Note that (i) and (ii) trivially hold for all
(2, 0)-(min,max) profiles. So, by taking k1 = 2 and k2 = 1 in the induction step, we obtain (i) and (ii) for
all (2, 1)-(min,max) profiles.

5.5 Applications

In this section, we demonstrate the applicability of our results by showing that a class of domains of
practical importance are generalized intermediate.

5.5.1 Single-peaked domains

[46] characterize the unanimous and strategy-proof RSCFs on the maximal single-peaked domain as
fixed-probabilistic-ballots rules, and [81] show that such an RSCF is a convex combination of the
min-max rules. Theorem 5.3.1 improves these results by relaxing the maximality assumption. Note that
the number of preferences in the maximal single-peaked domain is 2m−1, whereas that in a minimally rich
single-peaked domain can range from 2m− 2 to 2m−1.

5.5.2 Single-crossing domains

In this subsection, we introduce the concept of single-crossing domains and show that every
single-crossing domain is generalized intermediate. [94] characterizes all unanimous and strategy-proof
DSCFs onmaximal single-crossing domains. [27] considers a slightly more general class of single-crossing
domains called successive single-crossing domains in the context of local strategy-proofness with transfers.
We show that all these domains are special cases of minimally rich generalized intermediate domains.

66



A domainD is single-crossing if there is an ordering ◁ overD such that for all a, b ∈ A and all P, P′ ∈ D,
[a ≺ b, P ◁ P′, and bPa] =⇒ bP′a. In words, a single-crossing domain is one for which the preferences
can be ordered in a way such that every pair of alternatives switches their relative ranking at most once
along that ordering. A single-crossing domain D̄ ismaximal if there does not exist another single-crossing
domain that is a strict superset of D̄. Note that a maximal single-crossing domain withm alternatives
containsm(m− 1)/2 + 1 preferences.⁸ A domainD is successive single-crossing if there is a maximal
single-crossing domain D̄ with respect to some ordering ◁ and two preferences P′, P′′ ∈ D̄ with P′ ⊴ P′′

such thatD = {P ∈ D̄ | P′ ⊴ P ⊴ P′′}.⁹
In the following example, we present a maximal single-crossing domain and a successive single-crossing

domain with 5 alternatives.

Example 5.5.1 Let the set of alternatives be A = {a1, a2, a3, a4, a5} with the prior order a1 ≺ · · · ≺ a5. The
domain D̄ = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5, a4a2a3a5a1,

a4a3a2a5a1, a4a3a5a2a1, a4a5a3a2a1, a5a4a3a2a1} is a maximal single-crossing domain with respect to the
ordering ◁ given by a1a2a3a4a5 ◁ a2a1a3a4a5 ◁ a2a3a1a4a5 ◁ a2a3a4a1a5 ◁ a2a4a3a1a5 ◁ a4a2a3a1a5 ◁ a4a2a3a5a1 ◁

a4a3a2a5a1 ◁ a4a3a5a2a1 ◁ a4a5a3a2a1 ◁ a5a4a3a2a1 since every pair of alternatives change their relative ordering
at most once along this ordering. Note that the cardinality of A is 5 and that of D̄ is 5(5− 1)/2 + 1 = 11. The
domainD = {a1a2a3a4a5, a2a1a3a4a5, a2a3a1a4a5, a2a3a4a1a5, a2a4a3a1a5, a4a2a3a1a5} is a successive
single-crossing domain since it contains all the preferences in-between a1a2a3a4a5 and a4a2a3a1a5 in the maximal
single-crossing domain D̄. □

In the following lemmas, we show that every single-crossing domain is a generalized intermediate
domain, and every successive single-crossing domain is a minimally rich general intermediate domain.

Lemma 5.5.1 Every single-crossing domain is a generalized intermediate domain.

Proof: LetD be a single-crossing domain with an ordering ◁ over the preferences. We show thatD is a
generalized intermediate domain. Suppose not and assume without loss of generality that there exist
a ∈ A, br, bs ∈ τ(D) and Pbr ∈ D such that br ≺ bs ≺ a and aPbrbs. Consider Pbs ∈ D. Since brPbrbs,
bsPbsbr, and br ≺ bs, it follows from the definition of a single-crossing domain that Pbr ◁ Pbs . By means of
our assumption that bs ≺ a and aPbrbs, Pbr ◁ Pbs implies aPbsbs. However, this is a contradiction since
τ(Pbs) = bs. This completes the proof. ■

Lemma 5.5.2 Every successive single-crossing domain is a minimally rich single-crossing domain.

⁸For details see [93].
⁹By P ⊴ P′, we mean either P = P′ or P ◁ P′.
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Proof: It is enough to show that every successive single-crossing domain is minimally rich. LetD be a
successive single-crossing domain. Then, by the definition of a successive single-crossing domain, there is
a maximal single-crossing domain D̄ with respect to some ordering ◁ such that
D = {P ∈ D̄ | P̃ ⊴ P ⊴ ˜̃P} for some P̃, ˜̃P ∈ D̄ with P̃ ⊴ ˜̃P. Suppose τ(D) = {b1, . . . , bk}. We show
that for all j = 1, 2, . . . , k− 1, there are P ∈ Dbj and P′ ∈ Dbj+1 such that P ∼ P′. Consider
bj, bj+1 ∈ τ(D) and consider P̄ ∈ Dbj and P̂ ∈ Dbj+1 . Since bjP̄bj+1, bj+1P̂bj, and bj ≺ bj+1, it follows from
the definition of a single-crossing domain that P̄ ◁ P̂. Using a similar argument, we obtain Pbl ◁ P̄ for all
l < j, and Pbl > P̂ for all l > j+ 1. Therefore, there must be P ∈ Dbj and P′ ∈ Dbj+1 that are consecutive
in the ordering ◁, that is, P ∈ Dbj and P′ ∈ Dbj+1 are such that there is no P′′ ∈ D with P ◁ P′′ ◁ P′. We
show P ∼ P′. Suppose not. Let a be the alternative which is ranked just above bj+1 in P, that is, aPbj+1 and
there is no x ∈ Awith aPxPbj+1. Consider the preference P′′ that is obtained by switching the alternatives
a and bj+1 in P. We show P′′ /∈ D̄. In particular, we show that both P′′ ◁ P and P′ ◁ P′′ are impossible. This
is sufficient since P and P′ are consecutive in the ordering ◁. Suppose P′′ ◁ P. Since aPbj+1, P ◁ P′, and
bj+1P′a, by the single-crossing property of D̄, it must be that a ≺ bj+1. However, because bj+1P′′a and
aPbj+1, this contradicts P′′ ◁ P. Now, suppose P′ ◁ P′′. Since P ◁ P′, there must be a pair of alternatives c, d
with c ≺ d such that cPd and dP′c. Moreover, because P and P′ are not top-connected, it must be that
{c, d} ̸= {a, bj+l}. Since c ≺ d, dP′c, and P′ ◁ P′′, by the single-crossing property of D̄, we have dP′′c.
However, by the construction of P′′, we have cP′′d, which is a contradiction. Thus, we have P′′ /∈ D̄. This
implies D̄ ∪ P′′ is a single-crossing domain with respect to the ordering ◁′ over D̄ ∪ P′′, where ◁′ is
obtained by placing P′′ in-between P and P′ in the ordering ◁, i.e., ◁′ coincides with ◁ over D̄ and
P ◁′ P′′ ◁′ P′. This contradicts the fact that D̄ is a maximal single-crossing domain. Therefore, P ∼ P′ and
D is minimally rich. This completes the proof of the lemma. ■

5.5.3 Single-dipped domains

In this subsection, we introduce the concept of single-dipped domains and show that they are generalized
intermediate. A preference P is single-dipped if it has a unique minimal element d(P), the dip of P, such
that for all a, b ∈ A, [d(P) ⪯ a ≺ b or b ≺ a ⪯ d(P)]⇒ bPa. A domain is single-dipped if each
preference in it is single-dipped.

It is straightforward that a minimally rich single-dipped domain is a minimally rich generalized
intermediate domain. Note that the number of preferences in the maximal single-dipped domain is 2m−1,
while that in a minimally rich single-dipped domain can range from 2 to 2m−1.

It is worth mentioning that any unanimous and strategy-proof RSCF on a minimally rich single-dipped
domain can give positive probability to two particular (the boundary ones) alternatives.
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Figure 5.5.1: A graphic illustration of a tree

5.5.4 Single-peaked domains on trees with top-set along a path

A domain is tree-single-peaked if the alternatives are located on a tree and agents’ preferences fall as one
moves away from his/her top-ranked alternative along any path. [97] characterize the tops-only,
unanimous and strategy-proof DSCFs on tree-single-peaked domains. Under the additional restriction
that the top-set of the domain lie along a path, our result improves their one in two ways: first, by allowing
for random rules, and second, by relaxing tops-onlyness.

We introduce a graph structure over the set of alternatives. A collection
G ⊆ {{a, b} | a, b ∈ A, a ̸= b} is an undirected graph over A. The elements ofG are edges. A path inG
from a node a1 to another ak is a sequence of distinct nodes ⟨a1, . . . , ak⟩ such that {ai, ai+1} ∈ G for all
i = 1, . . . , k− 1. Note that a path cannot have a cycle by definition.

A graph over A is a tree, denoted by T, if for all a, b ∈ A, there exists a unique path from a to b. Since
such a path is unique in a tree, for ease of presentation we denote it by [a, b]. A preference P is
single-peaked on T if for all distinct x, y ∈ Awith y ̸= τ(P), x ∈ [τ(P), y] =⇒ xPy. A domain is
single-peaked on T if each preference in it is single-peaked on T.

Let T be a tree over A and letD be a single-peaked domain on T. Suppose τ(D) = {b1, . . . , bk}. We
callD a single-peaked domain with top-set along a path if ⟨b1, . . . , bk⟩ is a path in T. In Figure 5.5.1, we
present a tree in which a path is marked with red. A single-peaked domain with respect to this tree with
top-set along the red path can be constructed by taking those single-peaked preferences that have
top-ranked alternatives in that path.

The following lemma says that a single-peaked domain on a tree with top-set along a path is a minimally
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rich generalized intermediate domain.

Lemma 5.5.3 LetD be a single-peaked domain on a tree T with top-set along a path in T. Then,D is a
minimally rich generalized intermediate domain.

Proof: Let T be a tree and let π = ⟨b1, . . . , bk⟩ be a path in it. LetD be a single-peaked domain on Twith
τ(D) = {b1, . . . , bk}. Consider a linear order≺ on A such that

• b1 ≺ · · · ≺ bk, and

• for all a ∈ A \ {b1, . . . , bk}, a ≺ bl if and only if the projection of a on π is bj for some j ≤ l.¹⁰

Note that the linear order≺ defined above is not unique since it does not specify the relative ordering
of two alternatives that are outside the path π but have the same projection. We show thatD is a
minimally rich generalized intermediate domain with respect to≺. SinceD is single-peaked on T and
{bl, bl+1} is an edge in T for all l ∈ {1, . . . , k− 1}, we can always find two preferences P and P′ such that
τ(P) = r2(P′) = bl, r2(P) = τ(P′) = bl+1, and rl(P) = rl(P′) for all l ≥ 3. Therefore,D is minimally rich.

Now, we show thatD is generalized intermediate. Consider br and bs with br ≺ bs. To showD is
generalized intermediate, it is enough to show that for all Pwith τ(P) = br, we have bsPa for all awith
bs ≺ a. Assume for contradiction that there exist P ∈ D and a ∈ Awith τ(P) = br and bs ≺ a such that
aPbs. If a ∈ {bs+1, . . . , bk}, then by means of the fact that T is a tree, we have bs ∈ [br, a]. However, by
single-peakedness of P, this implies bsPa, which is a contradiction to aPbs. Now, suppose
a ∈ A \ {bs+1, . . . , bk}. Since bs ≺ a, by the definition of≺, there exists bl ∈ {bs+1, . . . , bk} such that the
projection of a on π is bl. By the definition of projection, this implies bl ∈ [br, bs], and hence by
single-peakedness of P, we have blPa. Using a similar argument, it follows that bsPbl, which in turn implies
bsPa. However, this is a contradiction to aPbs. Thus, for all Pwith τ(P) = br, we have bsPa for all awith
bs ≺ a. This provesD is a generalized intermediate domain. ■

5.5.5 Multi-peaked domains

In many practical scenarios in Economics and Political Science, preferences of individuals often exhibit
multi-peakedness as opposed to single-peakedness. As the name suggests, multi-peaked preferences admit
multiple (local) ideal points in a unidimensional policy space. We discuss a few settings where it is
plausible to assume that individuals have multi-peaked preferences.

¹⁰By the projection of an alternative a ∈ A on a path π in a tree T, we mean the alternative b ∈ π that is closest (with respect
to graph distance) to a, i.e., b ∈ π is such that |π(a, b)| ≤ |π(a, c)| for all c ∈ π. Here, by π(a, c), we mean the unique path in T
from a to c.
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• Preference for “Do Something” in Politics: [39] and [45] consider policy (decision) problems such as
choosing alternate tax regimes, lowering health care costs, responding to foreign competition,
reducing national debt, etc. They show that such a problem is perceived to be poorly addressed by
the status-quo policy, and consequently some individuals prefer both liberal and conservative
policies to the moderate status quo one. Clearly, such a preference will have two peaks, one on the
left of the status quo and another one on the right of it.

• Multi-stage Voting System: [99], [42], [47] deal with multi-stage voting system where individuals
vote on a set of issues where each issue can be thought of as a unidimensional spectrum and voting
is distributed over several stages considering one issue at a time. In such a model, preference of an
individual over the present issue can be affected by his/her prediction of the outcome of future
issues. In other words, such a preference is not separable across issues. They show that preferences
of individuals in such scenarios exhibit multi-peaked property.

• Provision of Public Goods with Outside Options: [17], [101], and [18] consider the problem of
setting the level of tax rates to provide public funding in the education sector, and [63] and [50]
consider the same problem in the health insurance market. They show that preferences of
individuals exhibit multi-peaked property due to the presence of outside options (i.e., the public
good is also available in a competitive market as a private good).

• Provision of Excludable Public Goods: [53] and [4] consider public good provision models such as
health insurance, educational subsidies, pensions, etc., where a government provides the public
good to a particular section of individuals and show that individuals’ preferences in such scenarios
exhibit multi-peaked property.

We now present a formal definition of multi-peaked domains and show that they are special cases of
generalized intermediate domains. To ease our presentation, for two alternatives a and b, we denote by
(a, b) the set [a, b] \ {a, b}.

Let b1 ≺ · · · ≺ bk be such that (bl, bl+1) ̸= ∅ for all 1 ≤ l < k. Then, a preference P ismulti-peaked
with peak-set {b1, . . . , bk} if (i) P|[a1,b1] and P|[bk,am] are single-dipped with dips at a1 and am, respectively,
(ii) for all 1 ≤ l < k, P|[bl,bl+1] is single-dipped with a dip in (bl, bl+1), and (iii) P|{b1,...,bk} is single-peaked.
A domainD is multi-peaked if it contains all multi-peaked preferences with peak-set τ(D).

In words, for a multi-peaked preference there are several (local) peaks such that the preference behaves
like a single-dipped one between every two consecutive peaks and like a single-peaked one over the peaks.
In Figure 5.5.2, we present a pictorial description of a multi-peaked preference.
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Figure 5.5.2: A graphic illustration of a multi-peaked preference

Lemma 5.5.4 Every multi-peaked domain is a minimally rich generalized intermediate domain.

Proof: LetD be a multi-peaked domain. Suppose τ(D) = {b1, . . . , bk}with b1 ≺ . . . ≺ bk. By the
definition ofD, for all bl, bl+1 ∈ τ(D), there are preferences P, P′ ∈ D such that τ(P) = bl, τ(P′) = bl+1

and P ∼ P′. This showsD is minimally rich. Now, we proveD is a generalized intermediate domain.
Consider br and bs where br ≺ bs. We show that for all Pwith τ(P) = br, we have bsPa for all a ∈ Awith
bs ≺ a. Consider P ∈ D with τ(P) = br and consider a ∈ Awith bs ≺ a. If a ∈ [br, br+1], then by the
definition of multi-peaked preferences, we have bsPa. Suppose a ∈ [bl, bl+1] for some bl with bs ≺ bl. By
the definition of multi-peaked domains, we have bsPbl and blPa, which implies bsPa. This proves thatD is
a generalized intermediate domain. ■

Remark 5.5.2 Note that for both applications 5.5.4 and 5.5.5, the top-set of the domain is (exogenously)
known to the designer. Domains with exogenously given characteristics are not new to the literature, for instance
[3] consider domains where the top-ranked alternative of each agent is known to the designer and [85] consider
domains where the indifference classes are known to the designer.

5.5.6 Euclidean domains

[91] consider Euclidean domains and show that every unanimous and strategy-proof RSCF on such
domains is a random minmax rule.

For ease of presentation, we assume that the set of alternatives are (finitely many) elements of the
interval [0, 1].¹¹ In particular, we assume 0 = a1 < · · · < am = 1. Suppose that the individuals are located
at arbitrary locations in [0, 1] and they derive their preferences using Euclidean distances of the
alternatives from their own locations. We call such preferences Euclidean. Below, we provide formal
definitions of these preferences.

¹¹With abuse of notation, we denote by [0, 1] the set of all real numbers in-between 0 and 1.
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Definition 5.5.3 A preference P is Euclidean if there is x ∈ [0, 1], called the location of P, such that for all
alternatives a, b ∈ A, |x− a| < |x− b| implies aPb. A domain is Euclidean if it contains all Euclidean
preferences.

Lemma 5.5.5 Every Euclidean domain is a minimally rich generalized intermediate domain.

Proof: LetD be a Euclidean domain. Then, by definition, it is regular single-peaked, and by Remark 5.2.1,
it is generalized intermediate. It remains to show thatD is minimally rich. Consider ar and ar+1 for some
r ∈ {1, . . . ,m− 1}. By the definition of Euclidean domain, there are two preferences P and P′ inD with
location ar+ar+1

2 such that τ(P) = r2(P′) = ar, r2(P) = τ(P′) = ar+1, and rl(P) = rl(P′) for l ≥ 3. This
completes the proof of the lemma. ■

5.5.7 Intermediate domain

[58] introduces the concept of intermediate domains and shows that under some conditions on the
distribution of voters over preferences, majority rule is transitive on these domains. However, to the best
of our knowledge, no characterization of unanimous and strategy-proof RSCFs on these domains is
available in the literature. Under a mild condition on these domains (mainly to avoid non-transitive
preferences), we show that these domains are special cases of generalized intermediate domains, and
consequently, we provide a characterization of unanimous and strategy-proof RSCFs on those.

Throughout this section, we denote by X an open convex subset of the Euclidean space E2, and
whenever we refer to a line, we mean a line in X (that is, a collection of points in X that constitute a line).

A preference P is between two preferences P1 and P2, denoted by P ∈ (P1, P2), if for all a, b ∈ A,
aP1b and aP2b imply aPb. A domain {Px}x∈X satisfies the intermediate property if for every x′ and x′′ ∈ X,
x ∈ (x′, x′′) implies Px ∈ (Px′ , Px′′).¹²

[58] provides a characterization of the intermediate domains where preferences are allowed to be weak
(i.e., can have indifferences) and non-transitive. In the following lemma, we modify his result for the
situation where preferences are strict and transitive (i.e., linear orders).

Lemma 5.5.6 Let a domain {Px}x∈X satisfy the intermediate property. Then, for every pair of alternatives
(a, b), exactly one of the following statements must hold:

(i) aPxb for all x ∈ X.

(ii) bPxa for all x ∈ X.

¹²With slight abuse of notation, by x ∈ (x′, x′′), we mean x = λx′ + (1− λ)x′′ for some real number λ ∈ (0, 1).
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(iii) There exist q = (q1, q2) ∈ E2; (q1, q2) ≠ (0, 0) and κ ∈ R such that for all (x1, x2) ∈ X, aPxb implies
q1x1 + q2x2 ≥ κ and bPxa implies q1x1 + q2x2 ≤ κ.

Proof: Suppose that both (i) and (ii) do not hold. We show that then (iii) must hold. Consider a, b ∈ A.
LetA1 = {x ∈ X | aPxb} andA2 = {x ∈ X | bPxa}. By our assumption that both (i) and (ii) do not hold,
it follows that both A1 and A2 are non-empty. Moreover, by definition, A1 and A2 are disjoint, and by the
intermediate property, both A1 and A2 are convex. Therefore, by Hyperplane separation theorem ([90],
Theorem 11.3), there exist q = (q1, q2) ∈ E2; (q1, q2) ̸= (0, 0) and κ ∈ R such that for all (x1, x2) ∈ X,
aPxb implies q1x1 + q2x2 ≥ κ and bPxa implies q1x1 + q2x2 ≤ κ. This completes the proof of the lemma. ■

Note that for a domain satisfying the intermediate property and for a pair of alternatives (a, b) that
satisfies (iii) in Lemma 5.5.6, the object ((q1, q2), κ) identifies the line: q1x1 + q2x2 = κ. We denote such a
line by l(a, b). Lemma 5.5.6 implies that a is preferred to b on one side of this line, and b is preferred to a
on the other side.¹³ Since such a line separates the preferences with respect to a and b, we call it the
separating line for a and b. In what follows, we introduce the concept of strict intermediate property.

Definition 5.5.4 A domain {Px}x∈X satisfies the strict intermediate property if

(i) there are no three distinct separating lines of the domain that pass through a common point, that is, for all
three distinct (unordered) pairs (x1, y1), (x2, y2), and (x3, y3), we have
l(x1, y1) ∩ l(x2, y2) ∩ l(x3, y3) = ∅,¹⁴ and

(ii) there exists a line l that intersects with all the separating lines of the domain, that is, for all pairs x, y ∈ A
satisfying (iii) in Lemma 5.5.6, we have l ∩ l(x, y) ̸= ∅.

We provide an example of a domain that satisfies the strict intermediate property. It is worth noting
from this example that (i) strictness is indeed a mild condition, and (ii) the strict intermediate property
does not imply the single-crossing property.

¹³There is no restriction on the relative preference over a and b for the preferences Px when x lies on this line.
¹⁴By distinct (unordered pairs), we mean that {xi, yi} ̸= {xj, yj} for all i, j ∈ {1, 2, 3}with i ̸= j.
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Figure 5.5.3: A graphic illustration of the separating lines for each pair of alternatives

P1 P2 P3 P4 P5 P6 P7 P8 P9

a a b b b b b c c
b b a a c c c b b
c c c c a e e e e
d e d e e a d a d
e d e d d d a d a

Table 5.5.1

Example 5.5.5 Let X be the open set in Figure 5.5.3 and let
{Px}x∈X = {abcde, abced, bacde, baced, bcaed, bcead, bceda, cbead, cbeda} be a domain satisfying
intermediate property. For each pair of alternatives, the separating line is indicated in the figure. Note that for the
pairs (b, d), (b, c), etc., there are no separating lines. Further note that Px is constant over all points x that are
enclosed by some separating lines of the domain (this follows from Lemma 5.5.6). Such Pxs are mentioned in the
respective region in Figure 5.5.3.
Clearly, the domain {Px}x∈X satisfies strict intermediate property since no three separating lines pass through

a common point and the line l (marked with red) intersects with all these lines. It is left to the reader to verify that
the domain {Px}x∈X is not a single-crossing domain. □
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It is worth noting that the domain in Example 5.5.5 is a minimally rich generalized intermediate
domain. Our next lemma shows that this fact is true in general.

Lemma 5.5.7 Every domain {Px}x∈X satisfying strict intermediate property is a generalized intermediate
domain.

The proof of this lemma is relegated to Appendix 5.9.

5.6 Conclusion

In this paper, we have shown that in case of finitely many alternatives, an RSCF on a minimally rich
generalized intermediate domain is unanimous and strategy-proof if and only if it can be written as a
convex combination of the tops-restricted min-max rules. We have further demonstrated by means of
examples that one cannot go too far from the minimally rich generalized intermediate domains ensuring
that the unanimous and strategy-proof RSCFs on it are convex combinations of the tops-restricted
min-max rules. We have also provided a characterization of the unanimous and strategy-proof RSCFs in
the setting with infinite number of alternatives. However, we do not assume any type of minimal richness
in that case. In fact, minimal richness cannot be defined in this setting as there is no notion of
“consecutive alternatives” here. As applications of our result, we have obtained a characterization of the
unanimous and strategy-proof RSCFs on restricted domains such as single-peaked, single-crossing,
single-dipped, single-peaked on a tree with top-set along a path, Euclidean, multi-peaked, and
intermediate domain ([58]).

To our understanding, our results apply to all well-known restricted domains in one dimension. An
interesting problem would be to see to what extent one can enlarge a generalized intermediate domain
ensuring the existence of a non-random-dictatorial, unanimous, and strategy-proof (not necessarily
tops-restricted random min-max) random rule. This will give some idea of the robustness of the
generalized intermediate domains as possibility domains. Another interesting problem would be to
explore the generalized intermediate domains for multiple dimensions. We leave all these problems for
future research.

Appendix

5.7 Proof of Theorem 5.3.1

First, we prove a proposition that constitutes a major step in this proof.
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Proposition 5.7.1 LetD be a minimally rich generalized intermediate domain and let ϕ : Dn → ΔA be a
unanimous and strategy-proof RSCF.Then,

(i) ϕτ(D)(PN) = 1 for all PN ∈ Dn, and

(ii) ϕ is uncompromising.

We prove a sequence of lemmas which we will use in the proof of Proposition 5.7.1. The following
lemma establishes that a generalized intermediate domain restricted to its top-set is single-peaked.

Lemma 5.7.1 LetD be a generalized intermediate domain. Then,D|τ(D) is single-peaked.

Proof: LetD be a generalized intermediate domain with τ(D) = {b1, . . . , bk}. We show thatD|τ(D) is
single-peaked. Without loss of generality, assume by contradiction that there exists P ∈ D such that
τ(P) = bj and bl′Pbl for some l, l′ with l′ < l < j. This means P violates the betweenness property with
respect to bl, which is a contradiction sinceD is a generalized intermediate domain and bl ∈ τ(D). This
completes the proof of the lemma. ■

In what follows, we prove a technical lemma that we use repeatedly in the proof of Proposition 5.7.1.
We use the following notation in this lemma: for X, Y ⊆ A and a preference P, XPYmeans xPy for all
x ∈ X and y ∈ Y.

Lemma 5.7.2 LetD be a domain and let ϕ : Dn → ΔA be a strategy-proof RSCF. Let PN ∈ Dn, P′i ∈ D,
and B,C ⊆ A be such that BPiC, BP′iC, and Pi|C = P′i|C. Suppose ϕC(PN) = ϕC(P

′
i, P−i) and

ϕa(PN) = ϕa(P
′
i, P−i) for all a /∈ B ∪ C. Then, ϕa(PN) = ϕa(P

′
i, P−i) for all a ∈ C.

Proof: First note that since ϕC(PN) = ϕC(P
′
i, P−i) and ϕa(PN) = ϕa(P

′
i, P−i) for all a /∈ B ∪ C,

ϕB(PN) = ϕB(P
′
i, P−i). Suppose b ∈ C is such that ϕb(PN) ̸= ϕb(P

′
i, P−i) and ϕa(PN) = ϕa(P

′
i, P−i) for

all a ∈ Cwith aPib. In other words, b is the maximal element of C according to Pi that violates the
assertion of the lemma. Without loss of generality, assume that ϕb(PN) < ϕb(P

′
i, P−i). Since BPiC,

ϕB(PN) = ϕB(P
′
i, P−i), and ϕa(PN) = ϕa(P

′
i, P−i) for all a /∈ Bwith aPib, it follows that

ϕU(b,Pi)(PN) < ϕU(b,Pi)(P
′
i, P−i). This implies agent imanipulates at PN via P′i , which is a contradiction.

This completes the proof of the lemma. ■

Proof of Proposition 5.7.1

Now, we are ready to complete the proof of Proposition 5.7.1.
Proof:
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We prove this proposition by using induction on the number of agents. LetD be a generalized
intermediate domain with τ(D) = {b1, . . . , bk}.

Let |N| = 1 and let ϕ : D → ΔA be a unanimous and strategy-proof RSCF. Then, by unanimity,
ϕτ(D)(PN) = 1 for all PN ∈ D, and hence ϕ satisfies uncompromisingness.

Assume that the proposition holds for all sets with k < n agents. We prove it for n agents. Let |N| = n
and let ϕ : Dn → ΔA be a unanimous and strategy-proof RSCF. SupposeN∗ = N \ {1}. Define the
RSCF g : Dn−1 → ΔA for the set of votersN∗ as follows: for all PN∗ = (P2, P3, . . . , Pn) ∈ Dn−1,

g(P2, P3, . . . , Pn) = ϕ(P2, P2, P3, P4, . . . , Pn).

Evidently, g is a well-defined RSCF satisfying unanimity and strategy-proofness (See Lemma 3 in [98]
for a detailed argument). Hence, by the induction hypothesis, gτ(D)(PN∗) = 1 for all PN∗ ∈ Dn−1 and g
satisfies uncompromisingness. In terms of ϕ, this implies ϕτ(D)(PN) = 1 for all PN ∈ Dn with P1 = P2.

We complete the proof of Proposition 5.7.1 by using the following lemmas. In the next lemma, we
show that ϕτ(D)(PN) = 1 and ϕ is tops-only over all profiles PN where agents 1 and 2 have the same top
alternative.

Lemma 5.7.3 Let PN, P′N ∈ Dn be two tops-equivalent profiles such that P1, P2 ∈ Dbj for some bj ∈ τ(D).
Then, ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P′N).

Proof: Note that since g is uncompromising, g satisfies tops-onlyness. Because g is tops-only and
P1, P2 ∈ Dbj , we have g(P1, P−{1,2}) = g(P2, P−{1,2}), and hence ϕ(P1, P1, P−{1,2}) = ϕ(P2, P2, P−{1,2}).
We show ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2}). Using strategy-proofness of ϕ for agent 2, we have
ϕU(x,P1)

(P1, P1, P−{1,2}) ≥ ϕU(x,P1)
(P1, P2, P−{1,2}) for all x ∈ A, and using that for agent 1, we have

ϕU(x,P1)
(P1, P2, P−{1,2}) ≥ ϕU(x,P1)

(P2, P2, P−{1,2}) for all x ∈ A. Since
ϕ(P1, P1, P−{1,2}) = ϕ(P2, P2, P−{1,2}), it follows from Remark 5.2.3 that
ϕ(P1, P1, P−{1,2}) = ϕ(P1, P2, P−{1,2}). Using a similar logic, we have
ϕ(P′1, P′1, P′−{1,2}) = ϕ(P′1, P′2, P′−{1,2}). Because g is tops-only and PN, P′N are tops-equivalent, we have
g(P1, P−{1,2}) = g(P′1, P′−{1,2}). This implies ϕ(P1, P1, P−{1,2}) = ϕ(P′1, P′1, P′−{1,2}), and hence
ϕ(P1, P2, P−{1,2}) = ϕ(P′1, P′2, P′−{1,2}). Moreover, as ϕτ(D)(P1, P1, P−{1,2}) = 1, it follows that
ϕτ(D)(P1, P2, P−{1,2}) = 1. This completes the proof of the lemma. ■

Lemma 5.7.4 Let 1 ≤ j ≤ j+ l ≤ k and let PN, P′N ∈ Dn be such that P1, P2 ∈ Dbj and P′1, P′2 ∈ Dbj+l , and
τ(Pi) = τ(P′i) for all i ̸= 1, 2. Then, ϕb(PN) = ϕb(P

′
N) for all b /∈ [bj, bj+l]τ(D).

Proof: By uncompromisingness of g and the fact that gτ(D)(PN∗) = 1 for all PN∗ ∈ Dn−1, we have
gb(P1, P−{1,2}) = gb(P′1, P−{1,2}) for all b /∈ [bj, bj+l]τ(D). Moreover, since g is tops-only and τ(Pi) = τ(P′i)
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for all i ∈ {3, 4, . . . , n}, we have g(P′1, P−{1,2}) = g(P′1, P′−{1,2}). By the definition of g,
g(P1, P−{1,2}) = ϕ(P1, P1, P−{1,2}) and g(P′1, P−{1,2}) = ϕ(P′1, P′1, P−{1,2}). As τ(P1) = τ(P2) and
τ(P′1) = τ(P′2), Lemma 5.7.3 implies ϕ(P1, P2, P−{1,2}) = ϕ(P1, P1, P−{1,2}) and
ϕ(P′1, P′2, P′−{1,2}) = ϕ(P′1, P′1, P′−{1,2}). Combining all these observations, we have
ϕb(P1, P2, P−{1,2}) = ϕb(P

′
1, P′2, P′−{1,2}) for all b /∈ [bj, bj+l]τ(D). This completes the proof of the lemma. ■

Lemma 5.7.5 Let 1 ≤ j ≤ j+ l ≤ k and let PN, P′N ∈ Dn be such that P1, P2, P′1 ∈ Dbj and P′2 ∈ Dbj+l , and
τ(Pi) = τ(P′i) for all i ̸= 1, 2. Then, ϕc(PN) = ϕc(P

′
N) for all c /∈ U(bj+l, P′1) ∩ U(bj, P′2).

Proof: By Lemma 5.7.3, ϕ(P1, P2, P−{1,2}) = ϕ(P′1, P′1, P′−{1,2}). Hence, it suffices to show that
ϕc(P

′
1, P′1, P′−{1,2}) = ϕc(P

′
1, P′2, P′−{1,2}) for c /∈ U(bj+l, P′1) ∩ U(bj, P′2). We prove this for c /∈ U(bj+l, P′1),

the proof of the same when c /∈ U(bj, P′2) follows from symmetric argument.
Consider c /∈ U(bj+l, P′1). By strategy-proofness of ϕ,

ϕU(c,P′1)
(P′1, P

′
1, P

′
−{1,2}) ≥ ϕU(c,P′1)

(P′1, P
′
2, P

′
−{1,2}) ≥ ϕU(c,P′1)

(P′2, P
′
2, P

′
−{1,2}).

Moreover, by Lemma 5.7.4, ϕb(P
′
1, P′1, P′−{1,2}) = ϕb(P

′
2, P′2, P′−{1,2}) for all b /∈ [bj, bj+l]τ(D), and hence

ϕB(P
′
1, P′1, P′−{1,2}) = ϕB(P

′
2, P′2, P′−{1,2}) for all B ⊆ A such that [bj, bj+l]τ(D) ⊆ B. Since c /∈ U(bj+l, P′1)

and τ(P′1) = bj, by the definition of a generalized intermediate domain, we have [bj, bj+l]τ(D) ⊆ U(c, P′1),
and hence ϕU(c,P′1)

(P′1, P′1, P′−{1,2}) = ϕU(c,P′1)
(P′2, P′2, P′−{1,2}). Thus, we have

ϕU(c,P′1)
(P′1, P

′
1, P

′
−{1,2}) = ϕU(c,P′1)

(P′1, P
′
2, P

′
−{1,2}). (5.1)

Suppose that d ∈ A is ranked just above c in P′1. Then, [bj, bj+l]τ(D) ⊆ U(d, P′1), and hence

ϕU(d,P′1)
(P′1, P

′
1, P

′
−{1,2}) = ϕU(d,P′1)

(P′1, P
′
2, P

′
−{1,2}). (5.2)

Subtracting (5.2) from (5.1), we have ϕc(P
′
1, P′1, P′−{1,2}) = ϕc(P

′
1, P′2, P′−{1,2}), which completes the proof

of the lemma. ■

Recall that for two preferences P and P′, we write P ∼ P′ to mean τ(P) = r2(P′), r2(P) = τ(P′), and
rl(P) = rl(P′) for all l > 2.

Lemma 5.7.6 Let Pbj,bj+1 , Pbj+1,bj ∈ D be such that Pbj,bj+1 ∼ Pbj+1,bj . Then, for all i ∈ N and all P−i ∈ Dn−1,

[ϕτ(D)(P
bj,bj+1 , P−i) = 1] =⇒ [ϕτ(D)(P

bj+1,bj , P−i) = 1].

79



Proof: As Pbj,bj+1 ∼ Pbj+1,bj , by strategy-proofness, ϕa(P
bj,bj+1 , P−i) = ϕa(P

bj+1,bj , P−i) for all a /∈ {bj, bj+1}.
Thus ϕτ(D)(P

bj,bj+1 , P−i) = 1 implies ϕτ(D)(P
bj+1,bj , P−i) = 1. This completes the proof of the lemma. ■

To simplify notations for the following lemma, for j < l, we define the distance from bl to bj, denoted
by bl − bj, as l− j.

Lemma 5.7.7 The RSCF ϕ is tops-only and ϕτ(D)(PN) = 1 for all PN ∈ Dn.¹⁵

Proof: We prove this lemma by using induction on the distance between the top-ranked alternatives of
agents 1 and 2.

Consider l such that 0 ≤ l ≤ k− 1. Suppose ϕτ(D)(PN) = 1 and ϕ(PN) = ϕ(P̃N) for all
tops-equivalent profiles PN, P̃N ∈ Dn with |τ(P2)− τ(P1)| ≤ l. We show ϕτ(D)(P

′
N) = 1 and

ϕ(P′N) = ϕ(P̃′N) for all tops-equivalent profiles P′N, P̃′N ∈ Dn with |τ(P′2)− τ(P′1)| = l+ 1.
Let PN and P′N be such that P1, P′1 ∈ Dbj , P2 ∈ Dbj+l , P′2 ∈ Dbj+l+1 , and τ(Pi) = τ(P′i) for all i ̸= 1, 2.

Further, let P̄1 ≡ Pbj,bj+1 , P̂1 ≡ Pbj+1,bj , P̂2 ≡ Pbj+l,bj+l+1 , and P̄2 ≡ Pbj+l+1,bj+l be such that P̄u ∼ P̂u for all
u = 1, 2. Note that such preferences exist by the definition of a minimally rich generalized intermediate
domain. By the induction hypothesis, ϕ(PN) = ϕ(P′1, P̂2, P′−{1,2}). We prove the following claims.

Claim 1. ϕτ(D)(P̄1, P̄2, P′−{1,2}) = 1 and ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P′1, P̄2, P′−{1,2}) = ϕ(P̄1, P′2, P′−{1,2}).
By the induction hypothesis, ϕτ(D)(P

′
1, P̂2, P′−{1,2}) = 1 and

ϕ(PN) = ϕ(P̄1, P̂2, P′−{1,2}) = ϕ(P′1, P̂2, P′−{1,2}). Let P′′1 ∈ {P′1, P̄1}. By Lemma 5.7.5,

ϕc(P
′′
1 , P

′′
1 , P

′
−{1,2}) = ϕc(P

′′
1 , P̂2, P′−{1,2}) for all c /∈ U(bj+l, P′′1 ) ∩ U(bj, P̂2), (5.3)

and
ϕc(P

′′
1 , P

′′
1 , P

′
−{1,2}) = ϕc(P

′′
1 , P̄2, P′−{1,2}) for all c /∈ U(bj+l+1, P′′1 ) ∩ U(bj, P̄2). (5.4)

As τ(P̂2)− τ(P′′1 ) ≤ l, it follows from the induction hypothesis that
ϕτ(D)(P

′′
1 , P′′1 , P′−{1,2}) = ϕτ(D)(P

′′
1 , P̂2, P′−{1,2}) = 1. Since

U(bj+l, P′′1 ) ∩ U(bj, P̂2) ∩ τ(D) = [bj, bj+l]τ(D), (5.3) implies

ϕb(P
′′
1 , P

′′
1 , P

′
−{1,2}) = ϕb(P

′′
1 , P̂2, P′−{1,2}) for all b /∈ [bj, bj+l]τ(D). (5.5)

Moreover, since P̂2 ≡ Pbj+l,bj+l+1 , P̄2 ≡ Pbj+l+1,bj+l , and ϕτ(D)(P
′′
1 , P̂2, P′−{1,2}) = 1, by Lemma 5.7.6,

ϕτ(D)(P
′′
1 , P̄2, P′−{1,2}) = 1. This, in particular, implies ϕτ(D)(P̄1, P̄2, P′−{1,2}) = 1. Because

¹⁵[31] provide a sufficient condition for a domain to be tops-only for RSCFs. However, generalized intermediate domains
do not satisfy their condition.
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U(bj+l+1, P′′1 ) ∩ U(bj, P̄2) ∩ τ(D) = [bj, bj+l+1]τ(D), (5.4) implies

ϕb(P
′′
1 , P

′′
1 , P

′
−{1,2}) = ϕb(P

′′
1 , P̄2, P′−{1,2}) for all b /∈ [bj, bj+l+1]τ(D). (5.6)

Combining (5.5) and (5.6), ϕb(P
′′
1 , P̂2, P′−{1,2}) = ϕb(P

′′
1 , P̄2, P′−{1,2}) for all b /∈ [bj, bj+l+1]τ(D). Since

P̂2 ≡ Pbj+l,bj+l+1 and P̄2 ≡ Pbj+l+1,bj+l , we have by strategy-proofness that
ϕ{bj+l,bj+l+1}(P

′′
1 , P̂2, P′−{1,2}) = ϕ{bj+l,bj+l+1}(P

′′
1 , P̄2, P′−{1,2}). Let B′ = [bj, bj+l+1]τ(D) \ {bj+l, bj+l+1}. Then,

ϕB′(P
′′
1 , P̂2, P′−{1,2}) = ϕB′(P

′′
1 , P̄2, P′−{1,2}). Note that by Lemma 5.7.1, P̂2|B′ = P̄2|B′ . Therefore, by

applying Lemma 5.7.2 with B = {bj+l, bj+l+1} and C = B′, we have

ϕb(P
′′
1 , P̂2, P′−{1,2}) = ϕb(P

′′
1 , P̄2, P′−{1,2}) for all b ̸= bj+l, bj+l+1. (5.7)

By the induction hypothesis, ϕ(P̄1, P̂2, P′−{1,2}) = ϕ(P′1, P̂2, P′−{1,2}). Again, by Lemma 5.7.1, bj+lP̄1bj+l+1

and bj+lP′1bj+l+1, which implies ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P′1, P̄2, P′−{1,2}). Using a similar logic,
ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P̄1, P′2, P′−{1,2}). This completes the proof of Claim 1. □

Claim 2. ϕc(P
′
1, P̄2, P′−{1,2}) = ϕc(P

′
N) for all c /∈ U(bj+l+1, P′1) ∩ U(bj, P′2).

By (5.6), ϕb(P
′
1, P′1, P′−{1,2}) = ϕb(P

′
1, P̄2, P′−{1,2}) for all b /∈ [bj, bj+l+1]τ(D). Since

[bj, bj+l+1]τ(D) ⊆ U(bj+l+1, P′1) ∩ U(bj, P′2), we have ϕc(P
′
1, P′1, P′−{1,2}) = ϕc(P

′
1, P̄2, P′−{1,2}) for all

c /∈ U(bj+l+1, P′1) ∩ U(bj, P′2). Moreover, by Lemma 5.7.5, ϕc(P
′
1, P′1, P′−{1,2}) = ϕc(P

′
N) for all

c /∈ U(bj+l+1, P′1) ∩ U(bj, P′2). Hence, ϕc(P
′
1, P̄2, P′−{1,2}) = ϕc(P

′
N) for all c /∈ U(bj+l+1, P′1) ∩ U(bj, P′2).

This completes the proof of Claim 2. □

Claim 3. ϕb(P
′
1, P̄2, P′−{1,2}) = ϕb(P

′
N) for all b ∈ [bj, bj+l+1]τ(D).

First, we show ϕbj(P
′
1, P̄2, P′−{1,2}) = ϕbj(P

′
N). By Claim 1, ϕ(P′1, P̄2, P′−{1,2}) = ϕ(P̄1, P′2, P′−{1,2}).

Moreover, as τ(P̄1) = τ(P′1) = bj, by strategy-proofness, ϕbj(P̄1, P′2, P′−{1,2}) = ϕbj(P
′
N). Combining, we

have ϕbj(P
′
1, P̄2, P′−{1,2}) = ϕbj(P

′
N).

Now, we complete the proof of Claim 3 by induction. Consider s < l+ 1. Suppose
ϕbj+r

(P′1, P̄2, P′−{1,2}) = ϕbj+r
(P′N) for all 0 ≤ r ≤ s. We show ϕbj+s+1

(P′1, P̄2, P′−{1,2}) = ϕbj+s+1
(P′N). We

show this in two steps. In Step 1, we show that if an alternative outside τ(D) appears above bj+s+1 in the
preference P′1, then it receives zero probability at ϕ(P′N). In Step 2, we use this fact to complete the proof
of the claim.

Step 1. Consider c ∈ A \ τ(D) such that cP′1bj+s+1. We show ϕc(P
′
N) = 0. Assume for contradiction that

ϕc(P
′
N) > 0. Since cP′1bj+s+1, by the definition of a generalized intermediate domain, we have bj+s+1P′2c.

Let t ∈ {2, . . . , k− j− l} be such thatU(bj+s+1, P′2) ∩ τ(D) = [bj+s+1, bj+l+1]τ(D) ∪ [bj+l+2, bj+l+t]τ(D).
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By Claim 1, ϕτ(D)(P
′
1, P̄2, P′−{1,2}) = 1, and hence

ϕU(bj+s+1,P′2)
(P′1, P̄2, P′−{1,2}) = ϕ[bj+s+1,bj+l+1]τ(D)

(P′1, P̄2, P′−{1,2}) + ϕ[bj+l+2,bj+l+t]τ(D)
(P′1, P̄2, P′−{1,2})

= 1− ϕ[b1,bj+s]τ(D)
(P′1, P̄2, P′−{1,2})− ϕ[bj+l+t+1,bk]τ(D)

(P′1, P̄2, P′−{1,2}). (5.8)

By Claim 2, ϕbi(P
′
1, P̄2, P′−{1,2}) = ϕbi(P

′
N) for all i ∈ [1, j− 1]∪ [j+ l+ t+ 1, k], and by the assumption of

Claim 3, ϕbi(P
′
1, P̄2, P′−{1,2}) = ϕbi(P

′
N) for all i ∈ [j, j+ s]. Combining all these observations, we have

ϕ[b1,bj+s]τ(D)
(P′1, P̄2, P′−{1,2}) = ϕ[b1,bj+s]τ(D)

(P′N) and ϕ[bj+l+t+1,bk]τ(D)
(P′1, P̄2, P′−{1,2}) = ϕ[bj+l+t+1,bk]τ(D)

(P′N).
Note that the sets [b1, bj+s]τ(D),U(bj+s+1, P′2), [bj+l+t+1, bk]τ(D), and {c} are pairwise disjoint. Therefore,
ϕ[b1,bj+s]τ(D)

(P′N) + ϕU(bj+s+1,P′2)
(P′N) + ϕ[bj+l+t+1,bk]τ(D)

(P′N) + ϕc(P
′
N) ≤ 1, and hence

ϕU(bj+s+1,P′2)
(P′N) ≤ 1− ϕ[b1,bj+s]τ(D)

(P′N)− ϕ[bj+l+t+1,bk]τ(D)
(P′N)− ϕc(P

′
N)

= 1− ϕ[b1,bj+s]τ(D)
(P′1, P̄2, P′−{1,2})− ϕ[bj+l+t+1,bk]τ(D)

(P′1, P̄2, P′−{1,2})− ϕc(P
′
N). (5.9)

As ϕc(P
′
N) > 0, (5.8) and (5.9) imply ϕU(bj+s+1,P′2)

(P′1, P̄2, P′−{1,2}) > ϕU(bj+s+1,P′2)
(P′N), which implies agent

2 manipulates at P′N via P̄2, a contradiction. This completes Step 1.

Step 2. In this step, we complete the proof of Claim 3. By Claim 1, it is sufficient to show that
ϕbj+s+1

(P̄1, P′2, P′−{1,2}) = ϕbj+s+1
(P′N).

Suppose ϕbj+s+1
(P̄1, P′2, P′−{1,2}) > ϕbj+s+1

(P′N). Consider d ∈ U(bj+s+1, P′1) \ τ(D). By Step 1,
ϕd(P

′
1, P̄2, P′−{1,2}) = ϕd(P

′
N), and by Claim 1, ϕd(P

′
1, P̄2, P′−{1,2}) = ϕd(P̄1, P′2, P′−{1,2}). Now, consider

d ∈ U(bj+s+1, P′1) ∩ τ(D) such that d ̸= bj+s+1. This implies d = bj′ for some j′ ≤ j+ s. By Claim 2 and
the assumption of Claim 3, ϕd(P

′
1, P̄2, P′−{1,2}) = ϕd(P

′
N). By Claim 1,

ϕ(P′1, P̄2, P′−{1,2}) = ϕ(P̄1, P′2, P′−{1,2}). Combining all these observations, we have
ϕd(P̄1, P′2, P′−{1,2}) = ϕd(P

′
N) for all d ∈ U(bj+s+1, P′1) \ bj+s+1. Therefore,

ϕbj+s+1
(P̄1, P′2, P′−{1,2}) > ϕbj+s+1

(P′N) implies ϕU(bj+s+1,P′1)
(P̄1, P′2, P′−{1,2}) > ϕU(bj+s+1,P′1)

(P′N), which
implies agent 1 manipulates at P′N via P̄1.

Now, suppose ϕbj+s+1
(P̄1, P′2, P′−{1,2}) < ϕbj+s+1

(P′N). By Claim 1, ϕτ(D)(P̄1, P′2, P′−{1,2}) = 1. Let u ≤ j
be such thatU(bj+s+1, P̄1) ∩ τ(D) = [bu, bj+s+1]τ(D). Then, by the assumption of Claim 3,
ϕb(P̄1, P′2, P′−{1,2}) = ϕb(P

′
N) for all b ∈ [bj, bj+s]τ(D), and by Claim 2, ϕb(P̄1, P′2, P′−{1,2}) = ϕb(P

′
N) for all

b ∈ [bu, bj−1]τ(D). Therefore, ϕbj+s+1
(P̄1, P′2, P′−{1,2}) < ϕbj+s+1

(P′N) implies
ϕU(bj+s+1,P̄1)

(P̄1, P′2, P′−{1,2}) < ϕU(bj+s+1,P̄1)
(P′N), which implies agent 1 manipulates at (P̄1, P′2, P′−{1,2}) via P

′
1.

This completes the proof of Claim 3. □

We are now ready to complete the proof of Lemma 5.7.7. First, we show ϕτ(D)(P
′
N) = 1. By Claim 3,
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ϕb(P
′
1, P̄2, P′−{1,2}) = ϕb(P

′
N) for all b ∈ [bj, bj+l+1]τ(D). By Claim 2, ϕb(P

′
1, P̄2, P′−{1,2}) = ϕb(P

′
N) for all

b ∈ [b1, bj−1]τ(D) ∪ [bj+l+2, bk]τ(D). Combining all these observations, we have
ϕτ(D)(P

′
1, P̄2, P′−{1,2}) = ϕτ(D)(P

′
N). Moreover, by Claim 1, ϕτ(D)(P

′
1, P̄2, P′−{1,2}) = 1, and hence

ϕτ(D)(P
′
N) = 1.

Now, we show ϕ(P′N) = ϕ(P̃′N) for all tops-equivalent profiles P′N, P̃′N ∈ Dn. By claims 1, 2, and 3, we
have ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P′N). Moreover, as P̃′1 ∈ Dbj and P̃′2 ∈ Dbj+l+1 , applying claims 1, 2, and 3 to P̃′N,
we have ϕ(P̄1, P̄2, P̃′−{1,2}) = ϕ(P̃′N). Hence, to show ϕ(P′N) = ϕ(P̃′N), it is enough to show
ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P̄1, P̄2, P̃′−{1,2}). Recall that P̂2 ≡ Pbj+l,bj+l+1 . Since τ(P̂2)− τ(P′1) = l and
τ(P′i) = τ(P̃′i) for all i ̸= 1, 2, by the assumption of Lemma 5.7.7, we have
ϕ(P̄1, P̂2, P′−{1,2}) = ϕ(P̄1, P̂2, P̃′−{1,2}). Also, by (5.7), ϕb(P̄1, P̂2, P′−{1,2}) = ϕb(P̄1, P̄2, P′−{1,2}) for all
b ̸= bj+l, bj+l+1, which implies ϕb(P̄1, P̄2, P′−{1,2}) = ϕb(P̄1, P̄2, P̃′−{1,2}) for all b ̸= bj+l, bj+l+1. Using
similar arguments as for the proof of (5.7), it follows that ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P̂1, P̄2, P′−{1,2}) for all
b ̸= bj, bj+1, and hence ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P̄1, P̄2, P̃′−{1,2}) for all b ̸= bj, bj+1. Note that if l ≥ 1, then
ϕb(P̄1, P̄2, P′−{1,2}) = ϕb(P̄1, P̄2, P̃′−{1,2}) for all b ∈ A. Now suppose l = 0. We show
ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P̄1, P̄2, P̃′−{1,2}) for τ(P̄1) = bj and τ(P̄2) = bj+1. Because
ϕb(P̄1, P̄2, P′−{1,2}) = ϕb(P̄1, P̄2, P̃′−{1,2}) for all b ̸= bj, bj+1 and all tops-equivalent P′−{1,2}, P̃

′
−{1,2} ∈ Dn−2,

we have ϕb(P̄1, P̄2, P′−{1,2}) = ϕb(P̄1, P̄2, P̃′3, P′−{1,2,3}) for all b ̸= bj, bj+1. As τ(P′3) = τ(P̃′3), by Lemma
5.7.1, bjP′3bj+1 if and only if bjP̃′3bj+1. Therefore, if ϕbj(P̄1, P̄2, P′−{1,2}) ̸= ϕbj(P̄1, P̄2, P̃′3, P′−{1,2,3}), then agent
3 manipulates either at (P̄1, P̄2, P′−{1,2}) via P̃

′
3 or at (P̄1, P̄2, P̃′3, P′−{1,2,3}) via P

′
3. Hence,

ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P̄1, P̄2, P̃′3, P′−{1,2,3}). Continuing in this manner, we have
ϕ(P̄1, P̄2, P′−{1,2}) = ϕ(P̄1, P̄2, P̃′−{1,2}). Therefore, ϕ(P′N) = ϕ(P̃′N) for all tops-equivalent profiles
P′N, P̃′N ∈ Dn. This completes the proof of the lemma. ■

Lemma 5.7.8 The RSCF ϕ satisfies uncompromisingness.

Proof: We prove this in two steps. In Step 1, we provide a sufficient condition for uncompromisingness,
and in Step 2, we use that to prove the lemma.

Step 1. In this step, we show that ϕ is uncompromising if the following happens: for all j < k, all
Pi ≡ Pbj,bj+1 ∈ D, all P′i ≡ Pbj+1,bj ∈ D, and all P−i ∈ Dn−1,

ϕb(Pi, P−i) = ϕb(P
′
i, P−i) ∀b /∈ [τ(Pi), τ(P′i)]. (5.10)

Suppose (5.10) holds. Since ϕ is tops-only, (5.10) implies that for all Pi ∈ Dbj , all P′i ∈ Dbj+1 , all P−i,
and all b /∈ [τ(Pi), τ(P′i)],

ϕb(Pi, P−i) = ϕb(P
′
i, P−i). (5.11)
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Similarly, for all P̄i ∈ Dbj+1 , all P̄′i ∈ Dbj+2 , all P−i, and all b /∈ [τ(P̄i), τ(P̄′i)], we have

ϕb(P̄i, P−i) = ϕb(P̄
′
i, P−i). (5.12)

Combining (5.11) and (5.12), we have ϕb(Pi, P−i) = ϕb(P̄
′
i, P−i) for all Pi ∈ Dbj , all P̄′i ∈ Dbj+2 , all P−i,

and all b /∈ [τ(Pi), τ(P̄′i)]. Continuing in this manner, we have ϕb(Pi, P−i) = ϕb(P
′
i, P−i) for all Pi, P′i ∈ D,

all P−i, and all b /∈ [τ(Pi), τ(P′i)], which implies ϕ is uncompromising.

Step 2. In this step, we show that ϕ satisfies (5.10). We do this in two further steps. In Step 2.a., we show
(5.10) for agents 1 and 2, and in Step 2.b., we show this for other agents.
Step 2.a. It is enough to show (5.10) for agent 1, the proof of the same for agent 2 follows from symmetric
argument. Without loss of generality, assume τ(P2) = bj+l. Note that by Lemma 5.7.7, ϕτ(D)(PN) = 1.
Therefore, by Lemma 5.7.5, ϕb(P1, P2, P−{1,2}) = ϕb(P2, P2, P−{1,2}) for all b /∈ [bj, bj+l]τ(D) and
ϕb(P

′
1, P2, P−{1,2}) = ϕb(P2, P2, P−{1,2}) for all b /∈ [bj+1, bj+l]τ(D). This implies

ϕb(P1, P2, P−{1,2}) = ϕb(P
′
1, P2, P−{1,2}) for all b /∈ [bj, bj+l]τ(D). By strategy-proofness,

ϕ{bj,bj+1}(P1, P2, P−{1,2}) = ϕ{bj,bj+1}(P
′
1, P2, P−{1,2}). Let B′ = [bj, bj+l]τ(D) \ {bj, bj+1}. Since

P1|B′ = P′1|B′ , by applying Lemma 5.7.2 with B = {bj, bj+1} and C = B′, we have
ϕb(P1, P2, P−{1,2}) = ϕb(P

′
1, P2, P−{1,2}) for all b ̸= bj, bj+l. This proves (5.10) for agent 1. Therefore, by

Step 1, we have for all i ∈ {1, 2}, all Pi ∈ D, all P′i ∈ D, and all P−i ∈ Dn−1,

ϕb(Pi, P−i) = ϕb(P
′
i, P−i) ∀b /∈ [τ(Pi), τ(P′i)]. (5.13)

This completes Step 2.a.
Step 2.b. In this step, we show (5.10) for agents i ∈ {3, . . . , n}. It is enough to show this for i = 3. If
P1 = P2, then by the induction hypothesis,
ϕb(P3, P−3) = gb(P1, P3, P−{1,2,3}) = gb(P1, P′3, P−{1,2,3}) = ϕb(P

′
3, P−3) for all P3, P′3 ∈ D and all

b /∈ [τ(P3), τ(P′3)]. Let τ(P1) = bp and τ(P2) = bq. Since ϕτ(D)(PN) = 1 for all PN ∈ Dn, it follows from
Lemma 5.7.5 that ϕb(P1, P1, P3, P−{1,2,3}) = ϕb(P1, P2, P3, P−{1,2,3}) for all b /∈ [bp, bq]τ(D) and
ϕb(P1, P1, P′3, P−{1,2,3}) = ϕb(P1, P2, P′3, P−{1,2,3}) for all b /∈ [bp, bq]τ(D). Combining all these
observations, we have

ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′3, P−{1,2,3}) for all b /∈ [bp, bq]τ(D) ∪ [bj, bj+1]τ(D). (5.14)

Also, by strategy-proofness,

ϕ{bj,bj+1}(P1, P2, P3, P−{1,2,3}) = ϕ{bj,bj+1}(P1, P2, P′3, P−{1,2,3}). (5.15)
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Now, we distinguish two cases.

Case 1. Suppose p, q ≤ j+ 1 or p, q ≥ j.
Let B′ = [bp, bq]τ(D) \ [bj, bj+1]τ(D). Then, by (5.14) and (5.15),

ϕB′(P1, P2, P3, P−{1,2,3}) = ϕB′(P1, P2, P′3, P−{1,2,3}). Since P3|B′ = P′3|B′ , by applying Lemma 5.7.2 with
B = {bj, bj+1} and C = B′, ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′3, P−{1,2,3}) for all b ∈ B′. Therefore,

ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′3, P−{1,2,3}) for all b /∈ {bj, bj+1}. (5.16)

This completes Step 2.b. for Case 1.

Case 2. Suppose p < j ≤ j+ 1 < q or q < j ≤ j+ 1 < p.
We prove the lemma for the case p < j ≤ j+ 1 < q, the proof of the same for the case

q < j ≤ j+ 1 < p follows from symmetric arguments. By (5.13), for all b /∈ [bj, bq]τ(D), we have
ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P3, P3, P−{1,2,3}) and ϕb(P1, P2, P′3, P−{1,2,3}) = ϕb(P1, P3, P′3, P−{1,2,3}).
Moreover, since τ(P1) ≤ bj+1, τ(P3) = bj and τ(P′3) = bj+1, it follows from (5.16) that
ϕb(P1, P3, P3, P−{1,2,3}) = ϕb(P1, P3, P′3, P−{1,2,3}) for all b /∈ [bj, bj+1]τ(D). Combining all these
observations, ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′3, P−{1,2,3}) for all b /∈ [bj, bq]τ(D). By
strategy-proofness, ϕ{bj,bj+1}(P1, P2, P3, P−{1,2,3}) = ϕ{bj,bj+1}(P1, P2, P′3, P−{1,2,3}). Let
B′ = [bj, bq]τ(D) \ {bj, bj+1}. Since P3|B′ = P′3|B′ , by applying Lemma 5.7.2 with B = {bj, bj+1} and
C = B′, we have ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′3, P−{1,2,3}) for all b ∈ B′. Hence,

ϕb(P1, P2, P3, P−{1,2,3}) = ϕb(P1, P2, P′3, P−{1,2,3}) for all b /∈ {bj, bj+1},

which completes Step 2.b. for Case 2.
Since cases 1 and 2 are exhaustive, this completes Step 2, and consequently the proof of Lemma 5.7.8.

■ Proposition 5.7.1 now follows from Lemma 5.7.7 and Lemma 5.7.8. ■

Now, we come back to the proof of Theorem 5.3.1. Our proof uses the following theorem which is
taken from [81].

Theorem 5.7.1 (Theorem 3(a) in [81]) LetD be the maximal single-peaked domain. Then, every tops-only
and strategy-proof RSCF ϕ : Dn → ΔA is a convex combination of some tops-only and strategy-proof DSCFs
f : Dn → A.

Our next lemma presents the structure of an uncompromising and strategy-proof RSCF on a regular
single-peaked domain.
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Lemma 5.7.9 LetD be a regular single-peaked domain and let ϕ : Dn → ΔA be uncompromising and
strategy-proof. Then, ϕ is a convex combination of the generalized min-max rules onDn.¹⁶

Proof: Note that since ϕ is uncompromising, ϕ is tops-only. Let D̂ be the maximal single-peaked domain.
Let ϕ̂ : D̂n → ΔA be the tops-only extension of ϕ on D̂. More formally, for all P̂N ∈ D̂n, ϕ̂(P̂N) = ϕ(PN),
where PN ∈ Dn is such that PN and P̂N are tops-equivalent. This is well-defined as ϕ is tops-only andD is
regular. Since D̂ is single-peaked and ϕ is strategy-proof, ϕ̂ is also strategy-proof. Hence, by Theorem
5.7.1, ϕ̂ is a convex combination of the generalized min-max rules on D̂n. By the definition of ϕ̂, this
implies ϕ is a convex combination of the generalized min-max rules onDn, which completes the proof. ■

Finally, we are ready to complete the proof of Theorem 5.3.1. Proof: (If Part) LetD be a generalized
intermediate domain with τ(D) = {b1, . . . , bk} and let ϕ : Dn → ΔA be a TRM rule. Since ϕ is a TRM
rule, it is unanimous by definition. We show that ϕ is strategy-proof. Let ϕ =

∑t
l=1 λlfl, where λls are

non-negative numbers summing to 1 and fls are TM rules. To show ϕ is strategy-proof, it is enough to
show that fls are strategy-proof. For all l ∈ {1, . . . , t}, define f̂l : (D|τ(D))

n → τ(D) as
f̂l(PN|τ(D)) = fl(PN). Note that by Lemma 5.7.1,D|τ(D) is a single-peaked domain. Therefore, it follows
from [72] that f̂l is strategy-proof for all l = 1, . . . , t. By Remark 5.2.5, this implies fl is strategy-proof for
all l = 1, . . . , t. This completes the proof of the if part.

(Only-if Part) LetD be a generalized intermediate domain with τ(D) = {b1, . . . , bk} and let
ϕ : Dn → ΔA be a unanimous and strategy-proof RSCF. Define ϕ̂ : (D|τ(D))

n → Δτ(D) as
ϕ̂b(PN|τ(D)) = ϕb(PN) for all b ∈ τ(D). This is well-defined as by Proposition 5.7.1, ϕτ(D)(PN) = 1 for all
PN ∈ Dn and ϕ is tops-only. Because ϕ satisfies uncompromisingness, ϕ̂ also satisfies
uncompromisingness. Hence, by Lemma 5.7.9, ϕ̂ is convex combination of generalized min-max rules on
(D|τ(D))

n. Moreover, since ϕ is unanimous, ϕ̂ is a also unanimous. This implies ϕ̂ is a convex combination
of the min-max rules on (D|τ(D))

n. By the definition of ϕ̂, this implies ϕ is a TRM rule. This completes
the proof of the only-if part. ■

5.8 Proof of Theorem 5.4.1

Proof:
LetD be a generalized intermediate domain and let ϕ be a unanimous and strategy-proof RSCF. We

introduce a piece of notation to facilitate the presentation of our next lemma. For RN ∈ Dn, by I(RN)we
denote the interval [mini∈N τ(Ri),maxi∈N τ(Ri)], and by p(RN)we denote the number of different peaks
at RN, that is, p(RN) = |{τ(Ri) | i ∈ N}|. Further, for a preference R and an alternative x ∈ A, the lower

¹⁶If the set of alternatives is an interval of real numbers, then every uncompromising RSCF on the maximal single-peaked
domain is strategy-proof (see Lemma 3.2 in [46]). However, the same does not hold for the case of finitely many alternatives.
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contour set of x at R is defined as L(x,R) = {y ∈ A | xRy}. Our next proposition says that at every
profile RN, the interval I(RN)will receive the full probability (i.e., probability 1) at ϕ(RN). It further says
that the top-set of the domainD will always (i.e., at any profile) receive probability 1 by ϕ.

Proposition 5.8.1 For all RN ∈ Dn, ϕ(RN)(I(RN)) = 1 and ϕ(RN)(τ(D)) = 1.

Proof: Consider RN ∈ Dn. We prove the proposition on the basis of the number of different peaks p(RN)

at RN. The proposition follows trivially by unanimity when p(RN) = 1. To prove the proposition for the
cases where p(RN) > 1, we use induction on p(RN). Here, we consider the case p(RN) = 2 as the base
case.

Base case for the proof of Proposition 5.8.1: Suppose p(RN) = 2.
Let {τ(Ri) | i ∈ N} = {a, b}, where a < b. We use induction on the number of agents having a as the
top-ranked alternative.
Base case for the proof of the base case of Proposition 5.8.1: We first prove this for the case τ(R1) = a
and τ(R2) = · · · τ(Rn) = b.

Proof of ϕ(RN)([a, b]) = 1:
We claim ϕ(RN)((b,∞)) = 0. Suppose to the contrary that ϕ(RN)((b,∞)) > 0. Let R′ ∈ Db. By

unanimity, ϕ(R′,R−1)({b}) = 1, and hence agent 1 manipulates at RN by misreporting his/her preference
as R′, a contradiction. Since ϕ(RN)((b,∞)) = 0, to show ϕ(RN)([a, b]) = 1, it is enough to show
ϕ(RN)((−∞, a)) = 0. Assume to the contrary ϕ(RN)((−∞, a)) > 0. Let R′

2 ∈ Da be a strict
preference with the property that (i) there exist x, y ∈ A such thatU(x,R′

2) = U(a,R2) ∩ [a, b] and
L(y,R′

2) = (b,∞), and (ii) for all w, z /∈ U(x,R′
2) ∪ L(y,R′

2), we have wR′
2z if and only if wR2z. In other

words, the strict preference R′
2 satisfies the following conditions: (i) the alternatives that lie in the interval

[a, b] and are preferred to a according to R2 form an upper contour set at R′
2, and the alternatives in the

interval (b,∞) form a lower contour set, and (ii) all the remaining alternatives maintain the same relative
ordering in R′

2 as in R2. Since the interval (b,∞) forms a lower contour set at R′
2, by strategy-proofness,

ϕ(R′
2,R−2)((b,∞)) = 0. This, together with the construction of R′

2 and strategy-proofness, implies
ϕ(RN)(U(a,R2)) = ϕ(R′

2,R−2)(U(a,R2)). As R2|(−∞,b)∩(A\U(a,R2)) = R′
2|(−∞,b)∩(A\U(a,R2)), by

straightforward application of strategy-proofness for all Borel setD ⊆ (−∞, b) ∩ (A \ U(a,R2)), we
have

ϕ(RN)(D) = ϕ(R′
2,R−2)(D). (5.17)

This, in particular, means ϕ(R′
2,R−2)((−∞, a)) > 0. We can repeatedly use this argument to move all

the agents i = 2, . . . , n to a preference R′
i ∈ Da and conclude ϕ(R1,R′

−1)((−∞, a)) > 0. However, by
unanimity, ϕ(R1,R′

−1)({a}) = 1, a contradiction. This proves ϕ(RN)([a, b]) = 1.
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Proof of ϕ(RN)(τ(D)) = 1: Suppose that 1 ≤ s < s′ ≤ k are such that a ∈ Is and b ∈ Is′ . Consider the
profile R̂N ∈ D such that R̂1 = R̂where R̂ ∈ Da is a single-peaked preference and R̂i = R̂′, where
R̂′ ∈ Db is a single-peaked preference for all i ∈ {2, . . . , n}. In Claim 1, we show that ϕ(R̂N)(τ(D)) = 1,
and in Claim 2, we show that ϕ(R̂N) = ϕ(RN), which will complete the proof of ϕ(RN)(τ(D)) = 1.

Claim 1. ϕ(R̂N)(τ(D)) = 1.
Proof of Claim 1. Let r(I) and l(I) denote the right end point and the left end point of an interval I.

Define Xj = (r(Ij), l(Ij+1)) for all j ∈ {1, . . . , k− 1}. Since ϕ(R̂N)([a, b]) = 1, to prove Claim 1, it is
sufficient to show that ϕ(R̂N)(Xj) = 0 for all j ∈ {s, . . . , s′ − 1}. Assume for contradiction that there
exists t ∈ {s, . . . , s′ − 1} such that ϕ(R̂N)(Xt) > 0. Without loss of generality assume that
ϕ(R̂N)(Xj) = 0 for all j ∈ {s, . . . , t− 1}. Let R̄ ∈ Da and ¯̄R ∈ Db be such that for all x, y ∈ Awith
x ∈ ∪s′

q=sIq and y ∈ [a, b] \ ∪s′
q=sIq, we have xR̄y and x¯̄Ry. Further let R′

N,R′′
N ∈ Dn be such that

• R′
1 = R̄ and R′

i = R̂i for all i ∈ {2, . . . , n}, and

• R′′
i =

¯̄R for all i ∈ {2, . . . , n} and R′′
1 = R̂1.

Claim 1.1. ϕ(R′
N)(τ(D)) = ϕ(R′′

N)(τ(D)) = 1.
Proof of Claim 1.1. We show this only for R′

N. For R′′
N the similar arguments hold. Let R̃1 = ¯̄R. Note that

since ϕ(R̄′
N)([a, b]) = 1 for all R̄′

N ∈ Dn such that {τ(R̄′
i) | i ∈ N} = {a, b}, we have

ϕ(R̃1,R′
−1)([a, b]) = 1. Again, since R′

1 = R̄ and R̃1 = ¯̄R, by strategy-proofness it follows that
ϕ(R′

N)([a, b] ∩ τ(D)) = ϕ(R̃1,R′
−1)([a, b] ∩ τ(D)). Since τ(R̃1) = τ(R′

i) = b for all i ∈ {2, . . . , n}, by
unanimity, ϕ(R̃1,R′

−1)({b}) = 1. Combining all these observations, we get ϕ(R′
N)([a, b] ∩ τ(D)) = 1.

This completes the proof of the Claim 1.1. □
Claim 1.2. ϕ(R′

N) = ϕ(R′′
N).

Proof of Claim 1.2. Let R̃N ∈ Dn be such that R̃1 = R̄ and R̃i = ¯̄R for all i ∈ {2, . . . , n}. Note that by
Claim 1.1, ϕ(R′

N)([a, b] ∩ τ(D)) = ϕ(R′′
N)([a, b] ∩ τ(D)) = ϕ(R̃N)([a, b] ∩ τ(D)). Since

R′
2|[a,b]∩τ(D) = R̃2|[a,b]∩τ(D), by strategy-proofness, ϕ(R′

N) = ϕ(R̃2,R′
−2). Continuing in the manner, we

can show that ϕ(R′
N) = ϕ(R̃N). Using similar arguments we can show that ϕ(R′′

N) = ϕ(R̃N), and
complete the proof of Claim 1.2. □
Claim 1.3. ϕ(R̂N)([a, r(Is)]) = ϕ(R′

N)([a, r(Is)]) and ϕ(R̂N)(Ij) = ϕ(R′
N)(Ij) for all j ∈ {s+ 1, . . . , t}.

Proof of Claim 1.3. Consider the preference profile (R′
1, R̂−1). Note that since p(R̂N) = p(R′

1, R̂−1) = 2,
we have ϕ[a,b](R̂N) = ϕ[a,b](R

′
1, R̂−1) = 1. Furthermore, because R̂1,R′

1 ∈ Da and R̂1|[a,r(Is)] = R′
1|[a,r(Is)], by

strategy-proofness, we have ϕ(R̂N)([a, r(Is)]) = ϕ(R′
1, R̂−1)([a, r(Is)]). By our assumption,

ϕ(R̂N)(Xs) = 0. We show ϕ(R′
1, R̂−1)(Xs) = 0. Assume to the contrary, ϕ(R′

1, R̂−1)(Xs) > 0. This,
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together with the fact that ϕ(R̂N)([a, r(Is)]) = ϕ(R′
1, R̂−1)([a, r(Is)]), implies

ϕ(R̂N)([a, l(Is+1)]) < ϕ(R′
1, R̂−1)([a, l(Is+1)]). (5.18)

Since R̂1 is a single-peaked preference and ϕ(R̂N)([a, b)]) = ϕ(R′
1, R̂−1)([a, b]) = 1, (5.18) implies

ϕ(R̂N)(U(l(Is+1), R̂1)) < ϕ(R′
1, R̂−1)(U(l(Is+1), R̂1)), which in turn means agent 1 manipulates at R̂1 via R′

1.
Therefore, we have ϕ(R′

1, R̂−1)(Xs) = 0. By strategy-proofness, this implies
ϕ(R̂N)(Is+1) = ϕ(R′

1, R̂−1)(Is+1). Using similar arguments, we can show ϕ(R̂N)(Ij) = ϕ(R′
1, R̂−1)(Ij) for all

j ∈ {s+ 2, . . . , t}. Since R′
N = (R′

1, R̂−1) this completes the proof of Claim 1.3. □
Now, we complete the proof of Claim 1, that is, ϕ(R̂N)(τ(D)) = 1. By Claim 1.2, we have

ϕ(R′
N) = ϕ(R′′

N). On the other hand, by Claim 1.3, we have ϕ(R̂N)([a, r(Is)]) = ϕ(R′
N)([a, r(Is)]), and

ϕ(R̂N)(Ij) = ϕ(R′
N)(Ij) for all j ∈ {s+ 1, . . . , t}. Combining these two observations, we get

ϕ(R̂N)([a, r(Is)]) = ϕ(R′′
N)([a, r(Is)]), and ϕ(R̂N)(Ij) = ϕ(R′′

N)(Ij) for all j ∈ {s+ 1, . . . , t}. Note that as
p(R′′

N) = 2, we have ϕ(R′′
N)([a, b]) = 1, and hence by Claim 1.1, ϕ(R′′

N)(Xt) = 0. This, together with our
assumption that ϕ(R̂N)(Xt) > 0, implies

ϕ(R′′
N)(U(l(It+1), R̂′)) > ϕ(R̂N)(U(l(It+1), R̂′)). (5.19)

Since R̂i = R̂′ for all i ∈ {2, . . . , n}, by strategy-proofness, we have

ϕ(R̂N)(U(l(It+1), R̂′)) ≥ ϕ(R′′
r+1, R̂−{r+2})(U(l(It+1), R̂′)) ≥ · · · ≥ ϕ(R′′

N)(U(l(It+1), R̂′)).

However, this contradicts (5.19). Hence, ϕ(R̂N)(τ(D)) = 1, which completes the proof of Claim 1. □

Claim 2. ϕ(R̂N) = ϕ(RN).
We first show that ϕ(R̂N) = ϕ(R1, R̂−1). Since p(R̂N) = p(R1, R̂−1) = 2, we have

ϕ(R̂N)([a, b]) = ϕ(R1, R̂−1)([a, b]) = 1. By strategy-proofness, this implies
ϕ(R̂N)([a, r(Is)]) = ϕ(R1, R̂−1)([a, r(Is)]). We claim ϕ(R1, R̂−1)(Xs) = 0. Assume to the contrary,
ϕ(R1, R̂−1)(Xs) > 0. Since R̂1 is a single-peaked preference and ϕ(R̂N)(Xs) = 0, this means
ϕ(R̂N)(U(l(Is+1), R̂1)) < ϕ(R1, R̂−1)(U(l(Is+1), R̂1)). However, then agent 1 manipulates at R̂N via R1, a
contradiction. So, ϕ(R1, R̂−1)(Xs) = 0. Using similar arguments, we can show
ϕ(R̂N)(Is+1) = ϕ(R1, R̂−1)(Is+1), and thereafter ϕ(R̂N)(Xs+1) = ϕ(R1, R̂−1)(Xs+1). Continuing in this
manner, it follows that ϕ(R̂N)(Ij) = ϕ(R1, R̂−1)(Ij) and ϕ(R̂N)(Xj) = ϕ(R1, R̂−1)(Xj) for all
j ∈ {s, . . . , s′ − 1}. Finally, using similar arguments as for the proof of
ϕ(R̂N)([a, r(Is)]) = ϕ(R1, R̂−1)([a, r(Is)]), we can show ϕ(R̂N)([l(Is′), b]) = ϕ(R1, R̂−1)([l(Is′), b]).
Combining all these observations, we conclude ϕ(R̂N) = ϕ(R1, R̂−1).
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Now, we proceed to complete the proof of Claim 2. By replicating symmetric arguments as for the
same proof, i.e., the proof of ϕ(R̂N) = ϕ(R1, R̂−1), we can show ϕ(R̂N) = ϕ(R1,R2, R̂{3,...,n}). Here, by
symmetric arguments, we mean by using b in place of a, s′ in place of s, and by following the sequence
s′, s′ − 1, . . . , s in place of s, s+ 1, . . . , s′. As before, we can now sequentially move the agents i in
{3, . . . , n} from the preference R̂i to the preference Ri and conclude that ϕ(R̂N) = ϕ(RN). This completes
the proof of Claim 2. □

Induction step for the proof of the base case of Proposition 5.8.1: Suppose the proposition holds for
the case p(RN) = 2 and τ(R1) = · · · = τ(Rr−1) = a and τ(Rr) = · · · = τ(Rn) = b for some r < n. We
proceed to show that the proposition holds for the case τ(R1) = · · · = τ(Rr) = a and
τ(Rr+1) = · · · = τ(Rn) = b
Proof of ϕ(RN)([a, b]) = 1:

We claim ϕ(RN)((b,∞)) = 0. Suppose to the contrary that ϕ(RN)((b,∞)) > 0. This means
ϕ(RN)(U(b,Rr)) < 1. Let R′ ∈ Db. By the base case, ϕ(R′,R−r)([a, b] ∩ τ(D)) = 1. Since b ∈ τ(D) by
the definition of generalized intermediate domains ϕ(R′,R−r)(U(b,Rr)) = 1, and hence agent 1
manipulates at RN by misreporting his/her preference as R′, a contradiction. Since ϕ(RN)((b,∞)) = 0,
to show ϕ(RN)([a, b]) = 1, it is enough to show ϕ(RN)((−∞, a)) = 0. The proof of this follows by using
arguments similar to the proof of ϕ(RN)([a, b]) = 1 under “base case for the proof of the base case of
Proposition 5.8.1”.

Proof of ϕ(RN)(τ(D)) = 1: The proof of this follows by using arguments similar to the proof of
ϕ(RN)(τ(D)) = 1 under “base case for the proof of the base case of Proposition 5.8.1”.
Induction step for the proof of Proposition 5.8.1: Suppose that the proposition holds when p(RN) ≤ l
for some l < n. We show that the same holds when p(RN) = l+ 1.

Let κ1(RN) and κ2(RN) denote the numbers of agents whose top-ranked alternatives are the minimum
and the maximum, respectively, at the profile RN. More formally,
κ1(RN) = |{i | τ(Ri) ≤ τ(Rj) for all j ∈ N \ i}| and κ2(RN) = |{i | τ(Ri) ≥ τ(Rj) for all j ∈ N \ i}|. We
prove the proposition for this induction step by using another level of induction on the basis of the
numbers κ1(RN) and κ2(RN). We treat the case κ1(RN) = κ2(RN) = 1 as the base case.

Base case for the proof of the induction step of Proposition 5.8.1: Suppose κ1(RN) = κ2(RN) = 1.
Without loss of generality assume that agent 1 is the (unique) agent whose top-ranked alternative is the
minimum at RN and agent 2 is the (unique) one whose top-ranked alternative is the maximum at RN.
Suppose τ(R1) = a and τ(R2) = b.

Proof of ϕ(RN)([a, b]) = 1:
We only show that ϕ(RN)((b,∞)) = 0, using a similar argument it can be shown that
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ϕ(RN)((−∞, a)) = 0, which will complete the proof of ϕ(RN)([a, b]) = 1 for the case at hand. Assume
for contradiction that ϕ(RN)((b,∞)) > 0. Let R′

1 be such that the top-ranked alternative at R′
1 is the

second minimum among the top-ranked alternatives at RN, that is, τ(R′
1) = mini̸=1{τ(Ri)}. Since

p(R′
1,R−1) = l, by means of the induction hypothesis, we have ϕ(R′

1,R−1)([τ(R′
1), b]) = 1 and

ϕ(R′
1,R−1)(τ(D)) = 1. This, together with the fact that [τ(R′

1), b] ∩ τ(D) ⊆ U(b,R1), implies
ϕ(R′

1,R−1)(U(b,R1)) = 1. On the other hand, because ϕ(RN)((b,∞)) > 0, we have
ϕ(RN)(U(b,R1)) < 1. Combining all these observations, it follows that agent 1 manipulates at RN via R′

1, a
contradiction.

Proof of ϕ(RN)(τ(D)) = 1:
Let R′

1 be such that τ(R′
1) = mini ̸=1{τ(Ri)},U(a,R′

1) = U(τ(R′
1),R1) ∩ [a, τ(R′

1)], and there exists
x ∈ A such that L(x,R′

1) = (−∞, a). In other words, the top-ranked alternative at R′
1 is the second

minimum among the top-ranked alternatives at RN, an alternative is (weakly) preferred to a at R′
1 if and

only if it lies in-between a and τ(R′
1) as well as is (weakly) preferred to τ(R′

1) at R1, and finally the
alternatives in the interval (−∞, a) come at the bottom of the preference R′

1. By strategy-proofness,
ϕ(RN)(D) = ϕ(R′

1,R−1)(D) for all Borel setsD such thatD ∩ [a, τ(R′
1)] = ∅.

Now, consider the preference R′
2 of agent 2 such that τ(R′

2) = maxi̸=2{τ(Ri)},
U(b,R′

2) = U(τ(R′
2),R2) ∩ [τ(R′

2), b], and there exists y ∈ A such that L(y,R′
2) = (b,∞). Using

symmetric arguments as for agent 1 (in the last paragraph), we can show that ϕ(RN)(D) = ϕ(R′
2,R−2)(D)

for all Borel setsD such thatD ∩ [τ(R′
2), b] = ∅. Since p(R′

1,R−1) = p(R′
2,R−2) = l, by the induction

hypothesis, ϕ(R′
1,R−1)(τ(D)) = ϕ(R′

2,R−2)(τ(D)) = 1. If p(RN) = 3, then a < τ(R′
1) = τ(R′

2) < b,
and hence [a, τ(R′

1)] ∩ [τ(R′
2), b] = {τ(R′

1)}. On the other hand, if p(RN) > 3, then
a < τ(R′

1) < τ(R′
2) < b, and hence [a, τ(R′

1)] ∩ [τ(R′
2), b] = ∅. This, together with the fact that

p(RN) = l ≥ 3, implies [a, τ(R′
1)] ∩ [τ(R′

2), b] ⊆ τ(D). Combining all these observations, we obtain
ϕ(RN)(τ(D)) = 1.

This completes the proof of the base case for the induction step of Proposition 5.8.1.

Induction step for the proof of the induction step of Proposition 5.8.1: Suppose that the proposition
holds for all pairs of values of (κ1(RN), κ2(RN)) of the form (k1, k2 + 1) and (k1 + 1, k2) for some
k1, k2 ∈ N such that k1 + k2 + 1 < n. We proceed to show that the proposition holds when
(κ1(RN), κ2(RN)) = (k1 + 1, k2 + 1).

First, we explain how the induction hypothesis is compatible with our base case and how our induction
step completes the proof of Proposition 5.8.1. Suppose we want prove the proposition for the case
(κ1(RN), κ2(RN)) = (2, 1). Then, our induction hypothesis requires that the proposition is already proved
for the cases (κ1(RN), κ2(RN)) = (1, 1) and (κ1(RN), κ2(RN)) = (2, 1). We have already proved the
proposition when (κ1(RN), κ2(RN)) = (1, 1). Technically speaking, the case (κ1(RN), κ2(RN)) = (2, 0) is
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not defined since it means that there is no agent whose top-ranked alternative is the (hypothetical)
maximum of RN, however practically this case boils down to the case where the number of different peaks
at RN is l. Therefore, the proof of the proposition for this case follows from the induction hypothesis for
the proof of Proposition 5.8.1. So, we have the proposition for the case (κ1(RN), κ2(RN)) = (2, 1). By
similar arguments, it can be proved for the case (κ1(RN), κ2(RN)) = (2, 1). Now, to prove it for the case
(κ1(RN), κ2(RN)) = (2, 2), we require it to be proved for the cases (κ1(RN), κ2(RN)) = (2, 1) and
(κ1(RN), κ2(RN)) = (1, 2), which are already proved in the previous step. Continuing in this manner, our
induction step proves the proposition for all values of (κ1(RN), κ2(RN)).

Let mini∈N{τ(Ri)} = a and maxi∈N{τ(Ri)} = b. Assume without loss of generality that τ(R1) = a
and τ(R2) = b.

Proof of ϕ(RN)([a, b]) = 1:
We only show ϕ(RN)((b,∞)) = 0. This is sufficient since by a similar argument, we can show that

ϕ(RN)((−∞, a)) = 0 and conclude that ϕ(RN)([a, b]) = 1. Assume for contradiction that
ϕ(RN)((b,∞)) > 0. Let R′

1 be such that τ(R′
1) = min{τ(R2), . . . , τ(Rn)}. Combining our induction

hypothesis with the facts that p(R′
1,R−1) = l, κ1(R′

1,R−1) = k1, and κ2(R′
1,R−1) = k2 + 1, we obtain

ϕ(R′
1,R−1)([a, b]) = 1 and ϕ(R′

1,R−1)(τ(D)) = 1. This, together with the fact that
[τ(R′

1), b] ∩ τ(D) ⊆ U(b,R1), implies ϕ(R′
1,R−1)(U(b,R1)) = 1. On the other hand, because

ϕ(RN)((b,∞)) > 0, we have ϕ(RN)(U(b,R1)) < 1. Combining all these observations, it follows that
agent 1 manipulates at RN via R′

1, a contradiction.

Proof of ϕ(RN)(τ(D)) = 1:
Consider a preference R′

1 of agent 1 satisfying the following conditions:
τ(R′

1) = min{τ(R2, . . . , τ(Rn))},U(a,R′
1) = U(τ(R′

1),R1) ∩ [a, τ(R′
1)], and L(x,R′

1) = (−∞, a) for
some x ∈ A. By strategy-proofness, ϕ(RN)(D) = ϕ(R′

1,R−1)(D) for all Borel setsD such that
D ∩ [a, τ(R′

1)] = ∅.
Now, consider a preference R′

2 of agent 2 satisfying the following conditions:
τ(R′

2) = max{τ(R1), τ(R3), . . . , τ(Rn)},U(b,R′
2) = U(τ(R′

2),R2) ∩ [τ(R′
2), b], and L(y,R′

2) = (b,∞)

for some y ∈ A. Using symmetric arguments as for agent 1, we can show that ϕ(RN)(D) = ϕ(R′
2,R−2)(D)

for all Borel setsD such thatD ∩ [τ(R′
2), b] = ∅. Since κ1(R′

1,R−1) = k1 and κ2(R′
1,R−1) = k2 + 1, by the

induction hypothesis, ϕ(R′
1,R−1)(τ(D)) = 1. Similarly, since κ1(R′

2,R−2) = k1 + 1 and κ2(R′
2,R−2) = k2,

by the induction hypothesis ϕ(R′
2,R−2)(τ(D)) = 1. If p(RN) = 3, then a < τ(R′

1) = τ(R′
2) < b, and

hence [a, τ(R′
1)] ∩ [τ(R′

2), b] = {τ(R′
1)}. On the other hand, if p(RN) > 3, then a < τ(R′

1) < τ(R′
2) < b,

and hence [a, τ(R′
1)] ∩ [τ(R′

2), b] = ∅. This, together with the fact that p(RN) = l ≥ 3, implies
[a, τ(R′

1)] ∩ [τ(R′
2), b] ⊆ τ(D). Combining all these observations, we obtain ϕ(RN)(τ(D)) = 1. This

completes the proof of Proposition 5.8.1. ■
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Now, we complete the proof of the theorem. Define ϕ̂ : (D|τ(D))
n → Δτ(D) as

ϕ̂B(RN|τ(D)) = ϕB(RN) for all Borel sets B ∈ τ(D). This is well-defined as by Proposition 5.8.1,
ϕτ(D)(RN) = 1 for all RN ∈ Dn and ϕ is tops-only. SinceD|τ(D) is a single-peaked domain, and hence
Theorem 5.4.1 follows from Theorem 4.1 in [46]. ■

5.9 Proof of Lemma 5.5.7

First we prove a lemma which we repeatedly use in the proof of Lemma 5.5.7.

Lemma 5.9.1 Let {Px}x∈X be a strict intermediate domain. Then for all distinct a, b, c ∈ A, the separating
lines of the pairs (a, b) and (b, c) do not intersect.

Proof: Let {Px}x∈X be a strict intermediate domain. Assume for contradiction that there exist distinct
a, b, c ∈ A such that the separating lines of (a, b) and (b, c) intersect. Since {Px}x∈X is strict, no three
separating lines of {Px}x∈X intersect at a common point. Therefore, we can choose an open (see Figure
5.9.1) ball such that no separating line other than those of the pairs (a, b) and (b, c) passes through that
open ball. Consider the regions X1 and X2 in Figure 5.9.1. Consider x ∈ X1. Since aPxb and bPxc, by
transitivity, we have aPxc. Now, consider y ∈ X2. Again, since bPa and cPb, by transitivity, we have cPa.
Since the relative preference over a and c is changing from X1 to X2, it must be that the separating line of
(a, c) intersects at least one of these regions. However, this is a contradiction to our assumption that no
separating line other than those of (a, b) and (b, c) intersects this open ball. This completes the proof of
the lemma.
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Figure 5.9.1: A graphic illustration

■

Now we prove Lemma 5.5.7. Proof: Let {Px}x∈X be a domain satisfying strict intermediate property.
Since the number of alternatives is finite, there are finitely many preferences in the domain {Px}x∈X.
Consider a preference P ∈ {Px}x∈X. Let XP = {x ∈ X|Px = P}. Since there are finitely many preferences
in the domain {Px}x∈X, we can find a finite collection of parallel lines {l1, . . . , lk} such that for each
P ∈ {Px}x∈X, there exists l ∈ {l1, . . . , lk} such that XP ∩ l ̸= ∅. This implies that {Px}x∈X = ∪ki=1{Px}x∈li .
Since {Px}x∈X satisfies strict intermediate property, there exists a line l̂ that intersects all the separating
lines (as defined in Lemma 5.5.6). We assume that (i) l̂ ∈ {l1, . . . , lk}, and (ii) no li passes through the
point of intersection of any two separating lines. This assumption is without of loss of generality because
for (i), we can start with l̂ and can consider a collection of parallel lines satisfying the required properties,
and for (ii), since we have finitely many separating lines and hence finitely many points of intersection of
those, we can always choose the lines {l1, . . . , lk} by avoiding those points.

Now we show that∪ki=1{Px}x∈li is a generalized intermediate domain satisfying minimal richness. We
show this using the following three claims.

Claim 1. For each l ∈ {l1, . . . , lk}, the family of preferences {Px}x∈l is a generalized intermediate domain
satisfying minimal richness.

Consider l ∈ {l1, . . . , lk}. Let x1, . . . , xs be the points of intersection of the line lwith the separating
lines of {Px}x∈X. Note that s ≤ k since there can be separating lines of {Px}x∈X that do not intersect with l.
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Assume without loss of generality that xj ∈ (xj−1, xj+1) for all j ∈ {2, . . . , s− 1}, that is, the points
{x1, . . . , xs} are ordered in a particular direction. Consider x ∈ l such that x1 ∈ (x, x2). Such a point x
can always be chosen as X is open and x1 ∈ X. Let Px = P1. By Lemma 5.5.6, Py = P1 for all y ∈ [x, x1). By
our assumption of x1, there exists a separating line, say for the pair of alternatives (a, b), that intersects l at
x1. This implies there exists P2 ∈ {Px}x∈l such that Py = P2 for all y ∈ (x1, x2). By Lemma 5.5.6, P1 and P2

differ only over the ordering of the pair (a, b). Again, by Lemma 5.5.6, the preference Px1 is either P1 or P2.
Continuing in this manner, we can get hold of a sequence of preferences {Pj}j∈{1,...,s+1} such that (i)
{Px}x∈l = {P1, . . . , Ps+1}, and (ii) for all j = {2, . . . , s}, Pj and Pj+1 differ only over the ordering of a
particular pair of alternatives. This implies that {Px}x∈l is minimally rich.

Next, we show {P1, . . . , Ps+1} is a generalized intermediate domain with respect to the ordering given
by P1. Assume for contradiction that there exist c, d, e ∈ Awith cP1dP1e such that d, e ∈ τ({P1, . . . , Ps+1})
and cPd for some P ∈ {P1, . . . , Ps+1}with τ(P) = e. Let xe ∈ X be such that Pxe = P. Since
d ∈ τ({P1, . . . , Ps+1}) and cP1d, it follows that the separating line of the pair (c, d) intersects with l. Let xt
be this point of intersection. Since cPd by our assumption, xe ∈ (x1, xt). Consider xd ∈ X such that
τ(Pxd) = d. Such a point xd must exist since d ∈ τ({P1, . . . , Ps+1})Then, it must be that xt ∈ (x1, xd).
Also, dP1e and ePd together imply xd ∈ (x1, xe). But this contradicts the fact that xe ∈ (x1, xt). This implies
that {P1, . . . , Ps+1} is a generalized intermediate domain completing the proof of Claim 1. □

Recall that by our assumption, l̂ ∈ {l1, . . . , lk}. Therefore, by applying Claim 1 for l = l̂, it follows that
{Px}x∈̂l is a minimally rich generalized intermediate domain with respect to some ordering, say≺.
Suppose τ({Px}x∈̂l) = {b1, . . . , br}, where b1 ≺ b2 ≺ . . . ≺ br.

Claim 2. For all l ∈ {l1, . . . , lk}, there exist s and twith 1 ≤ s ≤ t ≤ r such that {Px}x∈l is a generalized
intermediate domain with τ({Px}x∈l) = {bs, . . . , bt}.

Consider l ∈ {l1, . . . , lk} \ l̂. Let y1, . . . , yq be the points of intersection of lwith the separating lines
such that yj ∈ (yj−1, yj+1) for all j ∈ {2, . . . , q− 1}. Similarly, let x1, . . . , xp be the points of intersection
of l̂with the separating lines such that xj ∈ (xj−1, xj+1) for all j ∈ {2, . . . , p− 1}. Assume without loss of
generality that xpx1 = yqy1, that is, the direction along which the points x1, . . . , xp are counted is the same
as that along which the points y1, . . . , yq are counted (see Figure 5.9.2).
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Figure 5.9.3: A graphic illustration
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Figure 5.9.2: A graphic illustration

First, we show τ({Px}x∈l) ⊆ τ({Px}x∈̂l). Consider b ∈ τ({Px}x∈l). Assume for contradiction that
b /∈ τ({Px}x∈̂l). Since min≺ τ({Px}x∈̂l) = b1, this implies b1 ≺ b. Suppose br ≺ b. Then, it must be that
for all preferences in {Px}x∈̂l, br is ranked above b, and hence the separating line of the pair (br, b) does
not intersect with l̂. However, since b ∈ τ({Px}x∈l), there must be a separating line of the pair (br, b). This
is a contradiction to our assumption that l̂ intersects with all separating lines. This shows b ≺ br. Now,
suppose bu ≺ b ≺ bv where bu and bv are two consecutive alternatives (with respect to the ordering≺) in
the top-set τ({Px}x∈̂l).¹⁷ Since bu ≺ b ≺ bv and b /∈ τ({Px}x∈̂l), by Lemma 5.5.6, there must be xe, xf and
xg with xf ∈ (xe, xg) such that the separating lines of the pairs (b, bv), (bu, bv), and (bu, b) intersect l̂ at xe,
xf, and xg, respectively. By Lemma 5.9.1, no two of these separating lines intersect. Note that b = τ(Pz)
for some z ∈ X implies that zmust be on the left side of the separating line of (b, bv) and on the right side
of the separating line of (bu, b) (see Figure 5.9.3). However, as it is evident from Figure 5.9.3, there cannot
be any such z. Moreover, this is true in general since the separating lines of (b, bv) and (bu, b) do not
intersect. This shows b ∈ τ({Px}x∈̂l), and hence τ({Px}x∈l) ⊆ τ({Px}x∈̂l).

¹⁷By consecutive in τ({Px}x∈̂l), we mean (bu, bv) ∩ τ({Px}x∈̂l) = ∅.
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Next, we show that for all b, bu, bv such that bu, bv ∈ τ({Px}x∈l) and bu ⪯ b ⪯ bv, we have
b ∈ τ({Px}x∈l). Suppose not. Assume without loss of generality that bu and bv are consecutive in
τ({Px}x∈l), that is, (bu, bv) ∩ τ({Px}x∈l) = ∅. Recall that by our assumption, all the separating lines of
{Px}x∈X intersect l̂. Suppose that the separating lines of the pairs (bu, b), (bu, bv), and (b, bv) intersect l̂ at
xe, xf, and xg, respectively, where xf ∈ (xe, xg). By Lemma 5.9.1, no two of those three separating lines
intersect each other. This, together with the fact that bu, bv ∈ τ({Px}x∈l), implies that the separating lines
of the pairs (bu, b), (bu, bv), and (b, bv) intersect l at yh, yi, and yj, respectively, where yi ∈ (yh, yj) (see
Figure 5.9.4). By Lemma 5.9.1, bu ⪯ τ(Pyi) ⪯ bv. However, since bPyibu and bPyibv, it must be that
τ(Pyi) ̸= bu, bv. This is a contradiction since (bu, bv) ∩ τ({Px}x∈̂l) = ∅. This completes the proof of
Claim 2. □

X

(b, bv) (bu, bv) (bu, b)

l̂

l

xe xf xg

yh yi yj

Figure 5.9.4: A graphic illustration

Claim 3. For all l ∈ {l1, . . . , lk}, all P̄ ∈ {Px}x∈l, and all bv ∈ {b1, . . . , br}, P̄ satisfies the betweenness
property with respect to bv.

If bv ∈ τ({Px}x∈l), then Claim 3 follows from Claim 2. Suppose bv /∈ τ({Px}x∈l). Without loss of
generality, assume bv ≺ bs where bs = min τ({Px}x∈l). Let a ≺ bv. It is enough to show that bvP̄a. Since
bv ≺ bs and bsPbv for all P ∈ {Px}x∈l, it must be that the separating line of (bv, bs) does not intersect l. Let
bt = max≺ τ({Px}x∈l). Suppose that the points of intersection of l̂with the separating lines of (a, bv),
(bv, bs), and (bs, bt) are xc, xd, and xe, respectively. Because a ≺ bv ≺ bs and bv ∈ τ({Px}x∈̂l), we have
xd ∈ (xc, xe). By Lemma 5.9.1, separating lines of (a, bv) and (bv, bs) cannot intersect each other. This,
together with the fact that the separating line of (bv, bs) does not intersect l, implies that the separating
line of (a, bv) too does not intersect l (see Figure 5.9.5). This, in particular, implies bvP̄a, which completes
the proof of Claim 3. □
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Figure 5.9.5: A graphic illustration

Now, the proof of Lemma 5.5.7 follows from Claim 2 and Claim 3. ■
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6
Restricted Probabilistic Fixed Ballot Rules andHybrid

Domains

6.1 Introduction

Two familiar preference domains in the literature on mechanism design in voting environments are the
complete domain and the domain of single-peaked preferences. The complete domain arises naturally
when there are no a priori restrictions on preferences. The classic results of [56], [96] and [57] apply here.
According to them, requiring strategy-proofness forces the mechanism to be a dictatorship in the
deterministic case and to be a random dictatorship in the probabilistic case. Single-peaked preferences on
the other hand, require more structure on the set of alternatives. However, they arise naturally in a variety
of situations such as preference aggregation [19], strategic voting [72], public facility allocation [21], fair
division [100] and assignment [? ]. The single-peaked domain also admits well-behaved strategy-proof
social choice functions. In this paper, we propose a flexible preference domain that admits both the
complete domain and the single-peaked domain as special cases. We call them hybrid domains and
completely characterize unanimous and strategy-proof random social choice functions (or RSCFs) over the
hybrid domains. We refer to these random social choice functions as Restricted Probabilistic Fixed Ballots
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Rules (or RPFBRs) and analyze their salient properties. Finally, we provide an axiomatic justification of
hybrid domains and show that all domains that satisfy some richness properties must be hybrid.

We briefly recall the definition of single-peaked preferences. The set of alternatives is a finite set
A = {a1, a2, . . . , am}which is endowed with the prior order a1 ≺ a2 ≺ · · · ≺ am. A preference ordering
over A is single-peaked if there exists a unique top-ranked alternative, say ak, such that preferences decline
when alternatives move “farther away” from ak. For instance, if “ar ≺ as ≺ ak or ak ≺ as ≺ ar” , then as is
strictly preferred to ar. A preference is hybrid if there exist threshold alternatives ak and ak with ak ≺ ak
such that preferences over the alternatives in the interval between ak and ak are “unrestricted” relative to
each other, while preferences over other alternatives retain features of single-peakedness. Thus, the set A
can be decomposed into three parts: left interval L = {a1, . . . , ak}, right interval R = {ak, . . . , am} and
middle intervalM = {ak, . . . , ak}. Formally, a preference is (k, k)-hybrid if the following holds: (i) for a
voter whose best alternative lies in L (respectively in R), preferences over alternatives in the set L ∪ R are
conventionally single-peaked, while preferences over alternatives inM are arbitrary subject to the
restriction that the best alternative inM is the left threshold ak (respectively, right threshold ak), and (ii)
for a voter whose peak lies inM, preferences restricted to L ∪ R are single-peaked but arbitrary overM.
Observe that if k = 1 and k = m, then preferences are unrestricted, while the case where k− k = 1
coincides with the case of single-peaked preferences.

A (k, k)-hybrid preference is a preference ordering which is single-peaked everywhere except over the
alternatives in the middle interval. Consider the location of candidates in the forthcoming Democratic
party primary elections in the USA, in the usual political left-right spectrum. It is clear that candidates
such as Sanders and Warren belong to the left, while others such as Biden (perhaps) belong to the right.
However, there are several candidates who cannot easily be ordered in this manner. The typical reason is
that they are left on some issues and right on others. Hybrid preferences treat these candidates as ones
belonging to the middle part, and the hybrid domain reflects the reversals in the relative rankings of these
alternatives that arise from the underlying multidimensional issues. A more general way to model
departures from single-peaked preferences would be to consider several intervals of alternatives where
single-peakedness fails. However, as suggested by Theorem 6.7.2, this complicates the analysis
significantly without adding substantial new insights.

We study unanimous and strategy-proof RSCFs on hybrid domains. A RSCF associates a lottery over
alternatives to each profile of preferences. Randomization is a way to resolve conflicts of interest by
ensuring a measure of ex-ante fairness in the collective decision process. More importantly, it has recently
been shown that randomization significantly enlarges the scope of designing well-behaved mechanisms,
e.g., the compromise RSCF of [35] and the maximal-lottery mechanism of [25].

In order to define the notion of strategy-proofness, we follow the standard approach of [57]. For every
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voter, truthfully revealing her preference ordering must yield a lottery that stochastically dominates the
lottery arising from any unilateral misrepresentation of preferences according to the sincere preference.
Unanimity is a weak efficiency requirement which says that the alternative that is unanimously best at a
preference profile is selected with probability one.

The main theorem of the paper shows that a RSCF defined on the (k, k)-hybrid domain is unanimous
and strategy-proof if and only if it is a RPFBR (see Theorem 6.5.1). A RPFBR is a special case of a
Probabilistic Fixed Ballot Rule (or PFBR) introduced by [46]. A PFBR is specified by a collection of
probability distributions βS, where S is a coalition of voters, over the set of alternatives. We formally call
βS a probabilistic ballot. If k− k = 1, then a RPFBR reduces to a PFBR. However, if k− k > 1, then a
RPFBR requires an additional restriction on the probabilistic ballots: each voter i has a fixed probability
weight εi such that the probability of the right interval R according to βS is the total weight

∑
i∈S εi of the

voters in S and that of the left interval L is the total weight
∑

i/∈S εi of the voters outside S.
We use our characterization result to investigate the the following classical decomposability question

on these domains: Can every unanimous and strategy-proof RSCF be decomposed as a mixture of finitely
many deterministic unanimous and strategy-proof social choice functions? Decomposability holds on
several well-known domains, for instance the complete domain [57] and the single-peaked domains
[81, 87]. Thus, decomposability holds for the cases when k− k = 1 or k− k = m− 1. Surprisingly, it
does not hold for any intermediate values of k and k. In other words, randomization non-trivially expands
the scope for designing strategy-proof mechanisms. We identify a necessary and sufficient condition for
decomposability under an additional assumption of anonymity, which requires the RSCF be
non-sensitive to the identities of voters (see Theorem 6.5.3). We further observe that non-decomposable
RPFBRs dominate almost all decomposable RPFBRs in recognizing social compromises.

Finally, we formally demonstrate the salience of hybrid domains. We consider connected domains,
where connectedness is a property of a graph that is induced by the domain. Essentially, connectedness
ensures the existence of a path from one preference to another by a sequence of specific preference
switches. Connected domains have been used extensively in the literature on strategic social choice [e.g.
71, 86, 95]. According to Theorem 6.7.2, every connected domain that satisfies the weak no-restoration
property of [95] and includes two completely reversed preferences must be a hybrid domain over which
the RPFBR characterization still holds. An important feature of this result is that the condition on the
domain does not specify an underlying structure of single-peakedness or threshold alternatives. These are
derived endogenously from our hypotheses.

The paper is organized as follows. Section 6.1.1 reviews the literature, while Section 6.2 sets out the
model and definitions. Section 6.3 and 6.4 introduce hybrid preferences and RPFBRs, respectively.
Section 6.5 presents the main characterization result as well as the result on decomposability. Section 6.7
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provides an axiomatic justification for hybrid domains.

6.1.1 Relationship with the Literature

The analysis of strategy-proof deterministic social choice functions on single-peaked domains was
initiated by [72] and developed further by [12], [37] and [103]. In the deterministic setting, [75], [34],
[88], [29], [1] and [23] analyze the structure of unanimous and strategy-proof social choice functions on
domains closely related to single-peakedness.

The structure of unanimous and strategy-proof RSCFs on single-peaked domains was first studied by
[46]. They considered the case where the set of alternatives is an interval in the real line and characterized
the unanimous and strategy-proof RSCFs in terms of probabilistic fixed ballot rules. Recently, [91]
strengthen the characterization result on a single-peaked domain which does not require maximal
cardinality. Characterizations of unanimous and strategy-proof RSCFs as convex combinations of
counterpart deterministic social choice functions were provided by [81] and [87].

Recently, [83] have considered the case where the set of alternatives is endowed with a graph structure.
Single-peakedness is defined w.r.t. such graphs as in [40] and [34]. [83] investigate the structure of
unanimous and strategy-proof RSCFs. Their characterization result (Theorem 5.6 of [83]) implies our
Theorem 6.5.1 for a special graph structure. However, the extension of our result in Theorem 6.7.2 is more
general than their result since we do not assume a prespecified graph over the set of alternatives. In
particular, our result covers many domains that are excluded by theirs. Finally, we emphasize that the
motivation, formulation, and proof techniques in the two papers are completely different.

6.2 Preliminaries

Let A = {a1, a2, . . . , am} be a finite set of alternatives withm ≥ 3. LetN = {1, 2, . . . , n} be a finite set of
voters with n ≥ 2. Each voter i has a preference ordering Pi (i.e., a complete, transitive and antisymmetric
binary relation) over the alternatives. We interpret asPiat as “as is strictly preferred to at according to Pi”.
For each 1 ≤ k ≤ m, rk(Pi) denotes the kth ranked alternative in Pi. We use the following notational
convention: Pi = (ak as at · · · ) refers to a preference ordering where ak is first-ranked, as is
second-ranked, and at is third-ranked, while the rest of the rankings in Pi are arbitrary.

We denote the set of all preference orderings by P, which we call the complete domain. A domainD
is a subset of P. We say that two distinct preferences Pi, P′i ∈ D are adjacent, denoted Pi ∼ P′i , if there
exist as, at ∈ A such that (i) rk(Pi) = rk+1(P′i) = as and rk(P′i) = rk+1(Pi) = at for some 1 ≤ k ≤ m− 1,
and (ii) rl(Pi) = rl(P′i) for all l /∈ {k, k+ 1}. In other words, alternatives as and at are consecutively
ranked in both Pi and P′i and are swapped between the two preferences, while the ordering of all
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remaining alternatives is unchanged. In this case, we say alternatives as and at are locally switched between
Pi and P′i . Given distinct Pi, P′i ∈ D, a sequence of preferences {Pki }tk=1 ⊆ D is called a path connecting Pi
and P′i if P1

i = Pi, Pti = P′i and Pki ∼ Pk+1
i for all k = 1, . . . , t− 1. Two preferences Pi, P′i are completely

reversed if for all as, at ∈ A, we have [asPiat]⇔ [atP′ias].
A domainD isminimally rich if for each ak ∈ A, there exists a preference Pi ∈ D such that r1(Pi) = ak.

Throughout the paper, we assume the domain in question is minimally rich. A preference profile is an
n-tuple of preferences, i.e., P = (P1, P2, . . . , Pn) = (Pi, P−i) ∈ Dn.

Let Δ(A) denote the space of all lotteries over A. An element λ ∈ Δ(A) is a lottery or a probability
distribution over A, where λ(ak) denotes the probability received by alternative ak. For notational
convenience, we let eak denote the degenerate lottery where alternative ak receives probability one. A
Random Social Choice Function (or RSCF) is a map ϕ : Dn → Δ(A)which associates each preference
profile to a lottery. Let ϕak

(P) denote the probability assigned to ak by ϕ at the preference profile P. If a
RSCF selects a degenerate lottery at every preference profile, it is called a Deterministic Social Choice
Function (or DSCF). More formally, a DSCF is a mapping f : Dn → A.

In this paper, we impose two basic axioms on RSCFs: unanimity and strategy-proofness. A RSCF
ϕ : Dn → Δ(A) is unanimous if for all P ∈ Dn and ak ∈ A, [r1(Pi) = ak for all i ∈ N]⇒ [ϕ(P) = eak ].
We adopt the first-order stochastic dominance notion of strategy-proofness proposed by [57]. This
requires the lottery from truthtelling stochastically dominate the lottery obtained by any
misrepresentation by any voter at any possible profile of other voters’ preferences. Formally, a RSCF
ϕ : Dn → Δ(A) is strategy-proof if for all i ∈ N, Pi, P′i ∈ D and P−i ∈ Dn−1, ϕ(Pi, P−i) stochastically
dominates ϕ(P′i, P−i) according to Pi, i.e.,

∑k
t=1 ϕrt(Pi)(Pi, P−i) ≥

∑k
t=1 ϕrt(Pi)(P

′
i, P−i) for all

k = 1, . . . ,m. In addition, a RSCF ϕ : Dn → Δ(A) satisfies the tops-only property if for all P, P′ ∈ Dn,
we have [r1(Pi) = r1(P′i) for all i ∈ N]⇒ [ϕ(P) = ϕ(P′)]. In other words, the tops-only property ensures
that the social outcome at each preference profile depends only on the first-ranked alternatives at that
preference profile.

An important class of unanimous and strategy-proof RSCFs is the class of random dictatorships.
Formally, a RSCF ϕ : Dn → Δ(A) is a randomdictatorship if there exists a “dictatorial coefficient”
εi ≥ 0 for each i ∈ Nwith

∑
i∈N εi = 1 such that ϕ(P) =

∑
i∈N εi er1(Pi) for all P ∈ Dn. In particular, if

εi = 1 for some i ∈ N, the random dictatorship degenerates to a dictatorship. It is evident that every
random dictatorship is amixture (equivalently, a convex combination) of dictatorships. [57] showed that
every unanimous and strategy-proof RSCF on the complete domain P is a random dictatorship.

An important restricted domain is the domain of single-peaked preferences [19, 72]. A preference Pi is
single-peaked w.r.t. a prior order≺ over A if for all as, at ∈ A, we have
[as ≺ at ≺ r1(Pi) or r1(Pi) ≺ at ≺ as]⇒ [atPias]. LetD≺ denote the single-peaked domain which
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contains all single-peaked preferences w.r.t. ≺. Whenever we do not mention the prior order≺, we
assume that it is the natural order, ak−1 ≺ ak for all k = 2, . . . ,m. For notational convenience, let as ⪯ at
denote either as ≺ at or as = at, and [as, at] = {ak ∈ A : as ⪯ ak ⪯ at} denote the set of alternatives
between as and at on≺, provided as ⪯ at. Note that the single-peaked domainD≺ contains a pair of
completely reversed preferences Pi = (a1 · · · ak−1 ak · · · am) and Pi = (am · · · ak ak−1 · · · a1).¹

6.3 HybridDomains

Hybrid domains are supersets of single-peaked domains where single-peakedness may be violated over a
subset of alternatives that lie in the “middle” of the alternative set. We use the term “hybrid” to emphasize
the coexistence of such violations, with other features of single-peakedness.

Consider the natural order≺ over A. Fix two alternatives ak and ak with ak ≺ ak, which we refer to as
the left threshold and the right threshold, respectively. We define three subsets of A using these two
thresholds: Left Interval L = [a1, ak],Right Interval R = [ak, am] andMiddle IntervalM = [ak, ak].² In
what follows, we present the structure of preference orderings in a hybrid domain.

Consider a preference ordering whose peak belongs toM (see the first diagram of Figure 6.3.1). The
ranking of the alternatives inM is completely arbitrary, while the ranking of the alternatives in L and R
follows the conventional single-peakedness restriction w.r.t. ≺. In other words, the only restriction that
the preference ordering satisfies is that preference declines as one moves from ak towards a1, or from ak
towards am. Note that this allows some alternatives in L or R be ranked above some alternatives inM.

Next, consider a preference ordering whose peak belongs to L (see the second diagram of Figure 6.3.1).
The ranking of the alternatives in L and R follows single-peakedness w.r.t. ≺. In other words, preference
declines as one moves from the peak towards a1 or ak, or moves from ak towards am. Furthermore, all
alternatives inM are ranked below ak in an arbitrary manner. Notice that an alternative in Rmay be
ranked above some alternative inM, but can never be ranked above ak. For a preference ordering with the
peak in R, the restriction is analogous.

¹The notation Pi = (a1 · · · ak−1 ak · · · am) and Pi = (am · · · ak ak−1 · · · a1) denote the preferences Pi and Pi where
ak−1Piak and akPiak−1 for all k = 2, . . . ,m.

²Note that L ∩M = {ak}, R ∩M = {ak} and L ∩ R = ∅.
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Figure 6.3.1: A graphic illustration of hybrid preference orderings

The formal definition of hybrid domains is given below.

Definition 6.3.1 Let≺ be the natural order over A and let 1 ≤ k < k ≤ m. A preference Pi is called
(k, k)-hybrid if the following two conditions are satisfied:

(i) For all ar, as ∈ L or ar, as ∈ R, [ar ≺ as ≺ r1(Pi) or r1(Pi) ≺ as ≺ ar]⇒ [asPiar].

(ii) [r1(Pi) ∈ L]⇒ [akPiar for all ar ∈ Mwith ar ̸= ak ] and
[r1(Pi) ∈ R]⇒ [akPias for all as ∈ Mwith as ̸= ak ].

LetDH(k, k) denote the (k, k)-hybrid domain which contains all (k, k)-hybrid preference orderings.
Note thatD≺ ⊆ DH(k, k) for all 1 ≤ k < k ≤ m, andDH(k′, k

′
) ⊆ DH(k, k) for all k ≤ k′ < k′ ≤ k.

Now, we explain the relation of hybrid domains with five important preference domains studied in the
literature.

The single-peaked domain: Consider a hybrid domainDH(k, k)with k− k = 1. This means
M = {ak, ak} and L ∪ R = A. Then, conditions (i) and (ii) of Definition 6.3.1 boil down to the
single-peakedness restriction (see the first diagram of Figure 6.3.2), and consequently,DH(k, k) coincides
with the single-peaked domainD≺.

Thecomplete domain: Consider the hybrid domainD(k, k)with k− k = m− 1 (equivalently, k = 1
and k = m). This means L = {ak}, R = {ak}, andM = A. Then, both the conditions of Definition 6.3.1
become vacuous. In other words, no restriction is imposed on the preference orderings (see the second
diagram of Figure 6.3.2) inDH(1,m), and consequently,DH(1,m) becomes the complete domain P.
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Figure 6.3.2: Two hybrid preferences with k− k = 1 and k− k = m− 1

Multiple single-peaked domains: Hybrid domains generalize the notion of multiple single-peaked
domains introduced by [88]. Let Ω = {≺r}sr=1, s ≥ 2 be a collection of linear orders over A. For each
order≺r in Ω, let the single-peaked domain w.r.t. ≺r be denoted byD≺r . Then, the unionDΩ = ∪sr=1D≺r

is called the multiple single-peaked domain w.r.t. Ω.³
One can first identify the maximum common left part LΩ of all orders {≺r}sr=1 over A, and relabel all

alternatives of LΩ = {a1, . . . , ak} (if LΩ ̸= ∅), i.e., for all orders≺r in Ω, after relabeling, either
a1 ≺r · · · ≺r ak ≺r ap for all ap ∈ A\LΩ, or ap ≺r ak ≺r · · · ≺r a1 for all ap ∈ A\LΩ holds. Second, one
can symmetrically identify and relabel the maximum common right part RΩ = {ak, . . . , am} ⊆ A\LΩ of
all orders {≺r}sr=1 over A (if RΩ ̸= ∅) and finally arbitrarily relabel all remaining alternatives as
ak+1, . . . , ak+1. We correspondingly relabel all alternatives in the preferences ofDΩ. Then, after setting ak
and ak as two thresholds, it is clear that each preference ordering inDΩ is (k, k)-hybrid.⁴ Usually,DΩ is
“strictly” contained inDH(k, k). This will be illustrated in the following example.

Note that by definition, a multiple single-peaked domain cannot be a single-peaked domain, whereas a
hybrid domain can be single-peaked for a suitable choice of thresholds (when k− k = 1).

Multidimensional single-peaked domains in voting under constraints: We provide an example to
show that hybrid preferences arise from a model of voting under constraints studied in [13].

LetX = X1× X2, X1 = {1, 2, 3, 4, 5} andX2 = {1, 2, 3}, where bothX1 andX2 are ordered according to
the natural order, denoted by<1 and<2. A preference Pi, with r1(Pi) = x, ismultidimensional
single-peaked over Xw.r.t. <1 and<2 if for all y, z ∈ X, we have
[zk ≤k yk ≤k xk or xk ≤k yk ≤k zk for both k = 1, 2]⇒ [yPiz]. Meanwhile, let
A = {a1, a2, a3, a4, a5, a6} ⊂ X be the set of feasible alternatives, which are depicted by the black nodes in
Figure 6.3.3 below.

³If two orders≺1 and≺2 are completely reversed, the two single-peaked domainsD≺1 andD≺2 become identical. Therefore,
we assume that there is no pair of orders in Ω that are completely reversed.

⁴As Ω contains at least two orders and no pair of orders are completely reversed, it must be the case that k − k > 1 when
LΩ ̸= ∅ and RΩ ̸= ∅. If LΩ = ∅ and RΩ ̸= ∅, thenDΩ is (1, k)-hybrid, while if LΩ ̸= ∅ and RΩ = ∅, thenDΩ is (k,m)-hybrid.
If both LΩ and RΩ are empty sets, thenDΩ ⊆ P = DH(1,m) andDΩ ̸⊆ DH(k, k) for any other k and k.
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Figure 6.3.3: The Cartesian product of <1 and <2

Note that in a multidimensional single-peaked preference, (i) if a1 is first-ranked, then a2 must be
second-ranked within A, and a5 is preferred to a6; if a2 is first-ranked, then a5 is preferred to a6, and (ii) if
a3 is first-ranked, then a2 is better than a1, and a5 is better than a6. Analogous preference restrictions over
the ranking of feasible alternatives are observed for multidimensional single-peaked preferences with
peaks a6, a5 and a4. These two observations coincide with the two preference restrictions in the definition
of the (2, 5)-hybrid domainDH(2, 5) if we rearrange all feasible alternatives according to the natural order
≺. In conclusion, when we restrict attention to all multidimensional single-peaked preferences whose
peaks are feasible, the domain of induced preferences over the feasible alternatives is identical toDH(2, 5).

We may alternatively extract the two linear orders≺1= (a1a2a3a4a5a6) and≺2= (a1a2a4a3a5a6) over
feasible alternatives from Figure 6.3.3, and induce the multiple single-peaked domainD≺1 ∪ D≺2 . Notice
thatD≺1 ∪ D≺2 is strictly contained inDH(2, 5). For instance, a3 and a4 are always ranked above a5 and a6

in every preference ofD≺1 ∪ D≺2 that has peak a1, whereas we can identify a particular multidimensional
single-peaked preference with peak a1 that induces the preference ordering over feasible alternatives as
(a1a2a5a6a3a4).

This illustrates the additional flexibility that a hybrid domain affords, and may be useful for
formulations (for example, political economy or public goods location models) that seek to reduce a
model where the underlying issues are multidimensional, to one where the preference restriction is
generated via a one dimensional order over alternatives.

Semi-single-peaked domains: The notion of semi-single-peaked domains was introduced by [34].
Consider the natural order≺ and fix one threshold alternative. The semi-single-peakedness restriction on
a preference requires that (i) the usual single-peakedness restriction prevail in the interval between the
peak and the threshold, and (ii) each alternative located beyond the threshold be ranked below the
threshold.

One can extend the semi-single-peakedness notion by adding more thresholds and requiring
preferences to be semi-single-peaked w.r.t. each threshold alternative. In particular, suppose that there are
two distinct thresholds ak and ak with ak ≺ ak. Consider a preference Pi with ak ⪯ r1(Pi) ⪯ ak. If Pi is
(k, k)-hybrid, then the usual single-peakedness restriction prevails on the left and right intervals, and no
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restriction is imposed on the ranking of the alternatives in the middle interval (see the first diagram of
Figure 6.3.4). On the contrary, if Pi is semi-single-peaked w.r.t. both ak and ak, then the single-peakedness
restriction prevails on the middle interval but fails on the left and right intervals (see the second diagram
of Figure 6.3.4). Thus, the notions of hybrid preferences and semi-single-peaked preferences are not
entirely compatible with each other.

[34] show that under a mild domain richness condition, semi-single-peakedness is necessary and
sufficient for the existence of a unanimous, anonymous, tops-only and strategy-proof DSCF.⁵ This, in
particular, implies that when k− k > 1, the (k, k)-hybrid domain cannot admit such a well-behaved
strategy-proof DSCF.

Figure 6.3.4: A hybrid preference v.s. a semi-single-peaked preference

6.4 Restricted Probabilistic Fixed Ballot Rules

In this section, we introduce the notion of Restricted Probabilistic Fixed Ballot Rules (or RPFBRs). [46]
introduce the notion of Probabilistic Fixed Ballot Rules (or PFBR); RPFBRs are special cases of these
rules.

A PFBR ϕ is based on a collection of parameters (βS)S⊆N, called probabilistic ballots. Each
probabilistic ballot βS, which is associated to the coalition S ⊆ N, is a probability distribution on A
satisfying the following two properties.

• Ballot unanimity: βN assigns probability 1 to am, and β∅ assigns probability 1 to a1.

• Monotonicity: probabilities according to βS move towards right as S gets bigger, i.e.,
βS([ak, am]) ≤ βT([ak, am]) for all S ⊂ T and all ak ∈ A.⁶

⁵Recently, [29] introduce the semilattice single-peaked domain which significantly generalizes semi-single-peakedness, and
[23] characterize all unanimous, anonymous, tops-only and strategy-proof DSCFs on the semilattice single-peaked domain.

⁶For a subset B of A, we denote the probability of B according to βS by βS(B).
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For an example, suppose that there are two agents {1, 2} and four alternatives {a1, a2, a3, a4}. Then, a
choice of probabilistic ballots could be β∅ = (1, 0, 0, 0), β{1} = (0.5, 0.2, 0.1, 0.2),
β{2} = (0.4, 0.3, 0.2, 0.1) and βN = (0, 0, 0, 1). Here, we denote by (x, y,w, z) a probability distribution
where a1, a2, a3 and a4 receive probabilities x, y, w and z, respectively.

A PFBR ϕ w.r.t. a collection of probabilistic ballots (βS)S⊆N works as follows. For each 1 ≤ k ≤ m, let
S(k, P) = {i ∈ N : ak ⪯ r1(Pi)} be the set of agents whose peaks are not to the left of ak. Consider an
arbitrary preference profile P and an arbitrary alternative ak. We induce the probabilities βS(k,P)([ak, am])
and βS(k+1,P)([ak+1, am]). If ak = am, then set βS(m+1,P)([am+1, am]) = 0. The probability of the alternative
ak selected at the preference profile P is defined as the difference between these two probabilities, i.e.,
ϕak

(P) = βS(k,P)([ak, am])− βS(k+1,P)([ak+1, am]).⁷ For an example, consider the PFBR ϕ w.r.t. the
parameters presented in the predecessor paragraph. Consider a preference profile P = (P1, P2)where
r1(P1) = a2 and r1(P2) = a4. Then, we calculate

ϕa1(P) = βS(1,P)([a1, a4])− βS(2,P)([a2, a4]) = βN([a1, a4])− βN([a2, a4]) = 0,

ϕa2(P) = βS(2,P)([a2, a4])− βS(3,P)([a3, a4]) = βN([a2, a4])− β{2}([a3, a4]) = 1− 0.3 = 0.7,

ϕa3(P) = βS(3,P)([a3, a4])− βS(4,P)([a4, a4]) = β{2}([a3, a4])− β{2}([a4, a4]) = 0.3− 0.1 = 0.2, and

ϕa4(P) = βS(4,P)([a4, a4])− 0 = β{2}([a4, a4]) = 0.1.

Clearly, the PFBR satisfies the tops-only property.
It is worth mentioning that the probabilistic ballot βS for a coalition S ⊆ N represents the outcome of ϕ

at the “boundary profile” where agents in S have the preference Pi = (am · · · ak ak−1 · · · a1), while the
others have the preference Pi = (a1 · · · ak−1 ak · · · am). For ease of presentation, we call such a
preference profile a S-boundary profile.⁸ If a PFBR ϕ is unanimous, then it follows that β∅ assigns
probability 1 to a1 and βN assigns probability 1 to am, which in turn implies ballot unanimity. In what
follows, we argue that if ϕ is strategy-proof, then (βS)S⊆N must be monotonic. Consider a proper subset
S ⊂ N and i ∈ N \ S. Let P and P′ be the S-boundary and S ∪ {i}-boundary profiles, respectively. In
other words, only agent i changes her preference Pi in the S ∪ {i}-boundary profile to Pi.
Strategy-proofness of ϕ implies that the probability of each upper contour set of Pi is weakly increased
from ϕ(P) to ϕ(P′). Since the interval [ak, am] coincides with the upper contour set of ak at Pi, it follows
that βS([ak, am]) ≤ βS∪{i}([ak, am]). Monotonicity of (βS)S⊆N follows from the repeated application of
this argument.

⁷Since S(k + 1, P) ⊆ S(k, P) and [ak+1, am] ⊂ [ak, am], monotonicity ensures ϕak(P) = βS(k,P)([ak, am]) −
βS(k+1,P)([ak+1, am]) ≥ 0. Moreover, note that

∑m
k=1 ϕak(P) =

∑m
k=1 βS(k,P)([ak, am]) − βS(k+1,P)([ak+1, am]) =

βS(1,P)([a1, am]) = 1. Therefore, ϕ(P) ∈ Δ(A) and ϕ is a well defined RSCF.
⁸Note that for every S ⊆ N, there is a unique S-boundary profile.
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Note that the outcome of a PFBR at any preference profile is uniquely determined by its outcomes at
boundary profiles. It is shown in [46] that every PFBR is unanimous and strategy-proof on the
single-peaked domain. Thus, unanimity and strategy-proofness of a PFBR at every preference profile can
be ensured by imposing those only on the boundary profiles.

The deterministic versions of PFBRs can be obtained by additionally requiring the probabilistic ballots
be degenerate, i.e., βS(ak) ∈ {0, 1} for all S ⊆ N and ak ∈ A. These DSCFs were introduced by [72]; we
refer to these as Fixed Ballot Rules (or FBRs).⁹ [72] showed that a DSCF is unanimous, tops-only and
strategy-proof on the single-peaked domain if and only if it is an FBR. It can be easily verified that an
arbitrary mixture of FBRs is unanimous and strategy-proof on the single-peaked domain, and is a PFBR.
Theorem 3 of [81] and Theorem 5 of [87] prove that the converse is also true.

Below, we present the formal definition of PFBRs.

Definition 6.4.1 A RSCF ϕ : Dn → Δ(A) is called a Probabilistic Fixed Ballot Rule (or PFBR) if there
exists a collection of probabilistic ballots (βS)S⊆N satisfying ballot unanimity and monotonicity such that for all
P ∈ Dn and ak ∈ A, we have

ϕak
(P) = βS(k,P)([ak, am])− βS(k+1,P)([ak+1, am]),

where βS(m+1,P)([am+1, am]) = 0.

We are now ready to present the notion of RPFBRs. The structure of a (k, k)-RPFBR depends on the
values of k and k. If k− k = 1, then the (k, k)-RPFBR is the same as a PFBR. However, if k− k > 1, then
the (k, k)-RPFBR is a PFBR whose probabilistic ballots satisfy the following additional restriction: for
each agent i ∈ N, there is a “conditional dictatorial coefficient” εi ≥ 0 with

∑
i∈N εi = 1 such that for all

S ⊆ N, βS([ak, am]) =
∑

i∈S εi and βS([a1, ak]) =
∑

i∈N\S εi. Note that this, in particular, means that no
βS assigns positive probability to an alternative that lies (strictly) between ak and ak, i.e., βS(ak) = 0 for all
S ⊆ N and ak ∈ [ak+1, ak−1]. In what follows, we present an example of a RPFBR.

Example 6.4.2 LetN = {1, 2, 3} and A = {a1, a2, a3, a4, a5}. Take k = 2 and k = 4, and consider the
(2, 4)-hybrid domainDH(2, 4). Let ε1 = ε2 = ε3 =

1
3 . Consider the 8 probabilistic ballots in Table 6.4.1,

where both ballot unanimity and monotonicity can be easily verified. Note that they also satisfy the
property that βS([a4, a5]) =

∑
i∈S εi and βS([a1, a2]) =

∑
i∈N\S εi for all S ⊆ N. Therefore, the PFBR

w.r.t. these probabilistic ballots is a (2, 4)-RPFBR. 2

⁹[72] called these Augmented Median Voter Rules, while [12] called these Generalized Median Voter Schemes. For an
FBR ϕ, the subtraction form in Definition 6.4.1 can be simplified to a max-min form [see Definition 10.3 in 76]. [72] originally
defined an augmented median voter rule in the min-max form which can be equivalently translated to a max-min form.
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β∅ β{1} β{2} β{3} β{1,2} β{1,3} β{2,3} βN
a1 1 1/3 1/3 1/3 1/3 1/3 1/3 0
a2 0 1/3 1/3 1/3 0 0 0 0
a3 0 0 0 0 0 0 0 0
a4 0 0 0 0 1/3 1/3 1/3 0
a5 0 1/3 1/3 1/3 1/3 1/3 1/3 1

Table 6.4.1: The probabilistic ballots (βS)S⊆N

Below, we present a formal definition of RPFBRs.

Definition 6.4.3 Let 1 ≤ k < k ≤ m. A PFBR ϕ w.r.t. probabilistic ballots (βS)S⊆N is called a
(k, k)-Restricted Probabilistic Fixed Ballots Rule (or (k, k)-RPFBR) if k− k > 1 implies that for each
i ∈ N, there exists εi ≥ 0 with

∑
i∈N εi = 1 such that for all S ⊆ N, βS([ak, am]) =

∑
i∈S εi and

βS([a1, ak]) =
∑

i∈N\S εi.

It is worth mentioning that when k− k > 1, at the preference profiles where all peaks are in the middle
intervalM = [ak, ak], a (k, k)-RPFBR behaves like a random dictatorship where each agent i’s dictatorial
coefficient is εi. More formally, if ϕ is a (k, k)-RPFBR, then ϕ(P) =

∑
i∈N εi er1(Pi) for all preference

profile P such that r1(Pi) ∈ [ak, ak] for all i ∈ N. Therefore, in the extreme case where k = 1 and k = m,
the (1,m)-RPFBR reduces to a random dictatorship. For ease of presentation, we call the condition
satisfied by the probabilistic ballots (βS)S⊆N in Definition 6.4.3 the constrained random-dictatorship
condition.

6.5 A Characterization of Unanimous and Strategy-proof RSCFs on Hybrid

Domains

In this section, we provide a characterization of unanimous and strategy-proof RSCFs on hybrid domains.
Theorem 6.5.1 says that a RSCF ϕ is unanimous and strategy-proof on the (k, k)-hybrid domain if and
only if it is a (k, k)-RPFBR. [46] consider the case of continuum of alternatives (for instance, the interval
[0, 1]) and show that a RSCF is unanimous and strategy-proof on the single-peaked domain if and only if
it is a PFBR. Since when k− k = 1, the (k, k)-hybrid domain boils down to the single-peaked domain and
the (k, k)-RPFBR becomes a PFBR, Theorem 6.5.1 implies their result in the case of finite alternatives.

Theorem 6.5.1 Let 1 ≤ k < k ≤ m. A RSCF ϕ :
[
DH(k, k)

]n → Δ(A) is unanimous and strategy-proof if
and only if it is a (k, k)-RPFBR.
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We present a formal proof of Theorem 6.5.1 in Appendix 6.8. Here, we provide an intuitive explanation.
The “if part” of the theorem, i.e., the fact that every RPFBR on a hybrid domain is unanimous and
strategy-proof, intuitively follows from the observations: (i) the (k, k)-hybrid domain satisfies
single-peakedness on the intervals [a1, ak] and [ak, am], and (ii) the RPFBR behaves like a PFBR over these
intervals. For the “only-if part”, we first show how in a two-voter setting a PFBR fails to satisfy
strategy-proofness on the (k, k)-hybrid domain if any of its probabilistic ballots assigns a positive
probability to some alternative in the interval [ak+1, ak−1].

Consider the model with two agents. Suppose that some probabilistic ballot of ϕ, say β{2}, assigns a
strictly positive probability to some alternative ak ∈ [ak+1, ak−1]. First, by the definition of the
(k, k)-hybrid domain, there is a preference where a1 is the first-ranked alternative and ak is preferred to ak.
Correspondingly, consider a preference profile where agent 1 has such a preference and the first-ranked
alternative of agent 2 is ak. By the definition of PFBR, the probability of ak at this profile equals β{2}(ak),
which is strictly positive by our assumption. However, using unanimity agent 1 can manipulate by
misreporting a preference that has ak as the first-ranked alternative.¹⁰

An important point to note is that the aforementioned argument only indicates that a PFBR which is
strategy-proof on the (k, k)-hybrid domain is a (k, k)-RPFBR. In order to complete the verification of the
“only-if part”, a crucial step in the proof of Theorem 6.5.1 is to show that every unanimous and
strategy-proof RSCF on the hybrid domain is some PFBR.

6.5.1 Decomposability of Anonymous RPFBRs

In this section, we investigate the decomposability property of RSCFs. We say that a unanimous and
strategy-proof RSCF is decomposable if it can be expressed as a mixture (equivalently, a convex
combination) of finitely many unanimous and strategy-proof DSCFs. Formally, a unanimous and
strategy-proof RSCF ϕ : Dn → Δ(A) is decomposable if there exist finitely many unanimous and
strategy-proof DSCFs fk : Dn → A, k = 1, . . . , q and weights α1, . . . , αq > 0 with

∑q
k=1 α

k = 1, such that
ϕ(P) =

∑q
k=1 α

k efk(P) for all P ∈ Dn.
Decomposability is an important property of RSCFs and has been widely investigated in a large class of

domains [e.g., 54, 57, 81, 87]. As mentioned earlier, when k− k = 1, the (k, k)-hybrid domain coincides
with the single-peaked domain, and the (k, k)-RPFBR becomes a PRBR. It is shown in [81] and [87] that
every PFBR is a mixture of their deterministic counterparts. In the other extreme case where
k− k = m− 1, every (k, k)-RPFBR becomes a random dictatorship, which is, by definition, a mixture of
dictatorships. Thus, a (k, k)-RPFBR is decomposable when k− k = 1 or k− k = m− 1. However, for the

¹⁰Note that the strength of unanimity reduces considerably as the number of agents increases. So, the argument presented
above does not extend straightforwardly to the case of arbitrary number of agents. We provide these details in our formal proof.
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remaining cases 1 < k− k < m− 1, we observe that decomposability fails in some RPFBRs (see
Example 6.6.1 below). A complete characterization of decomposable RPFBRs in the general case, appears
to be difficult.In this section, we investigate the decomposition of anonymous RPFBRs for the remaining
cases 1 < k− k < m− 1.¹¹

Formally, a RSCF ϕ : Dn → Δ(A) is anonymous if for all permutations σ : N→ N and profile
(P1, . . . , Pn) ∈ Dn, we have ϕ(P1, . . . , Pn) = ϕ(Pσ(1), . . . , Pσ(n)). More specifically, one can easily verify
that a (k, k)-RPFBR ϕ :

[
DH(k, k)

]n → Δ(A) is anonymous if and only if all probabilistic ballots are
invariant to the size of coalitions, i.e., for all nonempty S, S′ ⊆ Nwith |S| = |S′|, we have βS = βS′ . For
instance, recall the probabilistic ballots in Table 6.4.1. The corresponding RPFBR is anonymous.

We next provide a necessary and sufficient condition, per-capita monotonicity, for the decomposition of
all anonymous RPFBRs. Consider a (k, k)-RPFBR ϕ w.r.t. the probabilistic ballots (βS)S⊆N. Recall the
left interval L = [a1, ak] and the right interval R = [ak, am]. This condition imposes two restrictions that
strengthen the monotonicity requirement between the probabilistic ballots of two nonempty coalitions
S, S′ ⊂ Nwith S ⊂ S′. The first restriction says that the average probability, βS′

|S′| , of any interval [at, am] in
R for the coalition S′ is at least as much as the counterpart for the coalition S, i.e., for all at ∈ R,
βS′ ([at,am])

|S′| ≥ βS([at,am])
|S| . The second restriction is the analogue of the first one. Here, we consider any

interval [a1, as] in L and the respective complements of S′ and S. Recall from the constrained
random-dictatorship condition that the probabilities βN\S′([a1, as]) and βN\S([a1, as]) are related to the
conditional dictatorial coefficients of voters in S′ and S respectively. We require here that the average
probability

βN\S′ ([a1,as])
|S′| be weakly higher than

βN\S([a1,as])
|S| .

Definition 6.5.2 A RPFBR ϕ :
[
DH(k, k)

]n → Δ(A) satisfies per-capita monotonicity if, for all nonempty
S ⊂ S′ ⊂ N, at ∈ R and as ∈ L, we have

βS′([at, am])
|S′|

≥
βJ([at, am])
|S|

and
βN\S′([a1, as])
|S′|

≥
βN\S([a1, as])
|S|

.

Our main theorem of this section says that per-capita monotonicity is both necessary and sufficient for
the decomposability of anonymous RPFBRs. The proof of Theorem 6.5.3 is contained in Appendix 6.9.

Theorem 6.5.3 Let 1 < k− k < m− 1. Then, an anonymous (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A) is
decomposable if and only if it satisfies per-capita monotonicity.

To conclude this section, we observe using an example that a non-decomposable RPFBR may
dominate a decomposable one in terms of admitting “social compromises”. This indicates that

¹¹It is important tomention that in the case 1 < k− k < m− 1,Theorem 6.5.1 implies that there exists no anonymous, unan-
imous and strategy-proof DSCFs on the (k, k)-hybrid domain. Therefore, the decomposition of an anonymous (k, k)-RPFBR
(if it exists) is a mixture of finitely many unanimous and strategy-proof DSCFs, all of which violate anonymity.
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randomization enhances possibilities for economic design in a meaningful way, since the
non-decomposable RPFBRs we characterize may allow for more flexibility in assigning probabilities to
compromise alternatives.

Example 6.5.4 LetN = {1, 2, 3} and A = {a1, a2, a3, a4, a5}. Recall the (2, 4)-hybrid domainDH(2, 4)
and the probabilistic ballots (βS)S⊆N in Table 6.4.1. It is easy to verify that (βS)S⊆N satisfy ballot unanimity,
monotonicity and the constrained random-dictatorship condition when the conditional dictatorial
coefficients are ε1 = ε2 = ε3 =

1
3 , and are invariant to the size of coalitions. Therefore, the PFBR

ϕ :
[
DH(2, 4)

]3 → Δ(A)w.r.t. (βS)S⊆N is an anonymous (2, 4)-RPFBR. Furthermore, it can be verified

that ϕ is not decomposable as it fails to satisfy per-capita monotonicity, i.e.,
β{1,2}(a5)
|{1,2}| = 1

6 <
1
3 =

β{1}(a5)
|{1}| . 2

6.6 Other Results onDecomposability

Throughout this section, we restrict attention to the (k, k)-hybrid domainDH(k, k)where
1 < k− k < m− 1, and establish three main results related to the decomposition of (k, k)-RPFBRs. First,
we show that every two-voter (k, k)-RPFBR is unconditionally decomposable (see Proposition 6.6.1).
Second, we provide an example of a non-decomposable (k, k)-RPFBR in the case of more than two
voters, and furthermore identify a necessary condition for the decomposition of a general (k, k)-RPFBR
(see Proposition 6.6.2). Last, we develop a notion of dominance for comparing RPFBRs. A RPFBR is
said to dominate another one in admitting compromises if the former assigns to a social compromise
alternative, at least as much probability as the latter at every preference profile, and a strictly higher
probability at some preference profile. Accordingly, we characterize all RPFBRs that are dominated in
admitting compromises, and investigate the salience of non-decomposability by identifying a condition
under which each anonymous decomposable (k, k)-RPFBR is dominated by another anonymous
non-decomposable (k, k)-RPFBR in admitting compromises (see Proposition 6.6.3).

The proposition below shows by construction that every two-voter RPFBR is decomposable.

Proposition 6.6.1 Every two-voter strategy-proof (k, k)-RPFBR ϕ :
[
DH(k, k)

]2 → Δ(A) is decomposable.

For the case of more than two voters, the unconditional decomposition result of Proposition 6.6.1 fails.
We first provide an example to illustrate the existence of a non-decomposable (k, k)-RPFBR.

Example 6.6.1 Let n ≥ 3 and A = {a1, . . . , am}. Consider the (1,m− 1)-hybrid domainDH(1,m− 1).
We assign voters 1, 2 and 3 the conditional dictatorial coefficients ε1 = 0.3, ε2 = 0.3 and ε3 = 0.4, make
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all other voters dummies, i.e., εi = 0 for all i /∈ {1, 2, 3}, and specify the probabilistic ballots below:

βS =

{
0.4eam + 0.3eam−1 + 0.3ea1 if {1, 2, 3} ∩ S = {1, 3} or {2, 3}, and∑

i∈S εi eam +
∑

j∈N\S εj ea1 otherwise.

It is easy to verify that the probabilistic ballots (βS)S⊆N satisfy ballot unanimity, monotonicity and the
constrained random-dictatorship condition. Therefore, the corresponding PFBR
ϕ :

[
DH(1,m− 1)

]n → Δ(A) is a (1,m− 1)-RPFBR.
We show that ϕ is not decomposable by contradiction. Suppose not, i.e., there are (1,m− 1)-RFBRs

fk : [DH(1,m− 1)]n → A, k = 1, . . . , q, and weights α1, . . . , αq > 0 with
∑q

k=1 α
k = 1 such that

ϕ(P) =
∑q

k=1 α
kefk(P) for all P ∈ [DH(1,m− 1)]n. According to the coalitions {1}, {3} and {1, 3}, we

induce the following contradiction:

0.4 = β{1,3}(am) =
q∑

k=1

αk1
(
bk{1,3} = am

)
=

q∑
k=1

αk1
(
ik = 1 and bk{1,3} = am

)
+

q∑
k=1

αk1
(
ik = 3 and bk{1,3} = am

)
≥

q∑
k=1

αk1
(
bk{1} = am

)
+

q∑
k=1

αk1
(
bk{3} = am

)
= β{1}(am) + β{3}(am)

= 0.7.

Therefore, ϕ is not decomposable. 2

In what follows, we generalize the inequality β{1,3}(am) ≥ β{1}(am) + β{3}(am) in Example 6.6.1, and
establish a necessary condition, the scale-effect condition, for the decomposition of RPFBRs. Consider a
(k, k)-RPFBR ϕ with the probabilistic ballots (βS)S⊆N. Recall that L and R denote the intervals [a1, ak]
and [ak, am], respectively. The scale-effect condition imposes two restrictions on the probabilistic ballots.
Firstly, the probability of any right interval towards am in a probabilistic ballot, which is associated to the
union of two disjoint nonempty coalitions S,T ⊆ N, is at least as much as the sum of these two coalitions’
counterpart probabilities, i.e., for all at ∈ R, βS∪T([at, am]) ≥ βS([at, am]) + βT([at, am]). The second
restriction is, in some sense, the complement of the first one. Here we consider left intervals towards a1,
and take the sum of probabilities over the complement of S and the complement of T. Technically, it says
that for all as ∈ L, we have βN\[S∪T]([a1, as]) ≥ βN\S([a1, as]) + βN\T([a1, as]).
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Definition 6.6.2 A (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A), n ≥ 3, satisfies the scale-effect condition if
for all nonempty S,T ⊆ Nwith S ∩ T = ∅, at ∈ R and as ∈ L, we have

βS∪T([at, am]) ≥ βS([at, am]) + βT([at, am]) and βN\[S∪T]([a1, as]) ≥ βN\S([a1, as]) + βN\T([a1, as]).

Proposition 6.6.2 below shows that the scale-effect condition is necessary for the decomposition of a
(k, k)-RPFBR.

Proposition 6.6.2 A (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A) is decomposable only if it satisfies the
scale-effect condition.

Last, we analyze the entire class of RPFBRs from the perspective of admitting social compromises.
Given a preference profile P, we recognize an alternative ak as a social compromise alternative if some voters
disagree on the peaks while all voters agree on ak as the second best. Formally, given a preference domain
D, let C(Dn) = {P ∈ Dn : r1(Pi) ̸= r1(Pj) for some i, j ∈ N, and r2(P1) = · · · = r2(Pn)} denote the set
of preference profiles which have the social compromise alternatives. Moreover, given P ∈ C(Dn), let the
common second best alternative c(P) ≡ r2(P1) = · · · = r2(Pn) denote the social compromise alternative.
We compare RPFBRs according to the probabilities they assign to social compromise alternatives.

Definition 6.6.3 A RSCF ϕ : Dn → A dominates another RSCF φ : Dn → A in admitting compromises
if we have ϕc(P)(P) ≥ φc(P)(P) for all P ∈ C(Dn) and ϕc(P)(P) > φc(P)(P) for some P ∈ C(Dn).

The proposition below characterizes all RPFBRs that are dominated in admitting compromises, and
identify a condition under which an anonymous decomposable RPFBR is dominated by an anonymous
non-decomposable one.

Proposition 6.6.3 Let 1 < k < k < m and k− k > 1. Fixing a (k, k)-RPFBR φ :
[
DH(k, k)

]n → Δ(A),
n ≥ 3, let (βS)S⊆N be the corresponding probabilistic ballots. RPFBR φ is dominated in admitting compromises
if and only if there exists S ⊆ Nwith |S| = n− 1 such that βS(am) > 0 or βN\S(a1) > 0. Furthermore, let φ be
anonymous and decomposable. If there exists S ⊆ Nwith |S| = n− 2 such that βS(am) > 0 or βN\S(a1) > 0,
then φ is dominated in admitting compromises by an anonymous non-decomposable (k, k)-RPFBR.

6.7 The Salience ofHybridDomains and RPFBRs

Our purpose in this section is two-fold. We first propose an axiomatic justification of hybrid domains.
Specifically, we show that any domain that satisfies certain “connectedness” and “richness” properties
must be contained in a hybrid domain (say the (k, k)-hybrid domain). Secondly, and more importantly,
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the set of unanimous and strategy-proof RSCFs on this domain is precisely the set of unanimous and
strategy-proof RSCFs on the (k, k)-hybrid domain, i.e., (k, k)-RPFBRs. Thus, the set of unanimous and
strategy-proof RSCFs on such a domain is the set of RPFBRs associated with the minimal hybrid domain
in which it is embedded.

Recall the notions of adjacency and path introduced in the beginning of Section 6.2. A domain is said
connected if every pair of two distinct preferences is connected by a path in the domain. We restrict
attention to a class of connected domains which in addition satisfies the weak no-restoration property of
[95].

Definition 6.7.1 A domainD satisfies the weak no-restoration property if for all distinct Pi, P′i ∈ D and
ap, aq ∈ A, there exists a path {Pki }tk=1 ⊆ D connecting Pi and P′i such that we have

[apPk
∗

i aq and aqP
k∗+1
i ap for some 1 ≤ k∗ < t]

⇒ [apPki aq for all k = 1, . . . , k∗, and aqPliap for all l = k∗ + 1, . . . , t].

Evidently, the weak no-restoration property implies connectedness, and suggests that according to each
pair of alternatives ap and aq, one path can be constructed in the domain to reconcile the difference of Pi
and P′i shortly in the manner that the relative ranking of ap and aq is switched for at most once on the path.
In particular, if ap and aq are identically ranked in Pi and P′i , then their relative ranking does not change
along the path.

Proposition 3.2 of [95] shows that the weak no-restoration property is necessary for all DSCFs which
only forbid misrepresentations of preferences that are adjacent to the sincere one, to retain
strategy-proofness. The weak no-restoration property is satisfied by many important voting domains in
the literature, e.g., the complete domain, the single-peaked domain and some multiple single-peaked
domains, and also covers our hybrid domains (see the proof of Fact 6.8 in Appendix 6.14).

Our last result establishes two features of domains that satisfy the weak no-restoration property and
include two completely reversed preferences. The first is that every such domain is a subset of some
hybrid domain. The second is that every unanimous and strategy-proof RSCF on such a domain is a
RPFBR. The proof Theorem 6.7.2 is available in Appendix 6.13.
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Theorem 6.7.2 Let domainD satisfy the weak no-restoration property and contain two completely reversed
preferences. Then, there exist 1 ≤ k < k ≤ m such thatD ⊆ DH(k, k) andD ⊈ DH(k′, k

′
) where k′ > k or

k′ < k. Moreover, a RSCF ϕ : Dn → Δ(A) is unanimous and strategy-proof if and only if it is a (k, k)-RPFBR,
where k and k are as described above.

Appendix

6.8 Proof of Theorem 6.5.1

When k− k = 1,DH(k, k) = D≺, and then Theorem 6.5.1 follows from Theorem 4.1 and Proposition 5.2
of [46]. Henceforth, we assume k− k > 1.

(Sufficiency part) Let ϕ :
[
DH(k, k)

]n → Δ(A) be a (k, k)-RPFBR. First, ballot unanimity implies
that ϕ is unanimous. We next show strategy-proofness of ϕ in two steps. In the first step, we introduce a
notion weaker than strategy-proofness, local strategy-proofness, which only requires a RSCF be immune to
the misrepresentation of preferences that are adjacent to the sincere one.¹² Fact 6.8 below shows that
every locally strategy-proof RSCF onDH(k, k) is strategy-proof. In the second step, we show that ϕ is
locally strategy-proof.

Every locally strategy-proof RSCF onDH(k, k) is strategy-proof.
By Theorem 1 of [38], to prove Fact 6.8, it suffices to show thatDH(k, k) satisfies the no-restoration

property of [95]. Therefore, the verification of Fact 6.8 is independent of RPFBR ϕ, and for ease of
presentation, is delegated to Appendix 6.14.

Now, to complete the verification, we show that ϕ is locally strategy-proof. Fixing i ∈ N,
Pi, P′i ∈ DH(k, k)with Pi ∼ P′i and P−i ∈

[
DH(k, k)

]n−1, we show that ϕ(Pi, P−i) stochastically
dominates ϕ(P′i, P−i) according to Pi. Let r1(Pi) = as and r1(P′i) = at. Evidently, if as = at, the tops-only
property implies ϕ(Pi, P−i) = ϕ(P′i, P−i). Next, assume as ̸= at. Then, Pi ∼ P′i implies
r1(Pi) = r2(P′i) = as, r1(P′i) = r2(Pi) = at and rk(Pi) = rk(P′i) for all k /∈ {1, 2}. Thus, to show local
strategy-proofness, it suffices to show the following condition:

ϕas(Pi, P−i) ≥ ϕas(P
′
i, P−i) or ϕat(Pi, P−i) ≤ ϕat(P

′
i, P−i), and

ϕak
(Pi, P−i) = ϕak

(P′i, P−i) for all ak /∈ {as, at}.
(#)

By the definition ofDH(k, k), Pi ∼ P′i implies one of the following three cases: (i) as, at ∈ L and
at ∈ {as−1, as+1}, (ii) as, at ∈ R and at ∈ {as−1, as+1}, and (iii) as, at ∈ M. Note that the first two cases

¹²Formally, a RSCF ϕ : Dn → Δ(A) is locally strategy-proof if for all i ∈ N, Pi, P′i ∈ D with Pi ∼ P′i and P−i ∈ Dn−1,
ϕ(Pi, P−i) stochastically dominates ϕ(P′i , P−i) according to Pi.
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are symmetric. Therefore, we focus on cases (i) and (iii).

Claim 1: In case (i), condition (#) holds.

If at = as−1, then we know S(s, (Pi, P−i)) ⊃ S(s, (P′i, P−i)) and S(k, (Pi, P−i)) = S(k, (P′i, P−i)) for all
ak ∈ A\{as}, and derive

ϕas(Pi, P−i) = βS(s,(Pi,P−i))
([as, am])− βS(s+1,(Pi,P−i))

([as+1, am])

≥ βS(s,(P′i ,P−i))
([as, am])− βS(s+1,(P′i ,P−i))

([as+1, am]) by monotonicity

= ϕas(P
′
i, P−i),

and for all ak /∈ {as−1, as},

ϕak
(Pi, P−i) = βS(k,(Pi,P−i))

([ak, am])− βS(k+1,(Pi,P−i))
([ak+1, am])

= βS(k,(P′i ,P−i))
([ak, am])− βS(k+1,(P′i ,P−i))

([ak+1, am]) = ϕak
(P′i, P−i).

If at = as+1, then we know S(s+ 1, (Pi, P−i)) ⊂ S(s+ 1, (P′i, P−i)) and
S(k, (Pi, P−i)) = S(k, (P′i, P−i)) for all ak ∈ A\{as+1}, and derive

ϕas+1
(Pi, P−i) = βS(s+1,(Pi,P−i))9([as+1, am])− βS(s+2,(Pi,P−i))

([as+2, am])

≤ βS(s+1,(P′i ,P−i))
([as+1, am])− βS(s+2,(P′i ,P−i))

([as+2, am]) by monotonicity

= ϕas+1
(P′i, P−i).

and for all ak /∈ {as, as+1},

ϕak
(Pi, P−i) = βS(k,(Pi,P−i))

([ak, am])− βS(k+1,(Pi,P−i))
([ak+1, am])

= βS(k,(P′i ,P−i))
([ak, am])− βS(k+1,(P′i ,P−i))

([ak+1, am]) = ϕak
(P′i, P−i).

This completes the verification of the claim.

Claim 2: In case (iii), condition (#) holds.

We assume at ≺ as. The verification related to the situation as ≺ at is symmetric, and we hence omit it.
First, note that S(ak, (Pi, P−i)) = S(ak, (P′i, P−i)) for all ak ∈ Awith ak ⪯ at or as ≺ ak. Then, for each
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ak ∈ Awith ak ≺ at or as ≺ ak, we have

ϕak
(Pi, P−i) = βS(k,(Pi,P−i))

([ak, am])− βS(k+1,(Pi,P−i))
([ak+1, am])

= βS(k,(P′i ,P−i))
([ak, am])− βS(k+1,(P′i ,P−i))

([ak+1, am]) = ϕak
(P′i, P−i).

Next, given at ≺ ak ≺ as, we know ak ≺ ak ≺ ak and ak ≺ ak+1 ⪯ ak. Then, Definition 6.4.3 implies
that for all S ⊆ N, βS([ak, am]) =

∑
j∈S εj = βS([ak+1, am]). Moreover, note that

S(k, (Pi, P−i))\S(k+ 1, (Pi, P−i)) = {j ∈ N\{i} : r1(Pj) = ak} = S(k, (P′i, P−i))\S(k+ 1, (P′i, P−i)).
Therefore, we have

ϕak
(Pi, P−i) = βS(k,(Pi,P−i))

([ak, am])− βS(k+1,(Pi,P−i))
([ak+1, am])

=
∑

j∈S(k,(Pi,P−i))\S(k+1,(Pi,P−i))
εj

=
∑

j∈S(k,(P′i ,P−i))\S(k+1,(P′i ,P−i))
εj

= βS(k,(P′i ,P−i))
([ak, am])− βS(k+1,(P′i ,P−i))

([ak+1, am]) = ϕak
(P′i, P−i).

Overall, we have ϕak
(Pi, P−i) = ϕak

(P′i, P−i) for all ak /∈ {as, at}. Last, since at ≺ as implies
S(s, (Pi, P−i)) ⊃ S(s, (P′i, P−i)) and S(as+1, (Pi, P−i)) = S(as+1, (P′i, P−i)), we have

ϕas(Pi, P−i) = βS(s,(Pi,P−i))
([as, am])− βS(s+1,(Pi,P−i))

([as+1, am])

≥ βS(s,(P′i ,P−i))
([as, am])− βS(s+1,(P′i ,P−i))

([as+1, am]) by monotonicity

= ϕas(P
′
i, P−i).

This completes the verification of the claim.

Therefore, ϕ is locally strategy-proof, as required. This hence completes the verification of the
sufficiency part of Theorem 6.5.1.

(Necessity part) Let ϕ :
[
DH(k, k)

]n → Δ(A) be a unanimous and strategy-proof RSCF. Since
D≺ ⊆ DH(k, k), we can elicit a unanimous and strategy-proof RSCF φ : [D≺]

n → Δ(A) such that
φ(P) = ϕ(P) for all P ∈ [D≺]

n. First, Theorem 3 of [81] or Theorem 5 of [87] and Proposition 3 of [72]
together imply that φ is a mixture of finitely many FBRs. Then, it follows immediately that φ is a PFBR.
Let (βS)S⊆N be the probabilistic ballots of φ. Evidently, (βS)S⊆N satisfies ballot unanimity and
monotonicity. Next, by the proof of Fact 6.8 and Proposition 1 of [31], we know that ϕ satisfies the
tops-only property. Last, since bothD≺ andDH(k, k) are minimally rich, the tops-only property of ϕ
implies that ϕ is also a PFBR and inherits φ’s probabilistic ballots (βS)S⊆N. Therefore, for all
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P ∈
[
DH(k, k)

]n and ak ∈ A, we have ϕak
(P) = βS(k,P)([ak, am])− βS(k+1,P)([ak+1, am]), where

βS(m+1,P)([am+1, am]) = 0. To complete the proof, we show that ϕ is a (k, k)-RPFBR.
LetD =

{
Pi ∈ DH(k, k) : r1(Pi) ∈ M

}
denote the subdomain of hybrid preferences whose peaks are

inM. Since |M| ≥ 3 andD has no restriction on the ranking of alternatives inM, according to the random
dictatorship characterization theorem of [57], we easily infer that there exists a “conditional dictatorial
coefficient” εi ≥ 0 for each i ∈ Nwith

∑
i∈N εi = 1 such that ϕ(P) =

∑
i∈N εi er1(Pi) for all

P ∈
[
DH(k, k)

]n with r1(Pi) ∈ M for all i ∈ N.
Fix an arbitrary coalition S ⊆ N. We first show βS([ak, am]) =

∑
j∈S εj. We construct a profile

P ∈
[
DH(k, k)

]n where every voter of S has the preference with the peak ak and all other voters have the
preference with the peak ak. Thus, S = S(k, P) and ϕ(P) =

∑
j∈S εj eak +

∑
j∈N\S εj eak . We then have

βS([ak, am]) = βS(k,P)([ak, am]) =
∑m

k=k

[
βS(k,P)([ak, am]−βS(k+1,P)([ak+1, am])

]
=

∑m
k=k ϕak

(P) =
ϕak

(P∗) =
∑

j∈S εj.
Last, we show βS([a1, ak]) =

∑
j∈N\S εj. Since

βS([a1, ak]) = 1− βS([ak, am])− βS([ak+1, ak−1]) =
∑

j∈N\S εj − βS([ak+1, ak−1]), it suffices to show
βS(ak) = 0 for all ak ∈ [ak+1, ak−1]. Given ak ≺ ak ≺ ak, since S(k, P) = S = S(k+ 1, P), we have
βS(ak) = βS([ak, am])− βS([ak+1, am]) = βS(k,P)([ak, am])− βS(k+1,P)([ak+1, am]) = ϕak

(P) = 0, as
required. This completes the verification of the necessity part of Theorem 6.5.1.

6.9 Proof of Theorem 6.5.3

We first show the sufficiency part of Theorem 6.5.3, and then turn to proving the necessity part. Before
proceeding the proof, we formally introduce the deterministic version of a (k, k)-RPFBR, which we call a
(k, k)-Restricted Fixed Ballot Rule (or (k, k)-RFBR).

Definition 6.9.1 ADSCF f :
[
DH(k, k)

]n → Δ(A) is called a (k, k)-Restricted Fixed Ballot Rule (or
(k, k)-RFBR) if it is an FBR, i.e., there exists a collection of deterministic ballots (bS)S⊆N satisfying ballot
unanimity, i.e., bN = am and b∅ = a1, and monotonicity, i.e., [S ⊂ T ⊆ N]⇒ [bS ⪯ bT], such that for all
P ∈

[
DH(k, k)

]n, we have f(P) = max
S⊆N

≺
(

min
j∈S

≺ (
r1(Pj), bS

))
, and in addition, (bS)S⊆N satisfy the

constrained dictatorship condition, i.e., k− k > 1 implies that there exists i ∈ N such that
[i ∈ S]⇒ [bS ∈ R] and [i /∈ S]⇒ [bS ∈ L].

(Sufficiency part) Fixing an anonymous (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A), assume that ϕ satisfy
per-capita monotonicity. Let (βS)S⊆N be the corresponding probabilistic ballots. By anonymity and the
constrained random-dictatorship condition, βS = βS′ for all nonempty S, S′ ⊆ Nwith |S| = |S′|, and
each voter has the conditional dictatorial coefficient 1

n . We are going to decompose ϕ as a mixture of
finitely many (k, k)-RFBRs.
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We provide some new notation which will be repeatedly used in the proof. Given S ⊆ N, let
supp(βS) = {ak ∈ A : βS(ak) > 0} denote the support of βS. Given S ⊆ Nwith S ̸= ∅ andN\S ̸= ∅, the
constrained random-dictatorship condition implies supp(βS) ∩ R ̸= ∅ and supp(βS) ∩ L ̸= ∅. Hence, we
define

b̂RS = min≺
(
supp(βS) ∩ R

)
and b̂LS = max≺

(
supp(βS) ∩ L

)
.

Evidently, b̂LS ≺ b̂RS . Moreover, let b̂RN = am and let b̂L∅ = a1. It is evident that (i) βN(b̂
R
N) = 1 and

β∅(b̂
L
∅) = 1, and (ii) for all nonempty S ⊂ N, βS(b̂

R
S ) > 0, βS(b̂

L
S) > 0 and βS(ak) = 0 for all ak ∈ Awith

b̂LS ≺ ak ≺ b̂RS . Note that anonymity of ϕ implies b̂RS = b̂RS′ and b̂
L
S = b̂LS′ for all nonempty S, S′ ⊆ Nwith

|S| = |S′|.

Lemma 6.9.1 For all nonempty S ⊂ S′ ⊆ N, we have b̂RS ⪯ b̂RS′ .

Proof: If S′ = N, it is evident that b̂RS ⪯ am = b̂RS′ . Next, let S′ ⊂ N. Suppose b̂RS ≻ b̂RS′ . We then have
βS′ ([b̂

R
S ,am])

|S′| ≤ βS′ ([ak,am])−βS′ (b̂
R
S′ )

|S′| < |S′|/n
|S′| = 1

n =
βS([ak,am])

|S| =
βS([b̂

R
S ,am])
|S| , which contradicts per-capita

monotonicity. ■

Lemma 6.9.2 For all S ⊂ S′ ⊂ N, we have b̂LS ⪯ b̂LS′ .

Proof: If S = ∅, it is evident that b̂LS = a1 ⪯ b̂LS′ . Next, let S ̸= ∅. Suppose b̂LS ≻ b̂LS′ . For notational
convenience, let Ŝ = N\S and Ŝ′ = N\S′. Thus, Ŝ ̸= ∅, Ŝ′ ̸= ∅, Ŝ ⊃ Ŝ′ and b̂LN\Ŝ = b̂LS ≻ b̂LS′ = b̂LN\Ŝ′ . We

then have
βN\Ŝ([a1,b̂

L
N\Ŝ′ ])

|Ŝ| ≤
βN\Ŝ([a1,ak])−βN\Ŝ(b̂

L
N\Ŝ)

|Ŝ| < |Ŝ|/n
|Ŝ| = 1

n =
βN\Ŝ′ ([a1,ak])

|Ŝ′| =
βN\Ŝ′ ([a1,b̂

L
N\Ŝ′ ])

|Ŝ′| , which
contradicts per-capita monotonicity. ■

Given an arbitrary i ∈ N, we construct deterministic ballots (biS)S⊆N:

biS = b̂RS and biN\S = b̂LN\S for all S ⊆ N with i ∈ S.

Since biN = b̂RN = am and bi∅ = b̂LN\N = b̂L∅ = a1, ballot unanimity is satisfied. Next, we show
monotonicity is satisfied. Fix S ⊂ S′ ⊂ N. If i ∈ S, then i ∈ S′, and Lemma 6.9.1 implies
biS = b̂RS ⪯ b̂RS′ = biS′ . If i /∈ S′, then i /∈ S, and Lemma 6.9.2 implies
biS = biN\[N\S] = b̂LN\[N\S] = b̂LS ⪯ b̂LS′ = b̂LN\[N\S′] = biN\[N\S′] = biS′ . If i ∈ S′\S, then biS ∈ L and biS′ ∈ R,
and hence biS ≺ biS′ . Overall, biS ⪯ biS′ , as required. Correspondingly, let fi be the FBR w.r.t. the
deterministic ballots (biS)S⊆N. Moreover, given S ⊆ N, we have [i ∈ S]⇒ [biS = b̂RS ∈ R], and
[i ∈ N\S]⇒

[
biS = biN\[N\S] = b̂LN\[N\S] ∈ L

]
which meet the constrained dictatorship condition.

Therefore, fi is a (k, k)-RFBR which is strategy-proof onDH(k, k) by Theorem 6.5.1.
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Next, we mix all (k, k)-RFBRs (fi)i∈N with the equal weight 1
n , and construct the (k, k)-RPFBR:

φ(P) =
∑
i∈N

1
n
efi(P) for all P ∈

[
DH(k, k)

]n
.

Let (γS)S⊆N denote the corresponding probabilistic ballots, which obviously satisfies ballot unanimity,
monotonicity and the constrained random-dictatorship condition. We make two observations on
(γS)S⊆N: (1) γS =

∑
i∈N

1
nebiS =

1
n

∑
i∈S eb̂RS +

1
n

∑
i∈N\S eb̂LS =

|S|
n eb̂RS +

n−|S|
n eb̂LS for all S ⊆ N, and (2) φ is

anonymous. Given distinct S, S′ ⊆ Nwith |S| = |S′|, anonymity of ϕ implies eb̂RS = eb̂RS′ and eb̂LS = eb̂LS′ .

We then have γS =
1
neb̂RS +

n−|S|
n eb̂LS =

1
neb̂RS′ +

n−|S′|
n eb̂LS′ = γS′ , as required.

Furthermore, we identify the real number:

α = min
S⊂N:S̸=∅

(
min

(βS(b̂RS )
|S|

,
βS(b̂

L
S)

n− |S|

))
.

Evidently, 0 < α ≤ βS(b̂
R
S )

|S| for all nonempty S ⊂ N. Moreover, given a nonempty S ⊂ N, the constrained

random-dictatorship condition implies α ≤ βS(b̂
R
S )

|S| ≤
∑

j∈S
1
n

|S| = 1
n .

Lemma 6.9.3 We have α = 1
n if and only if |supp(βS)| = 2 for all nonempty S ⊂ N. Moreover, if α = 1

n , then
ϕ(P) = φ(P) for all P ∈

[
DH(k, k)

]n, and hence ϕ is decomposable.
Proof: First, assume |supp(βS)| = 2 for all nonempty S ⊂ N. Thus, for all nonempty S ⊂ N, we know
supp(βS) = {b̂RS , b̂LS}, βS(b̂RS ) =

|S|
n and βS(b̂

L
S) =

n−|S|
n by the constrained random-dictatorship condition.

Consequently, α = 1
n by definition.

Next, assume α = 1
n . Fix an arbitrary nonempty S ⊂ N. By definition, βS(b̂

R
S )

|S| ≥ α = 1
n and

βS(b̂
L
S)

n−|S| ≥ α = 1
n . Meanwhile, the constrained random-dictatorship condition implies βS(b̂

R
S ) ≤

|S|
n and

βS(b̂
L
S) ≤

n−|S|
n . Therefore, βS(b̂

R
S ) =

|S|
n and βS(b̂

L
S) =

n−|S|
n , and hence |supp(βS)| = 2.

Furthermore, note that (i) βN = eam = γN and β∅ = eam = γ∅, and (ii) for all nonempty S ⊂ N,
βS =

|S|
n eb̂RS +

n−|S|
n eb̂LS =

∑
i∈N

1
nebiS = γS. Therefore, ϕ(P) = φ(P) for all P ∈

[
DH(k, k)

]n, and hence, ϕ
is decomposable. ■

Henceforth, we assume 0 < α < 1
n , and define the following

β̂S =
βS − αnγS
1− αn

=
βS − α|S|eb̂RS − α(n− |S|)eb̂LS

1− αn
for all S ⊆ N, and

ψ(P) =
ϕ(P)− αnφ(P)

1− αn
for all P ∈

[
DH(k, k)

]n
.
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It is easy to show that β̂S ∈ Δ(A) for each S ⊆ N. Hence, (β̂S)S⊆N are probabilistic ballots. It is evident
that (β̂S)S⊆N satisfy ballot unanimity. Since both ϕ and φ are anonymous, ψ is also anonymous by
construction. Next, let each voter have the conditional dictatorial coefficient 1

n . We show that (β̂S)S⊆N

satisfy the constrained random-dictatorship condition. Given nonempty S ⊂ N, we have

β̂S([ak, am]) =
βS([ak,am])−α|S|

1−αn =
|S|
n −α|S|
1−αn = |S|

n and β̂S([a1, ak]) =
βS([a1,ak])−α(n−|S|)

1−αn =
n−|S|

n −α(n−|S|)
1−αn = n−|S|

n ,
as required. Next, we show that ψ is a PFBR w.r.t. (β̂S)S⊆N. Given P ∈

[
DH(k, k)

]n and ak ∈ A, we have

ψak
(P) =

ϕak (P)−αnφak (P)

1−αn =
(βS(k,P)([ak,am])−βS(k+1,P)([ak+1,am]))−αn(γS(k,P)([ak,am])−γS(k+1,P)([ak+1,am]))

1−αn =
βS(k,P)([ak,am])−αnγS(k,P)([ak,am])

1−αn − βS(k+1,P)([ak+1,am])−αnγS(k+1,P)([ak+1,am])
1−αn = β̂S(k,P)([ak, am])− β̂S(k+1,P)([ak+1, am]),

as required.
The next two lemmas show that (β̂S)S⊆N satisfy monotonicity and ψ satisfies per-capita monotonicity

respectively. Hence, we conclude that ψ is an anonymous (k, k)-RPFBR and satisfies per-capita
monotonicity.

Lemma 6.9.4 Probabilistic ballots (β̂S)S⊆N satisfy monotonicity.

Proof: Given S ⊂ S′ ⊆ N, if S = ∅ or S′ = N, monotonicity holds evidently. We hence assume S ̸= ∅ and
S′ ̸= N. We first identify b̂LS ⪯ b̂LS′ ⪯ ak ≺ ak ⪯ b̂RS ⪯ b̂RS′ by Lemmas 6.9.1 and 6.9.2. We assume w.l.o.g.
that |S′| = |S|+ 1. Given at ∈ A, we have five cases: (1) b̂RS′ ≺ at, (2) b̂RS ≺ at ⪯ b̂RS′ , (3) b̂

L
S′ ≺ at ⪯ b̂RS ,

(4) b̂LS ≺ at ⪯ b̂LS′ , and (5) at ⪯ b̂LS . We show β̂S′([at, am]) ≥ β̂S([at, am]) in each case.

First, in either case (1) or case (5), β̂S′([at, am])− β̂S([at, am]) =
βS′ ([at,am])−βS([at,am])

1−αn ≥ 0.

In case (2), β̂S′([at, am])− β̂S([at, am]) =
βS′ ([at,am])−α|S′|−βS([at,am])

1−αn ≥
|S′|
n −α(|S′|)−

[
βS([b̂

R
S ,am])−βS(b̂

R
S )
]

1−αn =
|S|+1

n −α(|S|+1)− |S|
N +βS(b̂

R
S )

1−αn =
( 1
n−α)+|S|

(
βS (̂b

R
S )

|S| −α
)

1−αn > 0, where the first inequality follows from b̂LS ≺ at ⪯ b̂LS′
and the constrained random dictatorship condition of ϕ, and the last inequality follows from the
hypothesis α < 1

n and the definition of α.
In case (3),

β̂S′([at, am])− β̂S([at, am]) =
βS′ ([at,am])−α|S′|−[βS([at,am])−α|S|]

1−αn =
|S′|
n −α|S′|−(

|S|
n −α|S|)

1−αn =
1
n−α
1−αn > 0.

Last, in case (4), we have β̂S′([at, am])− β̂S([at, am]) =
βS′ ([at,am])−α|S′|−α(n−|S′|)−

[
βS([at,am])−α|S|

]
1−αn =

|S′|
n +βS′ ([at,ak])−α(n−|S|)−

[
|S|
n +βS([at,ak])

]
1−αn ≥

1
n+βS′ (b̂

L
S′ )−α(n−|S′|+1)
1−αn =

( 1
n−α)+(n−|S′|)

( βS′ (̂b
L
S′ )

n−|S′| −α
)

1−αn > 0, where the
first inequality follows from b̂RS ≺ at ⪯ b̂RS′ and the constrained random dictatorship condition of ϕ, and
the last inequality follows from the hypothesis α < 1

n and the definition of α.
In conclusion, β̂S′([at, am]) ≥ β̂S([at, am]) for all at ∈ A. ■

Lemma 6.9.5 RPFBR ψ satisfies per-capita monotonicity.

124



Proof: Fixing S ⊂ S′ ⊆ N, we have b̂RS ⪯ b̂RS′ and b̂
L
N\S′ ⪯ b̂LN\S by Lemmas 6.9.1 and 6.9.2. If S = ∅ or

S′ = N, per-capita monotonicity holds evidently. We hence assume S ̸= ∅ and S′ ̸= N.
Given at ∈ R, either one of the three cases occurs: (1) b̂RS′ ≺ at, (2) b̂RS ≺ at ⪯ b̂RS′ , and (3) at ⪯ b̂RS .
In case (1), β̂S′ ([at,am])

|S′| = 1
1−αn

βS′ ([at,am])
|S′| ≥ 1

1−αn
βS([at,am])

|S| =
β̂S([at,am])

|S| , where the inequality follows from
per-capita monotonicity of ϕ.

In case (2), β̂S′ ([at,am])
|S′| = 1

1−αn
βS′ ([at,am])−α|S′|

|S′| = 1
1−αn

|S′|
n −α|S′|
|S′| = 1

1−αn(
1
n − α) ≥ 1

1−αn

(
1
n −

βS(b̂
R
S )

|S|

)
=

1
1−αn

|S|
n −βS(b̂

R
S )

|S| = 1
1−αn

βS([ak,am])−βS(b̂
R
S )

|S| ≥ 1
1−αn

βS([at,am])
|S| =

β̂S([at,am])
|S| , where the first inequality follows from

the definition of α and the second inequality follows from b̂RS ≺ at.
Last, in case (3), β̂S′ ([at,am])

|S′| = 1
1−αn

βS′ ([at,am])−α|S′|
|S′| = 1

(1−αn)

[
βS′ ([at,am])

|S′| − α
]
≥ 1

(1−αn)

[
βS([at,am])

|S| − α
]

= 1
1−αn

βS([ak,at])−α|S|
|S| =

β̂S([at,am])

|S|

, where the inequality follows from per-capita monotonicity of ϕ.

Symmetrically, given as ∈ L, either one of the three cases occurs: (i) as ≺ b̂LN\S′ , (ii) b̂
L
N\S′ ⪯ as ≺ b̂LN\S,

and (iii) b̂LN\S ⪯ as.

In case (i),
β̂N\S′ ([a1,as])

|S′| = 1
1−αn

βN\S′ ([a1,as])
|S′| ≥ 1

1−αn
βN\S([a1,as])

|S| =
β̂N\S([a1,as])

|S| , where the inequality follows
from per-capita monotonicity of ϕ.

In case (ii),
β̂N\S′ ([a1,as])

|S′| = 1
1−αn

βN\S′ ([a1,as])−α[n−(n−|S′|)]
|S′| = 1

1−αn(
1
n − α) ≥ 1

1−αn

(
1
n −

βN\S(b̂
L
N\S)

n−(n−|S|)

)
=

1
1−αn

|S|
n −βN\S(b̂

L
N\S)

|S| = 1
1−αn

βN\S([a1,ak])−βN\S(b̂
L
N\S)

|S| ≥ 1
1−αn

βN\S([a1,as])
|S| =

β̂N\S([a1,as])
|S| , where the first inequality

follows from the definition of α and the second inequality follows from as ≺ b̂LN\S.

Last, in case (iii),
β̂N\S′ ([a1,as])

|S′| = 1
1−αn

βN\S′ ([a1,as])−α[n−(n−|S′|)]
|S′| = 1

1−αn

[
βN\S′ ([a1,as])

|S′| − α
]
≥

1
1−αn

[
βN\S([a1,as])

|S| −α
]
= 1

1−αn

βN\S([a1,as])−α[n−(n−|S|)]
|S| =

β̂N\S([a1,as])
|S|

, where the inequality follows from per-capita

monotonicity of ϕ.
In conclusion, ψ satisfies per-capita monotonicity. ■

The next lemma shows that the support of every ϕ’s probabilistic ballot is refined by that of ψ, and the
support of some ϕ’s probabilistic ballot is strictly refined.

Lemma 6.9.6 For all nonempty S ⊂ N, supp(β̂S) ⊆ supp(βS), and for some nonempty S
∗ ⊂ N,

supp(β̂S∗) ⊂ supp(βS∗).

Proof: Given nonempty S ⊂ N, since β̂S =
βS−α|S|êbRS

−α(n−|S|)êbLS
1−αn , it is true that supp(β̂S) ⊆ supp(βS). Next,

by the definition of α, there exists a nonempty S∗ ⊂ N such that α = βS∗ (b̂
R
S∗ )

|S∗| or α = βS∗ (b̂
L
S∗ )

n−|S∗| . Hence,
either β̂S∗(b̂

R
S∗) = 0 or β̂S∗(b̂

L
S∗) = 0 holds. Therefore, supp(β̂S∗) ⊂ supp(βS∗). ■

By spirit of Lemma 6.9.6, we call ψ the refined (k, k)-RPFBR of ϕ. Now, we have (k, k)-RFBRs (fi)i∈N
and an anonymous (k, k)-RPFBR ψ which satisfies per-capita monotonicity. More importantly, the
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original (k, k)-RPFBR ϕ can be specified as a mixture of (fi)i∈N and ψ, i.e.,
ϕ(P) = αnφ(P) + (1− αn)ψ(P) = α

∑
i∈N efi(P) + (1− αn)ψ(P) for all P ∈

[
DH(k, k)

]n.
Note that if we repeat the procedure above on the anonymous (k, k)-RPFBR ψ, we can further

decompose ϕ. Therefore, by repeatedly applying the procedure, we eventually can decompose ϕ as a
mixture of finitely many (k, k)-RFBRs, provided that the procedure can terminate in finite steps. In each step
of the procedure, Lemma 6.9.6 implies that the support of the refined (k, k)-RPFBR’s probabilistic ballots
strictly shrinks. Since the alternative set A is finite, it must be the case that after finite steps, the support of
the refined (k, k)-RPFBR’s every probabilistic ballot becomes a binary set. Furthermore, by Lemma 6.9.3,
the refined (k, k)-RPFBR becomes a mixture of n (k, k)-RFBRs. Hence, the procedure terminates, and we
finish the decomposition of ϕ. This completes the verification of the sufficiency part of Theorem 6.5.3.

(Necessity part) Fix an anonymous decomposable (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A). Let (βS)S⊆N

be the corresponding probabilistic ballots. By Theorem 6.5.1, we know that (βS)S⊆N satisfy ballot
unanimity, monotonicity and the constrained random-dictatorship condition. Moreover, anonymity of ϕ
implies that every voter has the conditional dictatorial coefficient 1

n , and βS = βS′ for all S, S
′ ⊆ Nwith

|S| = |S′|. By decomposability and Theorem 6.5.1, we have finitely many (k, k)-RFBRs
fk :

[
DH(k, k)

]n → Δ(A), k = 1 . . . , q, and weights α1, . . . , αq > 0 with
∑q

k=1 α
k = 1 such that

ϕ(P) =
∑q

k=1 α
kefk(P) for all P ∈

[
DH(k, k)

]n. For each 1 ≤ k ≤ q, let (bkS)S⊆N denote the deterministic
ballots of fk. Evidently, for each 1 ≤ k ≤ q, (bkS)S⊆N satisfy ballot unanimity, monotonicity and the
constrained-dictatorship condition. For ease of presentation, we call the voter specified in the constrained
dictatorship condition of fk the constrained dictator, denoted by ik. Moreover, let
Ii =

{
k ∈ {1, . . . , q} : ik = i

}
collect the indexes of RFBRs where i is the constrained dictator. Last, by

monotonicity of both (βS)S⊆N and (bkS)S⊆N, k = 1, . . . , q, it is true that βS =
∑q

k=1 α
kebkS for all S ⊆ N.

Lemma 6.9.7 For all i ∈ N,
∑

k∈Ii α
k = 1

n .

Proof: Suppose that it is not true. Then, there exist i, j ∈ N such that
∑

k∈Ii α
k ̸=

∑
k∈Ij α

k. Then, by the
constrained random dictatorship condition, we have
β{i}([ak, am]) =

∑q
k=1 α

k1
(
bk{i} ∈ R

)
=

∑
k∈Ii α

k ̸=
∑

k∈Ij α
k =

∑q
k=1 α

k1
(
bk{j} ∈ R

)
= β{j}([ak, am]),

which contradicts the fact β{i} = β{j}.¹³ ■

For each i ∈ N, let ϕi(P) =
∑

k∈Ii α
knefk(P) for all P ∈

[
DH(k, k)

]n. By Lemma 6.9.7, ϕi is a mixture of
RFBRs (fk)k∈Ii according to the weights (αkn)k∈Ii , and hence is a (k, k)-RPFBR. Let (βiS)S⊆N denote the
corresponding probabilistic ballots. Evidently, (βiS)S⊆N satisfy ballot unanimity and monotonicity, and ϕi

satisfies the constrained random-dictatorship condition. Note that voter i has the conditional dictatorial
coefficient 1 in ϕi.

¹³The notation 1(·) denotes an indicator function.
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Lemma 6.9.8 For all S ⊆ N, βS =
∑

i∈N
1
nβ

i
S.

Proof: By the definition RPFBRs (ϕi)i∈N, we can rewrite ϕ as follows:
ϕ(P) =

∑q
k=1 α

kefk(P) =
∑

i∈N
∑

k∈Ii α
kefk(P) =

∑
i∈N

1
n

(∑
k∈Ii α

knefk(P)
)
=

∑
i∈N

1
nϕ

i(P) for all

P ∈
[
DH(k, k)

]n. Therefore, βS =
∑

i∈N
1
nβ

i
S for all S ⊆ N. ■

Now, for each i ∈ N, we construct another collection of probabilistic ballots (β̄iS)S⊆N by equally mixing
probabilistic ballots {(βjS)S⊆N : j ∈ N} in a particular way. Specifically, given S ⊆ N, say |S| = k, we
construct β̄iS in two steps. In the first step, we refer to each coalition S′ ⊆ N that has the same size as S, the
k corresponding probabilistic ballots (βjS′)j∈S′ and the n− k corresponding probabilistic ballots
(βjS′)j∈N\S′ . We then make two equal mixtures

∑
j∈S′

1
kβ

j
S′ and

∑
j∈N\S′

1
n−kβ

j
S′ . In the second step, we

check whether i is included in S or not. If i ∈ S, we refer to
∑

j∈S′
1
kβ

j
S′ for all C

k
n =

n!
k!(n−k)! subsets S

′ ofN
that have the same size as S, and make their equal mixture as β̄iS, i.e.,

β̄iS =
∑

S′⊆N:|S′|=k

1
Ck
n

(∑
j∈S′

1
k
βjS′

)
=

1
Ck
n

1
k

∑
S′⊆N:|S′|=k

∑
j∈S′

βjS′ ;

otherwise we refer to
∑

j∈N\S′
1

n−kβ
j
S′ for all C

k
n =

n!
k!(n−k)! subsets S

′ ofN that have the same size as S, and
make their equal mixture as β̄iS, i.e.,

β̄iS =
∑

S′⊆N:|S′|=k

1
Ck
n

( ∑
j∈N\S′

1
n− k

βjS′
)
=

1
Ck
n

1
n− k

∑
S′⊆N:|S′|=k

∑
j∈N\S′

βjS′ .

We are going to show that (β̄iS)S⊆N satisfy ballot unanimity, monotonicity and the constrained
random-dictatorship condition. First, it is easy to verify the following four statements:

(i) β̄iS ∈ Δ(A) for all S ⊆ N and i ∈ N.

(ii) (β̄iS)S⊆N satisfy ballot unanimity, i.e., β̄i∅ =
1
n

∑
S′⊆N:|S′|=0

∑
j/∈S′ β

j
S′ =

1
n

∑
j∈N β

j
∅ = ea1 and

β̄iN = 1
n

∑
S′⊆N:|S′|=n

∑
j∈S′ β

j
S′ =

1
n

∑
j∈N β

j
N = eam .

(iii) (β̄iS)S⊆N satisfy the constrained random dictatorship condition, i.e., given S ⊂ N, say |S| = k, if
i ∈ S, we have β̄iS([ak, am]) =

∑
S′⊆N:|S′|=k

1
Ck
n

(∑
j∈S′

1
kβ

j
S′([ak, am])

)
= 1; otherwise, we have

β̄iS([a1, ak]) =
∑

S′⊆N:|S′|=k
1
Ck
n

(∑
j∈N\S′

1
n−kβ

j
S′([a1, ak])

)
= 1.

(iv) For all nonempty S ⊂ N and distinct i, j ∈ S or i, j /∈ S, we have β̄iS = β̄jS.

Next, we focus on showing monotonicity of (β̄iS)S⊆N.

Lemma 6.9.9 Given nonempty S ⊂ N, βS =
∑

i∈N
1
n β̄

i
S.
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Proof: Let |S| = k. Thus, 0 < k < n. We then have

βS =
1
Ck
n

∑
S′⊆N:|S′|=k

βS′ (by anonymity)

=
1
Ck
n

∑
S′⊆N:|S′|=k

∑
i∈N

1
n
βiS′ (by Lemma 6.9.8)

=
1
Ck
n

1
n

∑
S′⊆N:|S′|=k

(∑
i∈S′

βiS′ +
∑

i∈N\S′
βiS′
)

=
k
n

( 1
Ck
n

1
k

∑
S′⊆N:|S′|=k

∑
i∈S′

βiS′
)
+

n− k
n

( 1
Ck
n

1
n− k

∑
S′⊆N:|S′|=k

∑
i∈N\S′

βiS′
)

=
k
n
β̄iS +

n− k
n

β̄jS for some i ∈ S and some j ∈ N\S (by the definition of β̄iS and β̄jS)

=
∑
i∈S

1
n
β̄iS +

∑
j∈N\S

1
n
β̄jS (by statement (iv) above)

=
∑
i∈N

1
n
β̄iS.

This completes the verification of the lemma. ■

Lemma 6.9.10 Probabilistic ballots
(
β̄iS
)
S⊆N satisfy monotonicity.

Proof: Fix S ⊂ S′ ⊆ N. If S = ∅ or S′ = N, the condition of monotonicity holds evidently. Henceforth,
let S ̸= ∅ and S′ ̸= N. We assume w.l.o.g. that |S| = k and |S′| = k+ 1. If S′\S = {i}, we have
β̄iS′([ak, am]) = 1 and β̄iS[a1, ak] = 1 by the constrained random-dictatorship condition, which
immediately imply the condition of monotonicity.

Next, assume i ∈ S. Then, i ∈ S′. Now, given at ∈ A, we have

β̄iS′ ([at, am])− β̄iS([at, am]) =
1

Ck+1
n

1
k+ 1

∑
S̄⊆N:|̄S|=k+1

∑
j∈S̄

βjS̄([at, am])−
1
Ck
n

1
k

∑
S̄⊆N:|̄S|=k

∑
j∈S̄

βjS̄([at, am])

=
1

Ck+1
n

1
k+ 1

1
k

 ∑
S̄⊆N:|̄S|=k+1

(
k
∑
j∈S̄

βjS̄([at, am])

)
−

∑
S̄⊆N:|̄S|=k

(
(n− k)

∑
j∈S̄

βjS̄([at, am])

)

=
1

Ck+1
n

1
k+ 1

1
k

 ∑
S̄⊆N:|̄S|=k

( ∑
ν∈N\S̄

∑
j∈S̄

βjS̄∪{ν}([at, am])

)
−

∑
S̄⊆N:|̄S|=k

(
(n− k)

∑
j∈S̄

βjS̄([at, am])

)
=

1

Ck+1
n

1
k+ 1

1
k

∑
S̄⊆N:|̄S|=k

∑
ν∈N\S̄

∑
j∈S̄

(
βjS̄∪{ν}([at, am])− βjS̄([at, am])

)

≥0. (by monotonicity of (βjJ)J⊆N, j ∈ S̄)

Last, assume i /∈ S′. Then, i /∈ S. Now, given at ∈ A, we have
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β̄iS′ ([at, am])− β̄iS([at, am])

=
1

Ck+1
n

1
n− (k+ 1)

∑
S̄⊆N:|̄S|=k+1

∑
j∈N\S̄

βjS̄([at, am])−
1
Ck
n

1
n− k

∑
S̄⊆N:|̄S|=k

∑
j∈N\S̄

βjS̄([at, am])

=
1
Ck
n

1
n− k

1
n− (k+ 1)

 ∑
S̄⊆N:|̄S|=k+1

(
(k+ 1)

∑
j∈N\S̄

βjS̄([at, am])

)
−

∑
S̄⊆N:|̄S|=k

(
[n− (k+ 1)]

∑
j∈N\S̄

βjS̄([at, am])

)

=
1
Ck
n

1
n− k

1
n− (k+ 1)

 ∑
S̄⊆N:|̄S|=k+1

(
(k+ 1)

∑
j∈N\S̄

βjS̄([at, am])

)
−

∑
S̄⊆N:|̄S|=k+1

(∑
ν∈S̄

∑
j∈N\S̄

βjS̄\{ν}([at, am])

)
=

1
Ck
n

1
n− k

1
n− (k+ 1)

∑
S̄⊆N:|̄S|=k+1

∑
ν∈S̄

∑
j∈N\S̄

[
βjS̄([at, am])− βjS̄\{ν}([at, am])

]

≥0. (by monotonicity of (βjJ)J⊆N, j ∈ N\S̄)

This completes the verification of the lemma. ■

Now, we are ready to show per-capita monotonicity of ϕ. Given nonempty S ⊂ S′ ⊂ N, at ∈ R and
as ∈ L, we have

βS′ ([at, am])
|S′|

−
βS([at, am])

|S|
=

∑
i∈N

1
n β̄

i
S′ ([at, am])
|S′|

−
∑

i∈N
1
n β̄

i
S([at, am])
|S|

(by Lemma 6.9.9)

=

∑
i∈S′

1
n β̄

i
S′ ([at, am])
|S′|

−
∑

i∈S
1
n β̄

i
S([at, am])
|S|

(by statement (iii))

=
β̄iS′ ([at, am])− β̄iS([at, am])

n
(select i ∈ S and apply statement (iv))

≥0 (by Lemma 6.9.10), and

βN\S′ ([a1, as])

|S′|
−

βN\S([a1, as])

|S|
=

∑
i∈N

1
n β̄

i
N\S′ ([a1, as])

|S′|
−
∑

i∈N
1
n β̄

i
N\S([a1, as])

|S|
(by Lemma 6.9.9)

=

∑
i∈S′

1
n β̄

i
N\S′ ([a1, as])

|S′|
−
∑

i∈S
1
n β̄

i
N\S([a1, as])

|S|
(by statement (iii))

=
β̄iN\S′ ([a1, as])− β̄iN\S([a1, as])

n
(select i ∈ J and apply statement (iv))

=
β̄iN\S([as+1, am])− β̄iN\S′ ([as+1, am])

n
≥0. (by Lemma 6.9.10)

This completes the verification of the necessity part of Theorem 6.5.3.
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6.10 Proof of Proposition 6.6.1

Proof: We first recall the deterministic version of a (k, k)-RPFBR, which we call a (k, k)-Restricted Fixed
Ballot Rule (or (k, k)-RFBR). Formally, a DSCF f :

[
DH(k, k)

]n → Δ(A) is called a (k, k)-Restricted
Fixed Ballot Rule (or (k, k)-RFBR) if it is an Fixed Ballot Rule (or FBR), i.e., there exists a collection of
deterministic ballots (bS)S⊆N satisfying ballot unanimity, i.e., bN = am and b∅ = a1, and monotonicity, i.e.,
[S ⊂ T ⊆ N]⇒ [bS ⪯ bT], such that for all P ∈

[
DH(k, k)

]n, we have

f(P) = max
S⊆N

≺
(

min
j∈S

≺ (
r1(Pj), bS

))
, and in addition, (bS)S⊆N satisfy the constrained dictatorship

condition, i.e., k− k > 1 implies that there exists i ∈ N such that [i ∈ S]⇒ [bS ∈ R] and
[i /∈ S]⇒ [bS ∈ L].

Now, letN = {i, j} and fix a two-voter (k, k)-RPFBR ϕ :
[
DH(k, k)

]2 → Δ(A). Let
(βS)S⊆N =

(
β∅ = ea1 , β{i}, β{j}, βN = eam

)
be the corresponding probabilistic ballots. We are going to

decompose ϕ as a mixture of finitely many (k, k)-RFBRs.
Since (βS)S⊆N satisfies the constrained random-dictatorship condition, let ε be the dictatorial

coefficient of voter i, and 1− ε be the dictatorial coefficient of voter j. Thus, ϕ behaves like a random
dictatorship at all preference profiles where both voters’ peaks are inM, i.e.,
ϕ(Pi, Pj) = ε er1(Pi) + (1− ε) er1(Pj) for all Pi, Pj ∈ DH(k, k)with r1(Pi), r1(Pj) ∈ M.

By the proof of the necessity part of Theorem 1 of our paper, we know that ϕ can be written as a
mixture of several FBRs, i.e., there exist FBRs fk :

[
DH(k, k)

]2 → A, k = 1, . . . , q, and weights
α1, . . . , αq > 0 with

∑q
k=1 α

k = 1 such that ϕ(Pi, Pj) =
∑q

k=1 α
kefk(Pi,Pj) for all Pi, Pj ∈ DH(k, k).

However, we only know that all FBRs f1, . . . , fq are strategy-proof on the single-peaked domainD≺, and
cannot ensure their strategy-proofness on the (k, k)-hybrid domainDH(k, k). For each k = 1, . . . , q, let
(bkS)S⊆N denote the deterministic ballots of fk. For notational convenience, we slightly simplify the
max-min form of each FBR fk as follows: for all Pi, Pj ∈ DH(k, k),

fk(Pi, Pj) = max≺
(
bk∅ = a1,min≺

(
r1(Pi), bk{i}

)
,min≺

(
r1(Pj), bk{j}

)
,min≺

(
r1(Pi), r1(Pj), bkN = am

))
= max≺

(
min≺

(
r1(Pi), bk{i}

)
,min≺

(
r1(Pj), bk{j}

)
,min≺

(
r1(Pi), r1(Pj)

))
.

Note that by Theorem 1 of our paper, fk is strategy-proof if and only if (bkS)S⊆N satisfies the constrained
dictatorship condition, i.e., either bk{i} ∈ R and bk{j} ∈ L, or bk{j} ∈ R and bk{i} ∈ L hold.

Claim 1: For each k = 1, . . . , q, we have bk{i}, b
k
{j} ∈ L ∪ R.

Given Pi, Pj ∈ DH(k, k)with r1(Pi) = ak and r1(Pj) = ak, we have∑q
k=1 α

k efk(Pi,Pj) = ϕ(Pi, Pj) = εeak + (1− ε)eak . This implies that for each k = 1, . . . , q,
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max≺
(
min≺

(
ak, bk{i}

)
,min≺

(
ak, bk{j}

)
, ak

)
= fk(Pi, Pj) ∈ {ak, ak}. Consequently, it must be the

case that bk{i}, b
k
{j} ∈ L ∪ R for all k = 1, . . . , q. This completes the verification of the claim.

By Claim 1, we know that an FBR fk is manipulable onDH(k, k) if and only if bk{i}, b
k
{j} ∈ L or

bk{i}, b
k
{j} ∈ R. Accordingly, we separate all FBRs f1, . . . , fq into three groups:

Λ =
{
fk : either bk{i} ∈ R and bk{j} ∈ L, or bk{j} ∈ R and bk{i} ∈ L

}
,

ΛL =
{
fk : bk{i}, b

k
{j} ∈ L

}
and ΛR =

{
fk : bk{i}, b

k
{j} ∈ R

}
.

If ΛL = ∅ and ΛR = ∅, then ϕ is decomposable. Henceforth, assume either ΛL ̸= ∅ or ΛR ̸= ∅. We are
going to reshuffle the deterministic ballots of all FBRs in ΛL ∪ ΛR to “cure” all FBRs of ΛL ∪ ΛR. The next
claim shows that the total weights of FBRs in ΛL equals that in ΛR.

Claim 2:
∑

k:fk∈ΛL αk =
∑

k:fk∈ΛR αk.

Fix Pi, Pj ∈ DH(k, k)with r1(Pi) = ak and r1(Pj) = ak, and P′i, P′j ∈ DH(k, k)with r1(P′i) = ak and
r1(P′j) = ak. We first know that

(i) ϕ behaves like a random dictatorship at both (Pi, Pj) and (P′i, P′j),

(ii) each fk ∈ Λ behaves like a dictatorship at both (Pi, Pj) and (P′i, P′j), and let ik denote the
corresponding constrained dictator,

(iii) for each fk ∈ ΛL,

fk(Pi, Pj) = max≺
(

min≺
(
ak, bk{i}

)
,min≺

(
ak, b

k
{j}
)
,min≺

(
ak, ak

))
= ak, and

fk(P′i, P
′
j) = max≺

(
min≺

(
ak, b

k
{i}
)
,min≺

(
ak, bk{j}

)
,min≺

(
ak, ak

))
= ak,

(iv) for each fk ∈ ΛR,

fk(Pi, Pj) = max≺
(

min≺
(
ak, bk{i}

)
,min≺

(
ak, b

k
{j}
)
,min≺

(
ak, ak

))
= ak, and

fk(P′i, P
′
j) = max≺

(
min≺

(
ak, b

k
{i}
)
,min≺

(
ak, bk{j}

)
,min≺

(
ak, ak

))
= ak.

First, item (i) implies ϕak
(Pi, Pj) = ε = ϕak

(P′i, P′j). Next, by items (ii), (iii) and (iv), we have
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ϕak(Pi, Pj) =
q∑

k=1

αk1
(
fk(Pi, Pj) = ak

)
=

∑
k:fk∈Λ

αk 1(ik = i) +
∑

k:fk∈ΛL∪ΛR

αk1(fk(Pi, Pj) = ak)

=
∑
k:fk∈Λ

αk 1(ik = i) +
∑

k:fk∈ΛL

αk, and

ϕak(P
′
i , P

′
j) =

q∑
k=1

αk1
(
fk(P′i , P

′
j) = ak

)
=

∑
k:fk∈Λ

αk 1(ik = i) +
∑

k:fk∈ΛL∪ΛR

αk1(fk(Pi, Pj) = ak)

=
∑
k:fk∈Λ

αk 1(ik = i) +
∑

k:fk∈ΛR

αk.

Therefore,
∑

k:fk∈ΛL αk =
∑

k:fk∈ΛR αk. This completes the verification of the claim.

By Claim 2, the hypothesis that either ΛL ̸= ∅ or ΛR ̸= ∅ implies ΛL ̸= ∅ and ΛR ̸= ∅. Fixing fs ∈ ΛL

and ft ∈ ΛR, according to their deterministic ballots
(
bs∅ = a1, bs{i} ∈ L, bs{j} ∈ L, bsI = am

)
and(

bt∅ = a1, bt{i} ∈ R, bt{j} ∈ R, btI = am
)
, we swap bs{j} and bt{j}, and create two new sets of deterministic

ballots

(b̄sS)S⊆N =
(
b̄s∅ = a1, b̄s{i} = bs{i} ∈ L, b̄s{j} = bt{j} ∈ R, b̄sN = am

)
and

(b̄tS)S⊆N =
(
b̄t∅ = a1, b̄t{i} = bt{i} ∈ R, b̄t{j} = bs{j} ∈ L, b̄tN = am

)
.

Note that both (b̄sS)S⊆N and (b̄tS)S⊆N satisfy ballot unanimity, monotonicity and the constrained
dictatorship condition. Correspondingly, we generate two (k, k)-RFBRs f̄s :

[
DH(k, k)

]2 → Δ(A) and
f̄t :

[
DH(k, k)

]2 → Δ(A)which are strategy-proof by Theorem 1 of our paper. More importantly, since
eb̄s{i} + eb̄t{i} = ebs{i} + ebt{i} and eb̄s{j} + eb̄t{j} = ebt{j} + ebs{j} , it is true that
ēfs(Pi,Pj) + ēft(Pi,Pj) = efs(Pi,Pj) + eft(Pi,Pj) for all Pi, Pj ∈ DH(k, k). Assume w.l.o.g. that αs ≥ αt. We then
reformulate ϕ by using f̄s, f̄t and (fk)k ̸=t: for all Pi, Pj ∈ DH(k, k), we have

ϕ(Pi, Pj) =
∑
k:fk∈Λ

αkefk(Pi,Pj) +

[[
αsefs(Pi,Pj) + αteft(Pi,Pj)

]
+

∑
k/∈{s,t}:fk∈ΛL∪ΛR

αkefk(Pi,Pj)

]

=

[ ∑
k:fk∈Λ

αkefk(Pi,Pj) + αt
[
ēfs(Pi,Pj) + ēft(Pi,Pj)

]]
+

[ ∑
k/∈{s,t}:fk∈ΛL∪ΛR

αkefk(Pi,Pj) + (αs − αt)efs(Pi,Pj)

]
.

In the reformulation, two new (k, k)-RFBRs are added, the manipulable FBR ft is eliminated, and the
weight of the manipulable FBR fs reduces to αs − αt. Since ΛL and ΛR are finite and∑

k:fk∈ΛL αk =
∑

k:fk∈ΛR αk by Claim 2, by repeatedly reshuffling deterministic ballots and reformulating ϕ,
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we eventually are able to write ϕ as a mixture of finitely many (k, k)-RFBRs. Therefore, we assert that ϕ is
decomposable. ■

6.11 Proof of Proposition 6.6.2

Proof: Fix a (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A). Let (βS)S⊆N denote the probabilistic ballots of ϕ.
Thus, (βS)S⊆N satisfies ballot unanimity, monotonicity and the constrained random-dictatorship
condition. Let εi ≥ 0 be the dictatorial coefficient of voter i and

∑
i∈N εi = 1. Thus, for all S ⊆ N,

βS([ak, am]) =
∑

i∈S εi and βS([a1, ak]) =
∑

i∈N\S εi. Next, since ϕ is decomposable, there are
(k, k)-PFBR fk :

[
DH(k, k)

]n → A, k = 1, . . . , q, and weights α1, . . . , αq > 0 with
∑q

k=1 α
k = 1 such that

ϕ(P) =
∑q

k=1 α
kefk(P) for all P ∈

[
DH(k, k)

]n. For each k = 1, . . . , q, let (bkS)S⊆N denote the deterministic
ballots of fk. Thus, (bkS)S⊆N satisfies ballot unanimity, monotonicity and the constrained dictatorship
condition. Correspondingly, let ik denote the constrained dictator in fk.

Fixing a nonempty S,T ⊆ Nwith S ∩ T = ∅, at ∈ R and as ∈ L, we have

βS([at, am]) + βT([at, am]) =
q∑

k=1

αk 1
(
bkS ∈ [at, am]

)
+

q∑
k=1

αk 1
(
bkT ∈ [at, am]

)
=

q∑
k=1

αk 1
(
ik ∈ S and bkS ∈ [at, am]

)
+

q∑
k=1

αk 1
(
ik ∈ T and bkT ∈ [at, am]

)
≤

q∑
k=1

αk 1
(
ik ∈ S and bkS∪T ∈ [at, am]

)
+

q∑
k=1

αk 1
(
ik ∈ T and bkS∪T ∈ [at, am]

)
=

q∑
k=1

αk 1
(
ik ∈ S ∪ T and bkS∪T ∈ [at, am]

)
= βS∪T([at, am]), and

βN\S([a1, as]) + βN\T([a1, as]) =
q∑

k=1

αk 1
(
bkN\S ∈ [a1, as]

)
+

q∑
k=1

αk 1
(
bkN\T ∈ [a1, as]

)
=

q∑
k=1

αk 1
(
ik ∈ S and bkN\S ∈ [a1, as]

)
+

q∑
k=1

αk 1
(
ik ∈ T and bkN\T ∈ [a1, as]

)
≤

q∑
k=1

αk 1
(
ik ∈ S and bkN\[S∪T] ∈ [a1, as]

)
+

q∑
k=1

αk 1
(
ik ∈ T and bkN\[S∪T] ∈ [a1, as]

)
=

q∑
k=1

αk 1
(
ik ∈ S ∪ T and bkN\[S∪T] ∈ [a1, as]

)
= βN\[S∪T]([a1, as]).

Therefore, ϕ satisfies the scale-effect condition. ■
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6.12 Proof of Proposition 6.6.3

Proof: We first provide a lemma which will be repeated adopted.

Lemma 6.12.1 Fixing a (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A), let (β̂S)S⊆N be the corresponding
probabilistic ballots. RPFBR ϕ dominates φ in admitting compromises if and only if for all S ⊆ Nwith
1 ≤ |S| ≤ n− 1 and ak ∈ [a2, . . . , ak] ∪ [ak, am−1], β̂S(ak) ≥ βS(ak), and there exist S ⊆ Nwith
1 ≤ |S| ≤ n− 1 and ak ∈ [a2, . . . , ak] ∪ [ak, am−1] such that β̂S(ak) > βS(ak).

Proof: We first show the necessity part of Lemma 6.12.1. Given S ⊆ Nwith 1 ≤ |S| ≤ n− 1 and
ak ∈ [a2, . . . , ak] ∪ [ak, am−1], we consider the preference profile Pwhere every voter of S has the
preference peak ak+1, every voter ofN\S has the preference peak ak−1, and all voters share the common
second best alternative ak. Such a preference profile is admissible in

[
DH(k, k)

]n. Thus,
P ∈ C

( [
DH(k, k)

]n ) and c(P) = ak. Note that S(k, P) = S(k+ 1, P) = S. Then, we have

β̂S(ak)− βS(ak) =
[
β̂S([ak, am])− β̂S([ak+1, am])

]
−
[
βS([ak, am])− βS([ak+1, am])

]
=
[
β̂S(k,P)([ak, am])− β̂S(k+1,P)([ak+1, am])

]
−

[
βS(k,P)([ak, am])− βS(k+1,P)([ak+1, am])

]
=ϕak

(P)− φak(P) ≥ 0.

Next, by definition, there exists a profile P ∈ C
( [

DH(k, k)
]n ) such that ϕc(P)(P) > φc(P)(P).

Evidently, ϕc(P)(P) > 0. Let c(P) = ak. We first show that ak ∈ [a2, . . . , ak] ∪ [ak, am−1]. Suppose not, i.e.,
either ak ∈ {a1, am} or ak ∈ [ak+1, ak−1]. If ak = a1, by the definition ofDH(k, k), c(P) = a1 implies
r1(Pi) = a2 for all i ∈ Nwhich contradicts the hypothesis that P ∈ C

( [
DH(k, k)

]n ). The similar
contradiction arises if ak = am. Next, if ak ∈ [ak+1, ak−1], by the definition ofDH(k, k), c(P) = ak implies
r1(Pi) ∈ M for all i ∈ N. Consequently, the constrained random-dictatorship condition implies
ϕak

(P) = 0. Contradiction! Therefore, ak ∈ [a2, . . . , ak] ∪ [ak, am−1].
Now, we consider three cases: (1) ak ∈ [a2, . . . , ak−1] ∪ [ak+1, am−1], (2) ak = ak and (3) ak = ak. In

case (1), by the definition ofDH(k, k), P ∈ C
( [

DH(k, k)
]n ) implies that there exists S′ ⊆ Nwith

1 ≤ |S| ≤ n− 1 such that r1(Pi) = ak+1 for all i ∈ S and r1(Pj) = ak−1 for all j ∈ N\S. We then have
β̂S(ak) = ϕak

(P) > φak(P) = βS(ak). In case (2), by the definition ofDH(k, k), P ∈ C
( [

DH(k, k)
]n )

implies that there exists S ⊆ Nwith 1 ≤ |S| ≤ n− 1 such that r1(Pi) ∈ M\{ak} for all i ∈ S and
r1(Pj) = ak−1 for all j ∈ N\S. Then, similar to case (1), we have β̂S(ak) > βS(ak). Last, in case (3), by the
definition ofDH(k, k), P ∈ C

( [
DH(k, k)

]n ) implies that there exists S ⊆ Nwith 1 ≤ |S| ≤ n− 1 such
that r1(Pi) = ak+1 for all i ∈ S and r1(Pj) ∈ M\{ak} for all j ∈ N\S. Then, similar to case (1), we have
β̂S(ak) > βS(ak). This completes the verification of the necessity part.
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Next, we turn to showing the sufficiency part of Lemma 6.12.1. Given a profile P ∈ C
( [

DH(k, k)
]n ),

let c(P) = ak. We first show ϕak
(P) ≥ φak(P). One of the following four cases must occur:

(i) ak ∈ [ak+1, ak−1] and r1(Pi) ∈ M for all i ∈ M,

(ii) ak ∈ [a2, . . . , ak−1] ∪ [ak+1, am−1], and there exists S ⊆ Nwith 1 ≤ |S| ≤ n− 1 such that
r1(Pi) = ak+1 for all i ∈ S and r1(Pj) = ak−1 for all j ∈ N\S,

(iii) ak = ak, and there exists S ⊆ Nwith 1 ≤ |S| ≤ n− 1 such that r1(Pi) ∈ M\{ak} for all i ∈ S and
r1(Pj) = ak−1 for all j ∈ N\S, and

(iv) ak = ak, and there exists S ⊆ Nwith 1 ≤ |S′| ≤ n− 1 such that r1(Pi) = ak+1 for all i ∈ S′ and
r1(Pj) ∈ M\{ak} for all j ∈ N\S.

In case (i), the constrained random-dictatorship condition implies ϕak
(P) = φak(P) = 0. In all cases

(ii) - (iv), first note that S(k, P) = S(k+ 1, P) = S. Then, we have

ϕak
(P)− φak(P) =

[
β̂S(k,P)([ak, am])− β̂S(k+1,P)([ak+1, am])

]
−
[
βS(k,P)([ak, am])− βS(k+1,P)([ak+1, am])

]
=
[
β̂S([ak, am])− β̂S([ak+1, am])

]
−
[
βS([ak, am])− βS([ak+1, am])

]
=β̂S(ak)− βS(ak) ≥ 0.

Last, note that there exist S ⊆ Nwith 1 ≤ |S| ≤ n− 1 and ak ∈ [a2, . . . , ak] ∪ [ak, am−1] such that
β̂S(ak) > βS(ak). According to the coalition S, we construct a preference profile P ∈

[
DH(k, k)

]n where
every voter of S has the preference peak ak+1, every voter ofN\S has the preference peak ak−1, and all
voters share the common second best alternative ak. Thus, P ∈ C

([
DH(k, k)

]n) and c(P) = ak. Since
S(k, P) = S(k+ 1, P) = S, we have

ϕak
(P)− φak(P) =

[
β̂S(k,P)([ak, am])− β̂S(k+1,P)([ak+1, am])

]
−
[
βS(k,P)([ak, am])− βS(k+1,P)([ak+1, am])

]
=
[
β̂S([ak, am])− β̂S([ak+1, am])

]
−
[
βS([ak, am])− βS([ak+1, am])

]
=β̂S(ak)− βS(ak) > 0.

Therefore, ϕ dominates φ in admitting compromises. This completes the verification of the sufficiency
part, and hence proves Lemma 6.12.1. ■

Now, we start to prove Proposition 6.6.3. Let (k, k)-RPFBR ϕ :
[
DH(k, k)

]n → Δ(A) dominate φ in
admitting compromises. Let (β̂S)S⊆N denote the probabilistic ballots of ϕ. We show that there exists
S ⊆ Nwith |S| = n− 1 such that βS(am) > 0 or βN\S(a1) > 0. Suppose not, i.e., for all S ⊆ Nwith
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|S| = n− 1, βS(am) = 0 and βN\S(a1) = 0. First, monotonicity implies βS′(am) ≤ βS(am) = 0 and
βN\S′(a1) ≤ βN\S(a1) = 0 for all S′ ⊆ Nwith 1 ≤ |S′| < n− 1. Hence, for all S ⊆ Nwith
1 ≤ |S| ≤ n− 1, we have βS(am) = 0 and βN\S(a1) = 0. By Lemma 6.12.1, there exists a coalition S ⊆ N
with 1 ≤ |S| ≤ n− 1 such that β̂S(ak) ≥ βS(ak) for all ak ∈ [a2, . . . , ak] ∪ [ak, am−1] and β̂S(aν) > βS(aν)
for some aν ∈ [a2, . . . , ak] ∪ [ak, am−1]. Note that (i) βS(am) = 0 and βS(a1) = βN\[N\S](a1) = 0, and (ii)
βS(ak) = 0 for all ak ∈ [ak+1, ak−1] by the constrained random-dictatorship condition. Hence,
βS([a2, ak]) + βS([ak, am−1]) = 1. Consequently, we induce the following contradiction:∑

ak∈A

β̂S(ak) =β̂S(a1) + β̂S(am) + β̂S([ak+1, ak−1]) +
[
β̂S([a2, ak]) + β̂S([ak, am−1])

]
>β̂S(a1) + β̂S(am) + β̂S([ak+1, ak−1]) +

[
βS([a2, ak]) + βS([ak, am−1])

]
≥ 1.

Next, let βS(am) > 0 or βS(a1) > 0 for some S ⊆ Nwith |S| = n− 1. We construct a (k, k)-RPFBR
ϕ :

[
DH(k, k)

]n → Δ(A), and show that ϕ dominates φ in admitting compromises. For notational
convenience, let S = {1, . . . , n− 2, n− 1}. We construct the following probabilistic ballots: for all
S′ ⊆ Nwith 1 ≤ |S′| ≤ n− 1,

β̂S′(ak) =


0 if ak ∈ {a1, am},
βS′(am) + βS(am−1) if ak = am−1,

βS′(a1) + βS(a2) if ak = a2, and
βS′(ak) otherwise.

In other words, we construct β̂S′ by transferring the probability of am in βS′ to am−1, transferring the
probability of a1 in βS′ to a2, and keeping the probability of every other alternative in βS′ unchanged.
Meanwhile, let β̂N = eam and β̂∅ = ea1 . It is easy to verify that (β̂S′)S′⊆N satisfy ballot unanimity,
monotonicity and the constrained random-dictatorship condition. Therefore, the corresponding PFBR
ϕ :

[
DH(k, k)

]n → Δ(A) is a (k, k)-RPFBR. Furthermore, by construction, we know that
β̂S′(ak) ≥ βS′(ak) for all S

′ ⊆ Nwith 1 ≤ |S′| ≤ n− 1 and ak ∈ [a2, . . . , ak] ∪ [ak, am−1], and
β̂S(am−1) = βS(am−1) + βS(am) > βS(am−1) or β̂S(a2) = βS(a2) + βS(a1) > βS(a2). Then, Lemma 6.12.1
implies that ϕ dominates φ in admitting compromises. This completes the verification of the first part of
Proposition 6.6.3.

Last, let φ be anonymous and decomposable, and S ⊆ N be such that |S| = n− 2, and βS(am) > 0 or
βN\S(a1) > 0. We assume w.l.o.g. that βS(am) > 0. We construct an anonymous non-decomposable
(k, k)-RPFBR ϕ :

[
DH(k, k)

]n → Δ(A), and show that ϕ dominates φ in admitting compromises. For
notational convenience, let S = {1, . . . , n− 2} and S = {1, . . . , n− 2, n− 1}. Given an arbitrary Ŝ ⊆ N
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with |Ŝ| = n− 1, by anonymity and monotonicity, we know βŜ(am) = βS(am) ≥ βS(am) > 0. Moreover,
since φ is decomposable, by anonymity and Theorem 2 of our paper, we have βŜ(am)

n−1 =
βS(am)
n−1 ≥

βS(am)
n−2 .

Thus, βŜ(am) > βS(am). Now, we construct new probabilistic ballots: for all Ŝ ⊆ Nwith 1 ≤ |Ŝ| ≤ n− 1,

β̂Ŝ =

{
βŜ if |Ŝ| < n− 1,
βŜ − [βŜ(am)− βS(am)]eam + [βŜ(am)− βS(am)]eam−1 otherwise.

In other word, when coalition Ŝ has less than n− 1 voters, we fix β̂Ŝ to βŜ, and when coalition Ŝ has n− 1
voters, we lower the probability of am to that in βS, and transfer the remaining probability of am to am−1.
Moreover, let β̂N = eam and β̂∅ = ea1 . It is easy to verify that (β̂Ŝ)Ŝ⊆N satisfy ballot unanimity,
monotonicity and the constrained random-dictatorship condition. Therefore, the corresponding PFBR
ϕ :

[
DH(k, k)

]n → Δ(A) is a (k, k)-RPFBR. Moreover, it is easy to show that (β̂Ŝ)Ŝ⊆N is invariant to the
size of coalitions. Therefore, ϕ is anonymous. However, (β̂Ŝ)Ŝ⊆N violate per-capita monotonicity, i.e.,
β̂S(am)
n−1 =

β̂S(am)
n−1 <

β̂S(am)
n−2 . Therefore, ϕ is not decomposable by Theorem 2 of our paper. Last, by

construction, we know that β̂Ŝ(ak) ≥ βS(ak) for all Ŝ ⊆ Nwith 1 ≤ |Ŝ| ≤ n− 1 and
ak ∈ [a2, . . . , ak] ∪ [ak, am−1], and β̂S(am−1) = βS(am−1) + βS(am)− βS(am) > βS(am−1). Then, Lemma
6.12.1 implies that ϕ dominates φ in admitting compromises. This completes the verification of the
second part of Proposition 6.6.3. ■

6.13 Proof of Theorem 6.7.2

Let domainD satisfy the weak no-restoration property and contain two completely reversed preferences.
Thus,D is connected. Note thatD is minimally richness. We first show thatD is (k, k)-hybrid for some
unique k and k. The proof consists of Lemmas 6.13.1 - 6.13.7.

We first introduce an important new notion. A pair of distinct alternatives as, at ∈ A is said adjacent in
D, denoted as ∼ at, if there exist Pi, P′i ∈ Dwith r1(Pi) = as and r1(P′i) = at such that Pi ∼ P′i . Then, we
induce a graph, denoted byGD, such that the set of vertex is A, and in the set of edges, every pair of
alternatives forms an edge if and only if they are adjacent inD. An alternative-path, denoted byP ,
connecting as and at is a sequence of (non-repeated) vertices {xk}lk=1 ⊆ A such that x1 = as, xl = at and
xk ∼ xk+1 for all k = 1, . . . , l− 1. For notational convenience, let Π(as, at) denote the set of all
alternative-paths connecting as and at,¹⁴ and ⟨as, at⟩ denote one alternative-path connecting as and at.

Lemma 6.13.1 Every pair of distinct alternatives as, at ∈ A is connected via an alternative-path,
i.e.,Π(as, at) ̸= ∅.

¹⁴In particular, if as = at, then Π(as, at) =
{
{as}

}
is a singleton set of a null alternative-path.
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Proof: Given Pi ∈ Dwith r1(Pi) = as and P′i ∈ Dwith r1(P′i) = at by minimal richness, sinceD is
connected, we have a path {Pki }tk=1 ⊆ D connecting Pi and P′i . We partition {Pki }tk=1 according to the
peaks of preferences (without rearranging preferences in the path), and elicit all preference peaks:{

P1
i , . . . , P

k1
i

the same peak x1
,

Pk1+1
i , . . . , Pk2i

the same peak x2
, . . . ,

Pkq−1+1
i , . . . , Pti

the same peak xq

}
−→ Elicit peaks{x1, x2, . . . , xq},

where xk ̸= xk+1 and xk ∼ xk+1 for all k = 1, . . . , q− 1. Note that {x1, x2, . . . , xq}may contain
repetitions. Whenever a repetition appears, we remove all alternatives strictly between the repetition and
one alternative of the repetition. For instance, if xk = xl where 1 ≤ k < l ≤ q, we remove
xk, xk+1, . . . , xl−1, and refine the sequence to {x1, . . . , xk−1, xl, . . . , xq}. By repeatedly eliminating
repetitions, we finally elicit an alternative-path {xk}pk=1 connecting as and at. ■

Let Pi and Pi be the pair of completely reversed preferences contained inD. Assume w.l.o.g. that
Pi = (a1 · · · ak−1ak · · · am) and Pi = (am · · · akak−1 · · · a1). Note that the way we specify Pi and Pi
determines the labeling of all alternatives.

Lemma 6.13.2 Given distinct ap, as, at ∈ A, let at be included in every alternative-path ofΠ(ap, as). Given
Pi ∈ D, we have [r1(Pi) = ap]⇒ [atPias] and [r1(Pi) = as]⇒ [atPiap].

Proof: Suppose that r1(Pi) = ap and asPiat. Pick an arbitrary preference P′i ∈ Dwith r1(P′i) = as by
minimal richness. By the weak no-restoration property, there exists a path {Pki }lk=1 ⊆ D connecting Pi
and P′i such that asPki at for all k = 1, . . . , l. Thus, r1(Pki ) ̸= at for all k = 1, . . . , l. According to path
{Pki }lk=1, we elicit an alternative-path ⟨ap, as⟩which excludes at. This contradicts the hypothesis of the
lemma. Therefore, atPias. Symmetrically, if r1(Pi) = as, then atPiap. ■

Lemma 6.13.3 Given as, at ∈ A\{a1, am} with as ∼ at, If one alternative-path ofΠ(a1, am) includes at, there
exists an alternative-path ofΠ(a1, am) including as.

Proof: Let {xk}pk=1 ∈ A and at = xη for some 1 < η < p. If as ∈ {xk}pk=1, the lemma holds evidently.
Henceforth, assume as /∈ {xk}pk=1. Note the alternative-path {a1 = x1, x2, . . . , xη = at, as} ∈ Π(a1, as),
and the alternative-path {as, at = xη, . . . , xp−1, xp = am} ∈ Π(as, am).

Since P and Pi are completely reversed, either asPiat or asPiat holds. Assume w.l.o.g. that asPiat. The
verification related to asPiat is symmetric and we hence omit it. Pick an arbitrary preference Pi ∈ Dwith
r1(Pi) = as by minimal richness. By the weak no-restoration property, we have a path {Pki }νk=1 ⊆ D
connecting Pi and Pi such that asPki at for all k = 1, . . . , ν. Thus, r1(Pki ) ̸= at for all k = 1, . . . , ν. According
to {Pki }νk=1, we elicit an alternative-path {yk}qk=1 ∈ Π(a1, as) such that at /∈ {yk}qk=1.
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Evidently, {yk}qk=1 ∩ {xk}
p
k=1 ⊇ {a1}. If {yk}qk=1 ∩ {xk}

p
k=1 = {a1}, then the concatenated

alternative-path {a1 = y1, . . . , yq = as; at = xη, . . . , xp = am} ∈ Π(a1, am) includes as. Next, we assume
{yk}qk=1 ∩ {xk}

p
k=1 ⊃ {a1}. We identify the alternative in {yk}qk=1 that has the maximum index and is also

included in {xk}pk=1, i.e., yk̂ = xk∗ for some 1 < k̂ < q and 1 < k∗ ≤ p and {yk̂+1, . . . , yq} ∩ {xk}
p
k=1 = ∅.

Note that at = xη, 1 < η < p and at ̸= yk̂. Therefore, either 1 < k∗ < η or η < k∗ ≤ pmust hold. If
1 < k∗ < η, the concatenated alternative-path
{a1 = x1, . . . , xk∗ = yk̂; yk̂+1, . . . , yq = as; at = xη, . . . , xp = am} ∈ Π(a1, am) includes as. If
η < k∗ ≤ p, the concatenated alternative-path
{a1 = x1, . . . , xη = at; as = yq, . . . , yk̂+1; yk̂ = xk∗ , . . . , xp = am} ∈ Π(a1, am) includes as. ■

Lemma 6.13.4 Given as ∈ A\{a1, am}, there exists an alternative-path ofΠ(a1, am) including as.

Proof: Pick an arbitrary preference Pi ∈ Dwith r1(Pi) = as by minimal richness. Note that asPiam and
asPiam. By the weak no-restoration property, we have a path {Pki }lk=1 ⊆ D connecting Pi and Pi such that
asPki am for all k = 1, . . . , l. Thus, r1(Pki ) ̸= am for all k = 1, . . . , l. According to {Pki }lk=1, we elicit an
alternative-path {xk}pk=1 ∈ Π(a1, as) that excludes am. Symmetrically, we have an alternative-path
{yk}qk=1 ∈ Π(as, am) that excludes a1. Thus, {xk}pk=1 ∩ {yk}

q
k=1 ⊇ {as}. If {xk}

p
k=1 ∩ {yk}

q
k=1 = {as}, then

the concatenated alternative-path {a1 = x1, . . . , xp = as = y1, . . . , yq = am} ∈ Π(a1, am) includes as. If
{xk}pk=1 ∩ {yk}

q
k=1 ⊃ {as}, we identify the alternative at included in both {xk}pk=1 and {yk}

q
k=1 with the

maximum index in {xk}pk=1 and the minimum index in {yk}qk=1, i.e., at = xk̂ = yk∗ for some 1 < k̂ < p and
1 < k∗ < q such that {x1, . . . , xk̂−1} ∩ {yk∗+1, . . . , yq} = ∅. Thus, the concatenated alternative-path
{x1, . . . , xk̂−1, xk̂ = at = yk∗ , yk∗+1, . . . , yq} ∈ Π(a1, am) includes at, and excludes as. Furthermore, we
refer to the sub-alternative-path {at = xk̂, . . . , xp = as}, by repeatedly applying Lemma 6.13.3 step by
step from at to as along the sub-alternative-path, we eventually find an alternative-path of Π(a1, am) that
includes as. ■

Note that Π(a1, am) is a finite nonempty set. Hence, we label Π(a1, am) = {P1, . . . ,Pn}, and make
sure that each alternative-path of Π(a1, am) starts from a1 and ends at am. GivenPl ∈ Π(a1, am) and
as, at ∈ Pl, let ⟨as, at⟩Pl denote the interval between as and at onPl.

Lemma 6.13.5 IfΠ(a1, am) is a singleton set,D is (k, k)-hybrid for all 1 ≤ k < k ≤ mwith k− k = 1.

Proof: Since Π(a1, am) is a singleton set, Lemma 6.13.4 implies that all alternatives must be included in a
unique alternative-path. Thus,GD must be a line and include all alternatives. More importantly, Lemma
6.13.2 implies that all preferences ofDmust be single-peaked w.r.t. GD. Since Pi and Pi are single-peaked
w.r.t. GD, it must be the case thatGD is a line of {a1, a2, . . . , ak, ak+1, . . . , am}which coincides to the

139



natural order≺. Hence,D ⊆ D≺ = DH(k, k) for all 1 ≤ k < k ≤ mwith k− k = 1. Evidently, as
DH(k′, k

′
), where k′ > k or k′ < k, is not well defined,D ⊈ DH(k′, k

′
). ■

Henceforth, we assume that Π(a1, am) is not a singleton set. Since all alternative-paths of Π(a1, am)
start from a1 and end at am, we can identify the left maximum common part and the right maximum
common part of all alternative-paths of Π(a1, am), i.e., there exist two alternatives ak, ak ∈ A (either k ≤ k
or k ≥ k so far) such that the following three conditions are satisfied:

(i) ak, ak ∈ Pl for allPl ∈ Π(a1, am),

(ii) ⟨a1, ak⟩Pl = ⟨a1, ak⟩Pν , and ⟨ak, am⟩Pl = ⟨ak, am⟩Pν for allPl,Pν ∈ Π(a1, am), and

(iii) there exist no ak′ , ak′ ∈ A such that ak′ , ak′ ∈ Pl for allPl ∈ Π(a1, am), and ⟨a1, ak⟩Pl ⊂ ⟨a1, ak′⟩Pl

or ⟨ak, am⟩Pl ⊂ ⟨ak′ , am⟩
Pl for allPl ∈ Π(a1, am).

We claim that ak ̸= ak. Otherwise, Π(a1, am) degenerates to a singleton set. Note that condition (iii)
implies that ak and ak are unique. Fix an arbitraryPl ∈ Π(a1, am). We first claim
⟨a1, ak⟩Pl ∩ ⟨ak, am⟩Pl = ∅. Suppose not, i.e., there exists as ∈ ⟨a1, ak⟩Pl ∩ ⟨ak, am⟩Pl such that
⟨a1, as⟩Pl ∩ ⟨as, am⟩Pl = {as}. Since ak ̸= ak, we know either as ̸= ak or as ̸= ak. Consequently, the
concatenated alternative-path {⟨a1, as⟩Pl , ⟨as, am⟩Pl} ∈ Π(a1, am) excludes either ak or ak, which
contradicts condition (i). Therefore, ⟨a1, ak⟩Pl ∩ ⟨ak, am⟩Pl = ∅. Next, we claim that
⟨a1, ak⟩Pl ∪ ⟨ak, am⟩Pl ̸= A. Otherwise, condition (ii) implies ⟨a1, ak⟩Pν ∪ ⟨ak, am⟩Pν = A for all
Pν ∈ Π(a1, am), and consequently, Π(a1, am) degenerates to a singleton set.

Lemma 6.13.6 The following two statements hold:

(i) Π(a1, ak) is a singleton set of the unique alternative-path {a1, . . . , ak, ak+1, . . . , ak}.

(ii) Π(ak, am) is a singleton set of the unique alternative-path {ak, . . . , ak, ak+1, . . . , am}.

Proof: By symmetry, we show the first statement, and omit the verification of the second statement.
First, let Π(a1, ak) be a singleton set. We show that Π(a1, ak) =

{
{a1, . . . , ak, ak+1, . . . , ak}

}
, which

coincides to the nature order≺ from a1 to ak. Since Π(a1, ak) is a singleton set, Lemma 6.13.2 implies that
all preferences ofDmust be single-peaked w.r.t. the unique alternative-path of Π(a1, ak). Moreover, since
the completely reversed preferences Pi = (a1 · · · akak+1 · · · ak · · · ak · · · am) and
Pi = (am · · · ak · · · ak · · · ak+1ak · · · a1) are contained inD, this implies that the unique alternative-path of
Π(a1, ak)must be {a1, . . . , ak, ak+1, . . . , ak}.

Next, we show that Π(a1, ak) is a singleton set. If a1 = ak, statement (i) holds by the definition of
Π(a1, ak). We next assume a1 ̸= ak. Pick an arbitrary alternative-path

140



Pl = {a1 = x1, . . . , xv = ak, . . . , xt = am} ∈ Π(a1, am). Given an arbitrary alternative-path
⟨a1, ak⟩ = {a1 = y1, . . . , yu = ak}, we show ⟨a1, ak⟩ = ⟨a1, ak⟩Pl . Since ak = xv = yu, we can identify the
alternative yk̂ = xk∗ for some 1 < k̂ ≤ u and v ≤ k∗ ≤ t such that {y1, . . . , yk̂−1} ∩ {xk∗+1, . . . , xt} = ∅.
Then, we have a concatenated alternative-pathPν = {y1, . . . , yk̂−1, yk̂ = xk∗ , xk∗+1, . . . , xt} ∈ Π(a1, am).
By condition (i) above, we know ak ∈ Pν. Since ak /∈ {y1, . . . , yk̂−1} and ak /∈ {xk∗+1, . . . , xt}, it must be
the case yk̂ = ak and xk∗ = ak. Hence, ⟨a1, ak⟩ = ⟨a1, ak⟩Pν . Last, by condition (ii) above, we have
⟨a1, ak⟩ = ⟨a1, ak⟩Pν = ⟨a1, ak⟩Pl . Since bothPl and ⟨a1, ak⟩ are arbitrarily selected, ⟨a1, ak⟩ = ⟨a1, ak⟩Pl

implies that Π(a1, ak) is a singleton set. ■

Henceforth, let L = {a1, . . . , ak, ak+1, . . . , ak}, R = {ak, . . . , ak, ak+1, . . . , am} and
M = {ak, . . . , ak, ak+1, . . . , ak}. As mentioned before, we know k− k > 1.

Lemma 6.13.7 DomainD ⊆ DH(k, k), andD ⊈ DH(k′, k
′
) where k′ > k or k′ < k.

Proof: By Lemma 6.13.2, we know that all preferences ofD are single-peaked w.r.t. the natural order≺ on
both L and R. Therefore, the first restriction of Definition 6.3.1 is satisfied. We focus on showing the
second restriction of Definition 6.3.1.

Fix Pi ∈ Dwith r1(Pi) = ap ∈ L and ar ∈ M\{ak}. If ap = ak, akPiar holds evidently. We next assume
ap ̸= ak. By Lemma 6.13.2, to prove akPiar, it suffices to show that ak is included in every alternative-path
of Π(ap, ar). Suppose not, i.e., there exists an alternative-path ⟨ap, ar⟩ such that ak /∈ ⟨ap, ar⟩. Since
ap ̸= ak, we have the alternative-path ⟨a1, ap⟩ = {a1, . . . , ak, ak+1, . . . , ap}which excludes ak. Next, if
ar = ak, we have the alternative-path ⟨ar, am⟩ = {ak, . . . , am}which excludes ak. If ar ∈ M\{ak, ak}, by
Lemma 6.13.4, we have an alternative-pathPl ∈ Π(a1, am) that includes ar. Moreover, by condition (i)
above and Lemma 6.13.6, we writePl = {a1, . . . , ak, x1, . . . , xt, ak, . . . , am}where
ar = xv ∈ {x1, . . . , xt} ⊆ M\{ak, ak} for some 1 ≤ v ≤ t. Then, we have an alternative-path
{ar = xv, . . . , xt, ak, . . . , am}which excludes ak. Overall, we have an alternative-path ⟨ar, am⟩ that
excludes ak. Now, we have three alternative-paths ⟨a1, ap⟩, ⟨ap, ar⟩ and ⟨ar, am⟩which all exclude ak. By
combining them and removing repeated alternatives, we can construct an alternative-path of Π(a1, am)
that excludes ak. This contradicts condition (i) above. Therefore, ak is included in every alternative-path
of Π(ap, ar), as required. Symmetrically, given Pi ∈ Dwith r1(Pi) ∈ R and as ∈ M\{ak}, we have akPias.

Last, recall condition (iii) above. Since ak and ak are uniquely identified,D ⊈ DH(k′, k
′
)where k′ > k

or k′ < k. This completes the verification of the lemma, and hence proves the first part of Theorem 6.7.2.
■

Now, we turn to the second part of Theorem 6.7.2. By the first part of Theorem 6.7.2, we know that
D ⊆ DH(k, k) for some 1 ≤ k < k ≤ m andD ⊈ DH(k′, k

′
)where k′ > k and k′ < k. By the sufficiency

part of Theorem 6.5.1, it is evident that every (k, k)-RPFBR is unanimous and strategy-proof onD.
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Therefore, we focus on showing that every unanimous and strategy-proof onD is a (k, k)-RPFBR. We
provides four independent lemmas which show some important properties on all unanimous and
strategy-proof RSCFs defined onD. Then, these four lemmas together enable us to complete the
characterization of (k, k)-RPFBRs.

Lemma 6.13.8 Every unanimous and strategy-proof RSCF ϕ : Dn → Δ(A) satisfies the tops-only property.

Proof: Fix a unanimous and strategy-proof RSCF ϕ : Dn → Δ(A). To prove the tops-only property, it
suffices to show that for all i ∈ N, Pi, P′i ∈ D and P−i ∈ Dn−1,
[r1(Pi) = r1(P′i)]⇒ [ϕ(Pi, P−i) = ϕ(P′i, P−i)].

We prove this in two steps. In the first step, by the proof of Theorem 1 of [31], we know that ϕ satisfies
the following property: for all i ∈ N, Pi, P′i ∈ Dwith Pi ∼ P′i and P−i ∈ Dn−1,
[r1(Pi) = r1(P′i)]⇒ [ϕ(Pi, P−i) = ϕ(P′i, P−i)].¹⁵ In the second step, we consider Pi, P′i ∈ D such that
r1(Pi) = r1(P′i) ≡ as, but Pi is not adjacent to P′i .

First, strategy-proofness implies ϕas(Pi, P−i) = ϕas(P
′
i, P−i). Next, pick an arbitrary at ∈ A\{as}, we

show ϕat(Pi, P−i) = ϕat(P
′
i, P−i). By the weak no-restoration property, there exists a path {Pki }

q
k=1 ⊆ D

connecting Pi and P′i such that asPki at for all k = 1, . . . , q. Start from P2
i . If r1(P2

i ) = r1(P1
i), the result in the

first step implies ϕat(P
1
i , P−i) = ϕat(P

2
i , P−i). If r1(P2

i ) = ar ̸= as = r1(P1
i), then P1

i ∼ P2
i implies

r1(P1
i) = r2(P2

i ) = as, r1(P2
i ) = r2(P1

i) = ar and rl(P1
i) = rl(P2

i ) for all l = 3, . . . ,m. Hence, it must be the
case that at = rl(P1

i) = rl(P2
i ) for some 3 ≤ l ≤ m, and then strategy-proofness implies

ϕat(P
1
i , P−i) = ϕat(P

2
i , P−i). Overall, we have ϕat(P

1
i , P−i) = ϕat(P

2
i , P−i). By repeatedly applying this

argument along the path from P2
i to P

q
i , we eventually have ϕat(P

k
i , P−i) = ϕat(P

k+1
i , P−i) for all

k = 1, . . . , q− 1. Hence, ϕat(Pi, P−i) = ϕat(P
′
i, P−i). Therefore, ϕ(Pi, P−i) = ϕ(P′i, P−i), as required. ■

SinceD is minimally rich, the tops-only property implies that every unanimous and strategy-proof
φ : Dn → Δ(A) degenerates to a random voting scheme φ : An → Δ(A). Given an arbitrary random voting
scheme φ : An → Δ(A), we say that (i) φ is unanimous onDH(k, k) if for all (P1, . . . , PN) ∈

[
DH(k, k)

]n,
[r1(P1) = · · · = r1(Pn) = ak]⇒ [φ(ak, . . . , ak) = eak ], and (ii) φ is strategy-proof (respectively, locally
strategy-proof ) onDH(k, k) if for all i ∈ N, Pi, P′i ∈ DH(k, k) (respectively, Pi ∼ P′i) and
P−i ∈

[
DH(k, k)

]n−1, φ
(
r1(Pi), r1(P−i)

)
stochastically dominates φ

(
r1(P′i), r1(P−i)

)
according to Pi,

where r1(P−i) =
(
r1(P1), . . . , r1(Pi−1), r1(Pi+1), . . . , r1(Pn)

)
.

To show a unanimous and strategy-proof ϕ : Dn → Δ(A) is a (k, k)-RPFBR, by Lemma 6.13.8, Fact
6.8 and the necessity part of Theorem 6.5.1, it suffices to show that the corresponding random voting

¹⁵[31] introduce the interior and exterior properties on a domain and show that they together are sufficient for endogeniz-
ing the tops-only property on all unanimous and strategy-proof RSCFs. The weak no-restoration property implies the exterior
property, but may not be compatible with the interior property. However, the proof of their Theorem 1 can be directly applied
to show the first-step result here.
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scheme ϕ : An → Δ(A) is unanimous and locally strategy-proof onDH(k, k). Note that bothD and
DH(k, k) are minimally rich. Consequently, since RSCF ϕ is unanimous and satisfies the tops-only
property, it follows immediately that the random voting scheme ϕ : An → Δ(A) is unanimous on
DH(k, k). In the rest of the proof, we show that every random voting scheme, which is induced from a
unanimous and strategy-proof RSCF ϕ : Dn → Δ(A), is locally strategy-proof onDH(k, k).

For notational convenience, with a little notational abuse, we write (as, at) as a two-voter preference
profile where the first voter presents a preference with peak as while the second reports a preference with
peak at. We also write (as, P−i) as an n-voter preference profile where voter i presents a preference with
peak as and P−i = (P1, . . . , Pi−1, Pi+1, . . . , Pn).

Lemma 6.13.9 (The uncompromising property) Let ϕ : Dn → Δ(A) be a unanimous and strategy-proof
RSCF. Given an alternative-path {xk}tk=1, i ∈ I and P−i ∈ Dn−1, we have ϕas(x1, P−i) = ϕas(xt, P−i) for all
as /∈ {xk}tk=1, and hence

∑t
k=1 ϕxk

(x1, P−i) =
∑t

k=1 ϕxk
(xt, P−i).

Proof: We start with ϕ(x1, P−i) and ϕ(x2, P−i). Since x1 ∼ x2, we have Pi ∈ Dx1 and P′i ∈ Dx2 such that
Pi ∼ P′i . Then, the tops-only property and strategy-proofness imply
ϕas(x1, P−i) = ϕas(Pi, P−i) = ϕas(P

′
i, P−i) = ϕas(x2, P−i) for all as /∈ {x1, x2}.

We next introduce an induction hypothesis: Given 2 < k ≤ t, for all 2 ≤ k′ < k,
ϕas(x1, P−i) = ϕas(xk′ , P−i) for all as /∈ {xl}k

′

l=1. We show ϕas(x1, P−i) = ϕas(xk, P−i) for all as /∈ {xl}kl=1.
Since xk ∼ xk−1, we have Pi ∈ Dxk and P′i ∈ Dxk−1 such that Pi ∼ P′i . Then, the tops-only property and
strategy-proofness imply ϕas(xk, P−i) = ϕas(Pi, P−i) = ϕas(P

′
i, P−i) = ϕas(xk−1, P−i) for all

as /∈ {xk−1, xk}. Moreover, since ϕas(x1, P−i) = ϕas(xk−1, P−i) for all as /∈ {xl}k−1
l=1 by the induction

hypothesis, it is true that ϕas(x1, P−i) = ϕas(xk, P−i) for all as /∈ {xl}kl=1. This completes the verification of
the induction hypothesis. Therefore, ϕas(x1, P−i) = ϕas(xt, P−i) for all as /∈ {xk}tk=1. Then, we have∑t

k=1 ϕxk
(x1, P−i) = 1−

∑
as /∈{xk}tk=1

ϕas(x1, P−i) = 1−
∑

as /∈{xk}tk=1
ϕas(xt, P−i) =

∑t
k=1 ϕxk

(xt, P−i). ■

Now, we can show that if k− k = 1, every unanimous and strategy-proof ϕ : Dn → Δ(A) is a PFBR.
Recall that k− k = 1 impliesD ⊆ DH(k, k) = D≺. Correspondingly, Lemma 6.13.9 degenerates to the
uncompromising property of [46], and the random voting scheme ϕ : An → Δ(A) satisfies the
uncompromising property onD≺. Furthermore, Lemma 3.2 of [46] implies that the random voting
scheme ϕ is strategy-proof onD≺, as required. This completes the verification of the second part of
Theorem 6.7.2 in the case k− k = 1. Henceforth, we assume k− k > 1. We first make two observations
on graphGD, which will be repeatedly used in the following-up proof. Given as ∈ M\{ak, ak}, there
exists an alternative-path ⟨ak, ak⟩ ⊆ M that includes as. 2 There exists a cycle C1 = {xk}pk=1 ⊆ M, p ≥ 3,
i.e., xk ∼ xk+1 for all k = 1, . . . , pwhere xp+1 = x1, such that ak ∈ C1.¹⁶ There exists a cycle

¹⁶By the identification of ak, we know that there exist at least two distinct alternatives ofM that are adjacent to ak inD. Then,
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C2 = {yk}qk=1 ⊆ M, q ≥ 3, i.e., yk ∼ yk+1 for all k = 1, . . . , p− 1 where yq+1 = y1, such that ak ∈ C2. 2

Lemma 6.13.10 Every unanimous and strategy-proof RSCF ϕ : Dn → Δ(A) behaves like a random
dictatorship on the subdomainD = {Pi ∈ D : r1(Pi) ∈ M}, i.e., there exists a conditional dictatorial
coefficient εi ≥ 0 for each i ∈ Nwith

∑
i∈N εi = 1 such that ϕ(P) =

∑
i∈N εi er1(Pi) for all P ∈ Dn.

Proof: We verify this lemma in two steps. In the first step, we restrict attention to the case n = 2, i.e.,
N = {1, 2}, and show by Claims 1 - 4 below that every two-voter unanimous and strategy-proof RSCF on
D behaves like a random dictatorship on subdomainD. In the second step, we extend the result to the
case n > 2 by adopting the Ramification Theorem of [35].

Fix a unanimous and strategy-proof RSCF ϕ : D2 → Δ(A). By Lemma 6.13.8, ϕ satisfies the tops-only
property.

Claim 1: The following two statements hold:

(i) Given an alternative-path {zk}lk=1, we have
∑l

k=1 ϕzk
(z1, zl) = 1.

(ii) Given a circle {zk}lk=1, we have ϕzs(zs, zt) + ϕzt(zs, zt) = 1 for all s ̸= t.

The first statement follows immediately from unanimity and the uncompromising property. Next,
consider the circle {zk}lk=1. Fixing zs and zt, assume w.l.o.g. that s < t. There are two alternative-paths
connecting zs and zt: the clockwise alternative-pathP = {zs, zs+1, . . . , zt} and the counter clockwise
alternative-pathP ′ = {zs, zs−1, . . . , z1, zl, zl−1, . . . , zt}. It follows immediately from statement (i) that∑

z∈P ϕz(zs, zt) = 1 and
∑

z∈P ′ ϕz(zs, zt) = 1. Last, sinceP ∩ P ′ = {zs, zt}, it is true that
ϕzs(zs, zt) + ϕzt(zs, zt) = 1. This completes the verification of the claim.

Claim 2: According to the cycle C1 = {xk}pk=1 of Observation 6.13, ϕ behaves like a random dictatorship
on the subdomainDC1 = {Pi ∈ D : r1(Pi) ∈ C1}, i.e., there exists 0 ≤ ε ≤ 1 such that
ϕ(xk, xk′) = εexk + (1− ε)exk′ for all xk, xk′ ∈ C1.

Claim 1(ii) first implies ϕx1(x1, x2) + ϕx2(x1, x2) = 1. Let ε = ϕx1(x1, x2) and 1− ε = ϕx2(x1, x2). Fix
another profile (xk, xk′). If xk = xk′ , unanimity implies ϕ(xk, xk′) = εexk + (1− ε)exk′ . We next assume
xk ̸= xk′ . There are four possible cases: (i) x1 ̸= xk and x2 = xk′ , (ii) x1 = xk and x2 ̸= xk′ , (iii) x1 ̸= xk,
x2 ̸= xk′ and (xk, xk′) ̸= (x2, x1), and (iv) (xk, xk′) = (x2, x1).

Since cases (i) and (ii) are symmetric, we focus on the verification of case (i), and omit the
consideration of case (ii). We first have ϕxk

(xk, x2) + ϕx2(xk, x2) = 1 by Claim 1(ii). We next show
ϕx2(xk, x2) = 1− ε. Note that there exists an alternative-path in C1 that connects x1 and xk, and excludes

we can identify two distinct alternative-paths in M which connect ak and ak. From these two alternative-paths, we can elicit a
cycle inM that includes ak.
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x2. Then, according to this alternative-path, the uncompromising property implies
ϕx2(xk, x2) = ϕx2(x1, x2) = 1− ε, as required.

In case (iii), we first know either xk /∈ {x1, x2} or xk′ /∈ {x1, x2}. Assume w.l.o.g. that xk /∈ {x1, x2}.
Then, by the verification of cases (i), from (x1, x2) to (xk, x2), we have ϕ(xk, x2) = εexk + (1− ε)ex2 .
Furthermore, by case (ii), from (xk, x2) to (xk, xk′), we eventually have ϕ(xk, xk′) = εexk + (1− ε)exk′ .

Last, in case (iv), since the cycle C1 contains at least three alternatives, we first consider the profile
(x3, x2) and have ϕ(x3, x2) = εex3 + (1− ε)ex2 by the verification of case (i). Next, according to the
verification of case (iii), from (x3, x2) to (x2, x1), we induce ϕ(x2, x1) = εex2 + (1− ε)ex1 . This completes
the verification of the claim.

Symmetrically, according to the circle C2 of Observation 6.13, ϕ also mimics a random dictatorship on
the subdomainDC2 = {Pi ∈ D : r1(Pi) ∈ C2}, i.e., there exists 0 ≤ ε′ ≤ 1 such that
ϕ(yk, yk′) = ε′eyk + (1− ε′)eyk′ for all yk, yk′ ∈ C2.

Claim 3: We have (i) ε = ε′, (ii) ϕ(ak, ak) = ε eak + (1− ε)eak , and (iii) ϕ(ak, ak) = ε eak + (1− ε)eak .

According to the graphGD and the two cycles C1 and C2, we can construct an alternative-path
P = {z1, z2, . . . , zl−1, zl} ⊆ M such that (i) l ≥ 3, (ii) z1, z2 ∈ C1 and ak ∈ {z1, z2}, and (iii) zl−1, zl ∈ C2
and ak ∈ {zl−1, zl}. First, Claim 2 and the uncompromising property imply ε = ϕz1(z1, z2) = ϕz1(z1, zl)
and 1− ε = ϕz1(z2, z1) = ϕz1(zl, z1). Symmetrically, we have 1− ε′ = ϕzl

(zl−1, zl) = ϕzl
(z1, zl) and

ε′ = ϕzl
(zl, zl−1) = ϕzl

(zl, z1). Thus, ε+ 1− ε′ = ϕz1(z1, zl) + ϕzl
(z1, zl) ≤ 1 which implies ε ≤ ε′, and

1− ε+ ε′ = ϕz1(zl, z1) + ϕzl
(zl, z1) ≤ 1 which implies ε ≥ ε′. Therefore, ε = ε′. This completes the

verification of statement (i).
Since statements (ii) and (iii) are symmetric, we focus on showing statement (ii) and omit the

consideration of statement (iii). First, by the verification of statement (i), we have
ϕ(z1, zl) = ε ez1 + (1− ε)ezl . Second, according toP , the uncompromising property implies
ϕzl

(z2, zl) = ϕzl
(z1, zl) = 1− ε and ϕzk

(z2, zl) = ϕzk
(z1, zl) = 0 for all 2 < k < l. Moreover, since∑l

k=2 ϕzk
(z2, zl) = 1 by Claim 1(i), we have ϕz2(z2, zl) = 1− ϕzl

(z2, zl) = ε, and hence
ϕ(z2, zl) = ε ez2 + (1− ε)ezl . Symmetrically, we also have ϕ(z1, zl−1) = ε ez1 + (1− ε)ezl−1 . Recall that
ak ∈ {z1, z2} and ak ∈ {zl−1, zl}. We hence conclude that when ak = z1 or ak = zl,
ϕ(ak, ak) = ε eak + (1− ε)eak . Last, we show that when ak = z2 and ak = zl−1,
ϕ(ak, ak) = ε eak + (1− ε)eak . According toP , the uncompromising property implies
ϕak

(ak, ak) = ϕz2(z2, zl−1) = ϕz2(z2, zl) = ε and ϕak
(ak, ak) = ϕzl−1

(z2, zl−1) = ϕzl−1
(z1, zl−1) = 1− ε, as

required. This completes the verification of statement (ii), and hence proves the claim.

Claim 4: Given distinct as, at ∈ M, ϕ(as, at) = ε eas + (1− ε)eat .

First, consider the situation that there existsPl ∈ Π(a1, am) such that as, at ∈ Pl. Since as, at ∈ M, the
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interval [ak, ak]Pl ≡ {xk}lk=1 ⊆ Mmust include as and at. By Claim 3, we have
ϕ(x1, xl) = ε ex1 + (1− ε)exl and ϕ(xl, x1) = ε exl + (1− ε)ex1 . Then, according to the alternative-path
{xk}lk=1, by repeatedly applying Claim 1(i) and the uncompromising property, we have
ϕ(xk, xk′) = ε exk + (1− ε)exk′ for all distinct 1 ≤ k, k′ ≤ l. Hence, ϕ(as, at) = ε eas + (1− ε)eat .

Next, consider the situation that there exists noPl ∈ Π(a1, am) that includes both as and at. According
to Observation 6.13, it must be the case that as /∈ {ak, ak} and at /∈ {ak, ak}. Moreover, by Observation
6.13, let {bk}lk=1 ⊆ M be an alternative-path that connects ak and ak, and includes as, and let {ck}uk=1 ⊆ M
be an alternative-path that connects ak and ak, and includes at. Evidently, as /∈ {ck}nk=1 and at /∈ {bk}lk=1.
Let as = bp and at = cq for some 1 < p < l and 1 < q < u. According to the sub-alternative-paths
{b1, b2, . . . , bp} and {c1, c2, . . . , cq}, since b1 = c1 = ak, bp /∈ {ck}uk=1 and cq /∈ {bk}lk=1, we identify
1 ≤ η < p and 1 ≤ ν < q such that bη = cν and {bη+1, . . . , bp} ∩ {cν+1, . . . , cq} = ∅. Then, we have the
concatenated alternative-pathP = {as = bp, . . . , bη = cν, . . . , cq = at} ⊆ Mwhich connects as and at.
By the verification in the first situation, we have ϕbp(bp, bη) = ε and ϕcq(cν, cq) = 1− ε. Furthermore,
according toP , the uncompromising property implies
ϕas(as, at) = ϕbp(bp, cq) = ϕbp(bp, cν) = ϕbp(bp, bη) = ε and
ϕat(as, at) = ϕcq(bp, cq) = ϕcq(bη, cq) = ϕcq(cν, cq) = 1− ε. Therefore, ϕ(as, at) = ε eas + (1− ε)eat .
This completes the verification of the claim.

In conclusion, every two-voter unanimous and strategy-proof RSCF behaves like a random
dictatorship on the subdomainD. For the general case n > 2, we adopt an induction argument.

Induction Hypothesis: Given n ≥ 3, for all 2 ≤ n′ < n, every unanimous and strategy-proof
ψ : Dn′ → Δ(A) behaves like a random dictatorship on the subdomainD.

Given a unanimous and strategy-proof RSCF ϕ : Dn → Δ(A), n > 2, we show that it behaves like a
random dictatorship on the subdomainD. If n ≥ 4, the verification follows exactly from Propositions 5
and 6 of [35]. Therefore, we focus on the case n = 3, i.e.,N = {1, 2, 3}. Analogous to Propositions 4 and
6 of [35], we split the verification into the following two parts:

1. There exists ε1, ε2, ε3 ≥ 0 with ε1 + ε2 + ε3 = 1 such that for all P ∈ D3
, we have[

Pi = Pj for some distinct i, j ∈ N
]
⇒

[
ϕ(P) = ε1 er1(P1) + ε2 er1(P2) + ε3 er1(P3)

]
.

2. For all P ∈ D3
, we have ϕ(P) = ε1 er1(P1) + ε2 er1(P2) + ε3 er1(P3).

The second part follows exactly from Proposition 6 of [35]. Therefore, we focus on showing the first
part.¹⁷

¹⁷Proposition 4 of [35] is not applicable for the verification of the first part since they impose an additional domain condition
(see their Definition 18) which cannot be confirmed on domainD.
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According to ϕ, we first induce three two-voter RSCFs by merging two voters respectively: For all
P1, P2, P3 ∈ D, let ψ1(P1, P2) = ϕ(P1, P2, P2), ψ2(P1, P2) = ϕ(P1, P2, P1) and ψ3(P1, P3) = ϕ(P1, P1, P3). It
is easy to verify that all ψ1, ψ2 and ψ3 are unanimous and strategy-proof onD. Therefore, the induction
hypothesis implies that there exist 0 ≤ ε1, ε2, ε3 ≤ 1 such that for all P1, P2, P3 ∈ D,
ψ1(P1, P2) = ε1 er1(P1) + (1− ε1)er1(P2), ψ2(P1, P2) = (1− ε2)er1(P1) + ε2 er1(P2) and
ψ3(P1, P3) = (1− ε3)er1(P1) + ε3 er1(P3). Note that to show the first part holds, it suffices to prove
ε1 + ε2 + ε3 = 1.

Recall the cycle C1 = {xk}pk=1 ⊆ M in Observation 6.13. First, according to the three alternative-paths
{x2, x3}, {x1, x2} and {x1, xp, . . . , x4, x3} in C1, the uncompromising property implies respectively that (i)
ϕx1(x1, x2, x3) = ϕx1(x1, x2, x2) = ψ1

x1(x1, x2) = ε1 and ϕas(x1, x2, x3) = ϕas(x1, x2, x2) = ψ1
as(x1, x2) = 0

for all as /∈ {x1, x2, x3}, (ii) ϕx3(x1, x2, x3) = ϕx3(x2, x2, x3) = ψ3
x3(x2, x3) = ε3, and (iii)

ϕx2(x1, x2, x3) = ϕx2(x3, x2, x3) = ψ2
x2(x3, x2) = ε2. Then, we have ε1 + ε2 + ε3 =

ϕx1(x1, x2, x3) + ϕx2(x1, x2, x3) + ϕx3(x1, x2, x3) +
∑

as /∈{x1,x2,x3} ϕas(x1, x2, x3) =
∑

as∈A ϕas(x1, x2, x3) = 1,
as required. This completes the verification of the induction hypothesis, and hence proves Lemma
6.13.10. ■

Lemma 6.13.11 Let ϕ : Dn → Δ(A) be a unanimous and strategy-proof RSCF. Given distinct as, at ∈ M
and P−i ∈ Dn−1, we have ϕak

(as, P−i) = ϕak
(at, P−i) for all ak /∈ {as, at}.

Proof: First, Lemma 6.13.8 implies that ϕ satisfies the tops-only property, and Lemma 6.13.10 implies that
ϕmimics a random dictatorship on the subdomainD = {Pi ∈ D : r1(Pi) ∈ M}.

Claim 1: The two statements hold: (i) [ak /∈ {as, at}]⇒ [ϕak
(as, P−i) = ϕak

(at, P−i)], and (ii)

[ak /∈ {as, at}]⇒
[
ϕak

(as, P−i) = ϕak
(at, P−i)

]
.

By symmetry, we focus on showing statement (i) and omit the consideration of statement (ii). Note
that if there exists an alternative-path that connects as and at and excludes ak, then the uncompromising
property implies ϕak

(as, P−i) = ϕak
(at, P−i). Therefore, to complete the verification, we will construct

such an alternative-path.
If as ̸= ak, we pick an alternative-path ⟨ak, ak⟩ that includes as by Observation 6.13, and elicit the

sub-alternative-path ⟨as, ak⟩. If as = ak, we refer to ⟨as, ak⟩ = {as}. Thus, ak /∈ ⟨as, ak⟩. Similarly, we have
an alternative-path ⟨ak, at⟩which excludes ak. According to ⟨as, ak⟩ and ⟨ak, at⟩, we construct an
alternative-path which connects as and at, and excludes ak, as required. This completes the verification of
the claim.

Since as, at ∈ M, by the verification of Claim 4 in the proof of Lemma 6.13.10, there exists an
alternative-path {xk}pk=1 ⊆ M connecting as and at. The uncompromising property first implies
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ϕak
(as, P−i) = ϕak

(at, P−i) for all ak /∈ {xk}pk=1. Therefore, to complete the proof of the lemma, it suffices
to show that ϕxk

(as, P−i) = ϕxk
(at, P−i) for all k = 2, . . . , p− 1. If xk ∈ {ak, ak}, it follows immediately

from Claim 1 that ϕxk
(as, P−i) = ϕxk

(at, P−i). Hence, we let Θ = {x2, . . . , xp−1}\{ak, ak} and show
ϕz(as, P−i) = ϕz(at, P−i) for all z ∈ Θ.

For notational convenience, let i = n. We partition {1, . . . , n− 1} into three parts: I = {1, . . . , j},
I = {j+ 1, . . . , l} and Î = {l+ 1, . . . , n− 1}, and assume w.l.o.g that r1(P1), . . . , r1(Pj) ∈ L\{ak},
r1(Pj+1), . . . , r1(Pl) ∈ R\{ak} and r1(Pl+1), . . . , r1(Pn−1) ∈ M. Note that if l = 0, Lemma 6.13.10 implies
ϕz(as, P−n) = ϕz(at, P−n) for all z ∈ Θ. Next, assume l > 0. We construct the following preference
profiles: P(η) =

(
P1, . . . , Pη,

ak
{η+1,...,j} ,

ak
I , PÎ, as

)
, η = 0, 1, . . . , j, and

P(ν) =
(
PI, Pj+1, . . . , Pν,

ak
{ν+1,...,l} , PÎ, as

)
, ν = j+ 1, . . . , l. Note that P(0) =

( ak
I ,

ak
I , PÎ, as

)
and

P(l) = (as, P−n).
Given an arbitrary 0 ≤ η < j, consider P(η) and P(η+1). Note that voter η+ 1 has the preference peak ak

at P(η), and has the preference peak r1(Pη+1) = ak ≺ ak at P(η+1). By Lemma 6.13.6,
{ak, ak+1, . . . , ak} ⊆ L is the unique alternative-path that connects ak and ak, and hence excludes all
alternatives of Θ. Then, the uncompromising property implies ϕz(P

(η)) = ϕz(P
(η+1)) for all z ∈ Θ.

Therefore, we have ϕz(P
(0)) = · · · = ϕz(P

(j)) for all z ∈ Θ. Next, given an arbitrary j ≤ ν < l, consider
P(ν) and P(ν+1). Note that voter ν + 1 has the preference peak ak at P(ν), and has the preference peak
r1(Pν+1) = ak ≻ ak at P(ν+1). By Lemma 6.13.6, {ak, . . . , ak−1, ak} ⊆ R is the unique alternative-path that
connects ak and ak, and hence excludes all alternatives of Θ. Then, the uncompromising property implies
ϕz(P

(ν)) = ϕz(P
(ν+1)) for all z ∈ Θ. Therefore, we have ϕz(P

(j)) = · · · = ϕz(P
(l)) for all z ∈ Θ. In

conclusion, ϕz

( ak
I ,

ak
I , PÎ, as

)
= ϕz(P

(0)) = · · · = ϕz(P
(l)) = ϕz(as, P−n) for all z ∈ Θ.

Symmetrically, we also derive ϕz

( ak
I ,

ak
I , PÎ, at

)
= ϕz(at, P−n) for all z ∈ Θ. Last, since Lemma

6.13.10 implies ϕz

( ak
I ,

ak
I , PÎ, as

)
= ϕz

( ak
I ,

ak
I , PÎ, at

)
for all z ∈ Θ, we have ϕz(as, P−n) = ϕz(at, P−n)

for all z ∈ Θ, as required. ■

Now, fixing a unanimous and strategy-proof RSCF ϕ : Dn → Δ(A), we are ready to show that the
corresponding random voting scheme ϕ : An → Δ(A) is locally strategy-proof onDH(k, k).

Fix i ∈ N, Pi, P′i ∈ DH(k, k)with Pi ∼ P′i , and P−i ∈
[
DH(k, k)

]n−1. For notational convenience, let
r1(Pi) = as, r1(P′i) = at and r1(Pj) = xj for all j ̸= i. Let x−i = (x1, . . . , xi−1, xi+1, . . . , xn). We show that
ϕ(as, x−i) stochastically dominates ϕ(at, x−i) according to Pi. If as = at, ϕ(as, x−i) = ϕ(at, x−i), as
required. Next, assume as ̸= at. Then, Pi ∼ P′i implies r1(Pi) = r2(P′i) = as, r1(P′i) = r2(Pi) = at and
rk(Pi) = rk(P′i) for all k = 3, . . . ,m. To complete the verification, it suffices to show
ϕas(as, x−i) ≥ ϕas(at, x−i) and ϕak

(as, x−i) = ϕak
(at, x−i) for all ak /∈ {as, at}. Since r1(Pi) = as,

r1(P′i) = at and Pi ∼ P′i , we know as ∼ at inDH(k, k). Then, there are three possible cases: (i) as, at ∈ L
and |s− t| = 1, (ii) as, at ∈ R and |s− t| = 1, and (iii) as, at ∈ M. The first two cases are symmetric, and
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hence we focus on the verification of the first case and omit the consideration of the second case. In the
first case, since |s− t| = 1, it is also true that as ∼ at inD. Hence, we have P̄i, P̄′i ∈ D such that
r1(P̄i) = as, r1(P̄′i) = at and P̄i ∼ P̄′i . Then, the tops-only property and strategy-proofness of ϕ onD imply
ϕas(as, x−i) = ϕas(P̄i, x−i) ≥ ϕas(P̄

′
i, x−i) = ϕas(at, x−i), and

ϕak
(as, x−i) = ϕak

(P̄i, x−i) = ϕak
(P̄′i, x−i) = ϕak

(at, x−i) for all ak /∈ {as, at}, as required. Last, assume
as, at ∈ M. Fixing P̄i, P̄′i ∈ Dwith r1(P̄i) = as and r1(P̄′i) = at by minimal richness, we have
ϕas(as, x−i) = ϕas(P̄i, x−i) ≥ ϕas(P̄

′
i, x−i) = ϕas(at, x−i) by the tops-only property and strategy-proofness

of ϕ onD, and ϕak
(as, x−i) = ϕak

(at, x−i) for all ak /∈ {as, at} by Lemma 6.13.11, as required. Therefore,
ϕ is locally strategy-proof onDH(k, k). This completes the verification of the second part of Theorem
6.7.2 in the case k− k > 1, and hence completely proves Theorem 6.7.2.

6.14 Proof of Fact 6.8

We first introduce some new notation and the formal definition of the no-restoration property of [95].
Let aPi!b denote that a is contiguously preferred to b in Pi, i.e., aPib and there exists no c ∈ A such that aPic
and cPib. Recall the notions of adjacency and path in the beginning of Section 6.2. A domainD satisfies
the no-restoration property if for all distinct Pi, P′i ∈ D, there exists a path {Pki }tk=1 ⊆ D connecting Pi
and P′i such that for all ap, aq ∈ A, we have

[apPk
∗

i aq and aqPk
∗+1
i ap for some 1 ≤ k∗ < t]⇒ [apPki aq for all k = 1, . . . , k∗, and aqPliap for all l = k∗ + 1, . . . , t].

By Theorem 1 of [38], to prove Fact 6.8, it suffices to show thatDH(k, k) satisfies the no-restoration
property. Before proceeding the proof, we introduce an important observation onDH(k, k). Given
Pi ∈ DH(k, k), let r1(Pi) = as and apPi!aq (it is possible that as = ap). Let P′′i be a preference such that
Pi ∼ P′′i and aqP′′i !ap. If one of the three conditions is satisfied: (i) r1(Pi) = r1(P′′i ), and ap ≺ as ≺ aq or
aq ≺ as ≺ ap, (ii) r1(Pi) = r1(P′′i ) ∈ M and neither both ap, aq ∈ L nor both ap, aq ∈ R, and (iii)
r1(Pi) ̸= r1(P′′i ), and either ap, aq ∈ L and |p− q| = 1, or ap, aq ∈ R and |p− q| = 1, or ap, aq ∈ M, then
P′′i ∈ DH(k, k). 2

To show thatDH(k, k) satisfies the no-restoration property, it suffices to show that for every pair of
distinct preferences Pi, P′i ∈ DH(k, k), there exist ap, aq ∈ A and P′′i ∈ DH(k, k) such that Pi ∼ P′′i ,
apPi!aq, aqP′′i !ap and aqP′iap. Henceforth, we fix distinct Pi, P′i ∈ DH(k, k), and let r1(Pi) = as and
r1(P′i) = at.

We first assume as = at. We identify 1 < k ≤ m such that rl(Pi) = rl(P′i) for all l = 1, . . . , k− 1, and
rk(Pi) ̸= rk(P′i). Let rk(P′i) = aq and aq = rν(Pi) for some k < ν ≤ m. Meanwhile, let rν−1(Pi) = ap. We
generate a preference P′′i by locally switching ap and aq in Pi. Thus, Pi ∼ P′′i , apPi!aq, aqP′′i !ap and aqP′iap.
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Note that r1(Pi) = r1(P′′i ) = r1(P′i). We next show P′′i ∈ DH(k, k). Suppose not, i.e., P′′i /∈ DH(k, k). On
the one hand, since Pi and P′′i share the same peak and differ exactly on the relative rankings of ap and aq,
Pi ∈ DH(k, k) and P′′i /∈ DH(k, k) imply that aqP′′i ap must violate Definition 6.3.1. On the other hand,
since P′′i and P′i share the same peak and the same relative ranking of ap and aq, P′i ∈ DH(k, k) implies that
aqP′′i ap does not violate Definition 6.3.1. Contradiction! Therefore, P′′i ∈ DH(k, k).

Next, we assume as ≺ at. The verification related to the situation at ≺ as is symmetric, and we hence
omit it. We consider the four possible cases: (1) as ≺ ak, (2) ak ⪯ as, (3) ak ⪯ as ≺ ak ⪯ at and (4)
ak ⪯ as ≺ at ≺ ak.

In case (1), we notice as ≺ as+1 ⪯ ak and as ≺ as+1 ⪯ at. Let as+1 = rk(Pi) for some 1 < k ≤ m and
rk−1(Pi) = ap. Thus, apPi!as+1. Since r1(Pi) = as ∈ L, apPias+1 implies ap ⪯ as by Definition 6.3.1. Hence,
we know ap ⪯ as ≺ as+1 ⪯ ak and ap ⪯ as ≺ as+1 ≺ at, which imply as+1P′iap by Definition 6.3.1. By
locally switching ap and as+1 in Pi, we generate a preference P′′i . Thus, Pi ∼ P′′i , apPi!as+1, as+1P′′i !ap and
as+1P′iap. We last show P′′i ∈ DH(k, k). If r1(P′′i ) = r1(Pi) = as, it is true that ap ≺ as ≺ as+1, and
Observation 6.14(i) then implies P′′i ∈ DH(k, k). If r1(P′′i ) ≠ r1(Pi), it is true that r1(Pi) = as = ap and
r1(P′′i ) = as+1, and Observation 6.14(iii) then implies P′′i ∈ DH(k, k).

The verification of case (2) is similar to that of case (1), and we hence omit it.
In case (3), let ak = rk(Pi) for some 1 < k ≤ m and rk−1(Pi) = ap. Thus, apPi!ak. Since ak ⪯ as ≺ ak,

apPiak implies ap ≺ ak by Definition 6.3.1. Thus, we know either ap ≺ ak ≺ ak ⪯ at which implies akP′iak
and akP′iap by Definition 6.3.1, or ak ⪯ ap ≺ ak ⪯ at which implies akP′iap by Definition 6.3.1. Overall,
akP′iap. By locally switching ap and ak in Pi, we generate a preference P′′i . Thus, Pi ∼ P′′i , apPi!ak, akP′′i !ap
and akP′iap. We last show P′′i ∈ DH(k, k). If r1(P′′i ) = r1(Pi) = as, Observation 6.14(ii) implies
P′′i ∈ DH(k, k). If r1(P′′i ) ̸= r1(Pi), it is true that r1(Pi) = as = ap and r1(P′′i ) = ak, and Observation
6.14(iii) then implies P′′i ∈ DH(k, k).

In case (4), let at = rk(Pi) for some 1 < k ≤ m and rk−1(Pi) = ap. By locally switching ap and at in Pi,
we generate a preference P′′i . Thus, Pi ∼ P′′i , apPi!at, atP′′i !ap and atP′iap (recall r1(P′i) = at). We last show
P′′i ∈ DH(k, k). If r1(P′′i ) = r1(Pi) = as, Observation 6.14(ii) implies P′′i ∈ DH(k, k). If r1(P′′i ) ̸= r1(Pi), it
is true that r1(Pi) = as = ap and r1(P′′i ) = at, and Observation 6.14(iii) implies P′′i ∈ DH(k, k).

In conclusion, domainDH(k, k) satisfies the no-restoration condition of [95], as required. 2
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7
Unanimous and strategy-proof probabilistic rules for

single-peaked preference profiles on graphs

7.1 Introduction

Finitely many agents have preferences over a finite set of alternatives. The alternatives are the vertices in a
connected graph, and the preferences of an agent are linear orderings which are single-peaked with
respect to some spanning tree of the graph: there is a single top alternative, the peak, and preference
decreases along the paths in this tree away from the peak. The objective is to choose an alternative based
on these preferences, or rather – in this paper – a probability distribution over the alternatives.

An example of such a situation is a road or railroad network, where the vertices (junctions) are also the
locations of villages or cities. The objective is to locate a public good (shopping mall, museum, hospital,
school, etc.) based on the preferences of the agents over these junctions. Distance from one’s home or
from a nearby bus stop may determine preference, but also the path one has to take. Single-peakedness is
then a plausible assumption. Alternatively, the graph may represent a network of personal relations
between the agents, and the objective is to distribute a public good – e.g., disperse information – over the
vertices in this network. Also here, both the length of a path and the nodes (e.g., friends) to be visited may
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be important determinants for preference, and single-peakedness along a specific spanning tree captures
this. More generally, the graph structure and single-peakedness condition are formal ways to describe
restrictions on the set of all preference profiles that enable to avoid (random) dictatorship as in [57] – see
below. This is comparable to (e.g.) the domain restriction in [75]; we briefly comment on this in the
concluding section of the paper.

We consider probabilistic rules: these assign a probability distribution over the alternatives to every
preference profile of single-peaked preferences. An important reason for considering probabilistic rather
than deterministic rules is that even a random dictatorship, for instance each agent’s peak having an equal
chance of being chosen, seems better than a deterministic dictatorship, where one and the same agent’s
peak is always chosen.

The conditions we impose are unanimity and strategy-proofness. Unanimity means that if all agents
have the same peak then probability one is assigned to that alternative. Strategy-proofness means that no
agent, by misrepresenting its true preference, can increase the probability on any upper contour set, i.e.,
any set of alternatives (weakly) preferred to some given alternative. Put differently, the probability
distribution attained by reporting truthfully stochastically dominates any probability distribution
achievable by misreporting.

We first consider the case where the graph has no cycles, i.e., is a tree (and thus its own unique
spanning tree). For this case, our main result (Theorem 7.3.9) is that a probabilistic rule is unanimous and
strategy-proof if and only if it is a ‘leaf-peak rule’. In a nutshell, this means that such a rule is uniquely
determined by the probability distributions it assigns to the preference profiles with all peaks at the leafs
of the tree (i.e., the alternatives with degree one). We show that such a collection of probability
distributions has the following properties: (i) a leaf is assigned probability one if all peaks are at this leaf;
(ii) if an agent changes its peak from one leaf to another, then (a) probability does not decrease along the
path from the former to the latter and (b) probability does not change off this path. These collections of
probability distributions are called ‘monotonic’. They play a role similar to the collections of ‘fixed
probabilistic ballots’ in [46] – see also below.

Second, for the case where the graph is arbitrary (but connected), we show that every unanimous and
strategy-proof probabilistic rule is random dictatorial if and only if the graph has no leafs. In fact, we show
this for the case of two agents and then extend the result to more than two agents by using a result of [35]
– this is Theorem 7.4.2. Random dictatorship means that each agent is assigned a fixed probability
(weight) and every alternative is chosen with probability equal to the sum of the probabilities of the
agents having this alternative as their peak. If the graph is not a tree but has a leaf, then indeed unanimous
and strategy-proof probabilistic rules exist which are not random dictatorial, as we show by an example,
and as follows from the main result of the paper later on (Theorem 7.5.2). In order to prove Theorem
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7.4.2 we first consider 2-connected graphs, i.e., graphs in which for every pair of distinct alternatives there
is a cycle containing them, and next extend to arbitrary leafless graphs by decomposing the graph in a way
analogous to the concept of a ‘block tree’ ([70]; [104]; or, e.g., [22]).

Third, for the general case, where the graph is not necessarily a tree, can have leafs, but is still
connected, we show that every unanimous and strategy-proof probabilistic rule behaves like a leaf-peak
rule on the branches of the graph and as a random dictatorial rule on the maximal leafless subgraph of the
graph, such that the total probability on each branch is equal to the total weight of the agents who have
their peaks on this branch. This is Theorem 7.5.2, which generalizes both Theorems 7.3.9 and 7.4.2.

As a simple example of a unanimous and strategy-proof rule ϕ characterized in Theorem 7.5.2, suppose
there are three agents called 1, 2, and 3, and four alternatives called a, b, c, and d, structured by the
following graph:

a b

c

d

Let the agents have equal weights, 1
3 each. The maximal leafless subgraph is the triangle with vertices b,

c, and d. If every agent has one of these points as its peak, then ϕ is just random dictatorship. For instance,
if b is the peak of 1 and c the peak of both 2 and 3, then b is assigned 1

3 and c is assigned 2
3 . If all agents have

a as their peak, then a is assigned probability 1. In all other cases, the total weight of the agents with peak
a is distributed equally between a and b (a and b together with their connecting edge form the unique
‘branch’ in this graph), but on the triangle we have random dictatorship. For instance, if the peak of agent
1 is a, the peak of 2 is b, and the peak of 3 is d, then a is assigned probability 1

2 ·
1
3 =

1
6 , b is assigned

probability ( 1
2 ·

1
3) +

1
3 =

1
2 and d is assigned probability 1

3 .
Our first main result, Theorem 7.3.9 on trees, generalizes the case where the alternatives are ordered on

a straight line and agents have single-peaked preferences. The latter case has been dealt with in [46]: they
consider the whole real line, but their characterization remains valid on a finite or discrete set of
alternatives. In [81] it is shown that, for the version with finitely many alternatives, all probabilistic rules
are convex combinations of deterministic rules. In the tree case it turns out that this no longer holds – see
the concluding Section 7.6.1 for an example of a unanimous and strategy-proof probabilistic rule which is
not a convex combination of deterministic rules with these properties. This supports the fact that the
general tree case is not a straightforward generalization of the straight line case.

A consequence ofTheorem 7.3.9 is a characterization of all unanimous and strategy-proof deterministic
rules if agents have single-peaked preferences on a tree, which to the best of our knowledge is new as well
(see Section 7.6.1). [97] also consider this issue but their setting is different: a graph is a subset of some
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Euclidean space (each of its points is an alternative, not only the vertices, and so there are infinitely many
alternatives), and preferences are uniquely determined by their peaks by considering Euclidean distance
along the paths in the graph. Nevertheless, their results are roughly in line with ours: if the graph is a tree,
then strategy-proof and onto deterministic rules (unanimity is implied) are characterized by so-called
extended generalized median voter schemes ([72]); for other graphs, there is dictatorship on cycles but if
a graph has a leaf then other rules are possible. For earlier work concerning social choice for single-peaked
preferences on trees see [59] and [40]. More recently, see [75] – cf. Section 7.6.2.

Our results show that unanimity and strategy-proofness of probabilistic rules for single-peaked
preferences on graphs imply that these rules are tops-only – they depend only on the peaks of the
preferences. In fact, we start out by deriving this result using Theorem 1 in [31], see Lemma 7.2.1. From
this lemma we then easily obtain that our rules are uncompromising on trees (cf.[24]): if an agent
changes its peak, then probabilities assigned to alternatives off the path between the old peak and the new
peak remain unaltered (Lemma 7.3.1).¹

The literature on strategy-proof probabilistic social choice functions or rules started with the paper of
[57], who showed that without restrictions on preferences the conditions of unanimity and
strategy-proofness result in random dictatorship. The single-peaked domain restriction (which dates back
at least to [20]) allows for other rules, which can be seen as probabilistic extensions of the generalized
median rules ([72]; [12]; and others): as already mentioned see [46] and [81] for the case with finitely
many agents who have single-peaked preferences on the real line or a finite subset of the real line. [43]
show that even under single-peaked preferences, every unanimous and strategy-proof probabilistic rule is
a random dictatorship if the dimension is higher than one.² [36] show a kind of converse to (among
others) our results: a domain has to be single-peaked in order to allow for the existence of unanimous and
strategy-proof probabilistic rules satisfying two additional conditions.³ See also [29] for a similar result in
the deterministic case. For unanimous and strategy-proof probabilistic rules when preferences are
cardinal see the seminal work of [61], and further [44] and [73].

The paper is organized as follows. After preliminaries in Section 7.2, including the result that a
unanimous and strategy-proof rule is tops-only, we consider the tree case in Section 7.3 and the leafless
graph case in Section 7.4. Our main and most general result is derived in Section 7.5. In the concluding
Section 7.6 we show that in this context a probabilistic rule on a tree is not necessarily a convex
combination of deterministic rules; we also briefly discuss possible domain variations. An appendix

¹In an earlier version of the paper ([80]) uncompromisingness on trees was derived independently for a smaller set of single-
peaked preferences.

²In spirit, this result is in line with our result on leafless graphs (Theorem 7.4.2).
³Namely, tops-onliness and a ‘compromise’ property. Under the assumptions in our paper tops-onliness follows from the

other conditions. The ‘compromise’ property is not necessarily satisfied by a leaf-peak probabilistic rule.
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presents the proof of Lemma 7.2.1 on tops-onliness.

7.2 Preliminaries

Let A be a finite set of at least two alternatives and letN = {1, . . . , n}with n ≥ 2 be a finite set of agents. A
complete, reflexive, antisymmetric, and transitive binary relation on A is called a preference. For a
preference P and a, b ∈ A, we write aPb instead of (a, b) ∈ P. For distinct a, b ∈ A, aPb is interpreted as a
being strictly preferred to b by an agent with preference P. A tuple of preferences PN = (P1, . . . , Pn) is
called a preference profile.

We denote the top-ranked alternative of a preference P by t(P), i.e., t(P) = a if and only if aPx for all
x ∈ A. The upper contour set of an alternative a at a preference P is the setU(a, P) = {x ∈ A : xPa}.⁴

For a preference profile PN and an agent i ∈ N, P−i denotes the restriction of PN toN \ {i}, that is,
P−i = (P1, . . . , Pi−1, Pi+1, . . . , PN).

7.2.1 Single-peaked preferences

The notion of a single-peaked preference was introduced in [20] and [62]. Here, we consider a
generalization.

First, we introduce a graph structure on the set of alternatives. A pairG = (A, E), where
E ⊆ {{a, b} : a, b ∈ A, a ̸= b}, is a(n undirected) graph. The elements of E are called edges. The degree of
an alternative a ∈ A is the number |{{x, y} ∈ E : a ∈ {x, y}}|, that is, the number of edges containing a.
A leaf is an alternative with degree one. We denote the set of all leafs by L(G).

For a, b ∈ Awith a ̸= b, a path from a to b inG is a sequence of distinct alternatives a1, . . . , ak such
that a1 = a, ak = b, and {ai, ai+1} ∈ E for all i = 1, . . . , k− 1. If it is clear which path is meant, we also
denote it by [a, b]. In this case, by (a, b]we denote the sequence a2, . . . , ak, and by (a, b) the sequence
a2, . . . , ak−1. Whenever it is clear from the context, the notations [a, b], (a, b], and (a, b)will also be used
to denote the sets of alternatives (instead of the sequences) that appear in the corresponding path. When
a = b, the notation [a, b] simply denotes the alternative a, x ∈ [a, b]means x = a, and x /∈ [a, b]means
x ̸= a.

Throughout this paper we assume thatG is connected, i.e., there is a path from a to b for all distinct
a, b ∈ A. If this path is unique for all a, b ∈ A, thenG is called a tree. A spanning tree ofG is a tree
T = (A, ET)where ET ⊆ E. In other words, spanning tree ofG is a tree that can be obtained by deleting
some edges ofG.

⁴Observe that a ∈ U(a, P) by reflexivity.
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For a path [x1, xℓ]with sequence x1, . . . , xℓ, we write P = [x1, xl] · · · to denote a preference P such that
x1Px2P . . . Pxℓ Px for all x ∈ A \ [x1, xℓ]. For instance, if the path is [x1, x3]with sequence x1, x2, x3, then
P = [x1, x3] · · · means that the top-ranked, second-ranked, and the third-ranked alternatives of P are x1,
x2, and x3, respectively. Note that this notation does not impose any restriction on the ordering of
alternatives that lie outside the path, except that they are all less preferred to the alternatives on the path.
Similarly, we use the notation P = · · · [x1, xℓ] · · · to mean that the alternatives x1, . . . , xℓ are
consecutively ranked in Pwith x1Px2 . . . Pxℓ. Again, as before, this notation does not put any restriction
on the ordering of the alternatives that do not lie on the path [x1, xℓ], except that they cannot be ranked
in-between the alternatives on the path. Combinations of these notations have similar meanings. Also,
brackets are sometimes left out if confusion is unlikely.

We are now ready to introduce the notion of single-peaked preferences. A preference is single-peaked if
there is a spanning tree ofG so that as one moves away from the top-ranked alternative of the preference
in any particular direction along the tree, preference decreases.

Definition 7.2.1 A preference P is single-peaked if there is a spanning tree T ofG such that for all distinct
x, y ∈ Awith t(P) ̸= y,

x ∈ [t(P), y] =⇒ xPy,

where [t(P), y] is the path from t(P) to y in T.

We denote the set of all single-peaked preferences by . For a single-peaked preference, the top
alternative is also called the peak.

In Section 7.6.2 we briefly further discuss this preference domain choice.

7.2.2 Probabilistic rules

By ΔA, we denote the set of all probability distributions on A. A probabilistic rule (PR) is a function
ϕ :N→ ΔA. For a ∈ A and PN ∈N, we denote the probability of a at ϕ(PN) by ϕa(PN), and for B ⊆ A, we
denote the total probability of the alternatives in B by ϕB(PN), i.e., ϕB(PN) =

∑
a∈B ϕa(PN).

We proceed by defining the main properties of PRs that are of interest in this paper. The first property
is unanimity. It says that if all the agents have the same top-ranked alternative, then that alternative is
chosen with probability 1.

Definition 7.2.2 A PR ϕ is unanimous if ϕa(PN) = 1 for all a ∈ A and all PN ∈N with t(Pi) = a for all
i ∈ N.

The second property is strategy-proofness, introduced in Gibbard (1977). It says that reporting a
preference different from the sincere (true) one cannot increase the probability on any sincere upper
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contour set. In other words, the probability distribution over the alternatives induced by reporting
truthfully stochastically dominates any probability distribution induced by reporting differently.

Definition 7.2.3 A PR ϕ is strategy-proof if for all i ∈ N, all PN ∈N, all P′i ∈, and all x ∈ A,

ϕU(x,Pi)(Pi, P−i) ≥ ϕU(x,Pi)(P
′
i, P−i).

It is not hard to see that under strategy-proofness the unanimity condition could be weakened to
requiring ϕa(PN) = 1 for all a ∈ A and all PN ∈N with Pi = Pj and t(Pi) = a for all i, j ∈ N. For later
reference we include the following (straightforward) observation.

Remark 7.2.4 Let L, L′ ∈ ΔA and let P ∈ L(A). Suppose LU(x,P) = L′
U(x,P) for all x ∈ A, where LU(x,P)

denotes the total probability on the upper contour setU(x, P). Then L = L′.

Two profiles PN, P′N ∈N are tops-equivalent if t(Pi) = t(P′i) for all i ∈ N. A PR is called tops-only if its
outcomes do not change over top-equivalent profiles. In other words, the outcome of such a PR depends
only on the top-ranked alternatives at a preference profile.

Definition 7.2.5 A PR ϕ is tops-only if ϕ(PN) = ϕ(P′N) for all tops-equivalent PN, P′N ∈N.

In our model, unanimity and strategy-proofness of a PR imply tops-onliness. This can be proved by
using the main result in Chatterji and Zeng (2018), as we show in the Appendix.

Lemma 7.2.1 Let G = (A, E) be a connected graph and let a PR ϕ :N→ ΔA be unanimous and
strategy-proof. Then, ϕ is tops-only.

Proof: See Appendix 7.7. ■

7.3 Trees

Throughout this section the graphG = (A, E) is a tree. We will characterize all unanimous and
strategy-proof probabilistic rules for this case. First, we define the notion of uncompromisingness,
introduced by [24] for deterministic rules. It says that if an agent unilaterally changes its preference from
Pi to P′i , then the probabilities of the alternatives off the path [t(Pi), t(P′i)], do not change.
Uncompromisingness is closely related to strategy-proofness but often is easier to work with. Clearly, an
uncompromising PR is tops-only.
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Definition 7.3.1 LetG = (A, E) be a tree. A PR ϕ :N→ ΔA is uncompromising if ϕd(PN) = ϕd(P
′
i, P−i)

for all i ∈ N, all PN ∈N, all P′i ∈ and all d ∈ A such that d /∈ [t(Pi), t(P′i)].

Recall that by Lemma 7.2.1 every unanimous and strategy-proof PR is tops-only. In the following
lemma we show that, by using tops-onliness, uncompromisingness can easily be derived from unanimity
and strategy-proofness.

Lemma 7.3.1 Let G = (A, E) be a tree and let ϕ :N→ ΔA be a unanimous and strategy-proof PR.Then ϕ is
uncompromising.

Proof: Let PN, P′N ∈N and i ∈ N be such that P−i = P′−i. In order to prove that ϕx(PN) = ϕx(P
′
N) for all

x /∈ [t(Pi), t(P′i)], it is without loss of generality to assume {t(Pi), t(P′i)} ∈ E. Then, by tops-onliness
(Lemma 7.2.1), we may assume that Pi = t(Pi)t(P′i) · · · and P′i = t(P′i)t(Pi) · · · such that zPiz′ ⇔ zP′iz′

for all z, z′ ∈ A \ {t(Pi), t(P′i)}. Now the lemma follows directly from strategy-proofness. ■

In what follows we show that a unanimous and strategy-proof PR is completely determined by its
values at profiles where the peaks of the agents are located at the leafs of the tree. We need the following
definitions to formulate this property.

Definition 7.3.2 A leaf assignment is a function μ : N→ L(G). The set of all leaf assignments is denoted
by . For a ∈ A and PN ∈N, a leaf assignment μ respects (a, PN) if for all i ∈ N and b ∈ L(G), μ(i) = b
implies t(Pi) ∈ [a, b]. The set of leaf assignments that respect (a, PN) is denoted by (a, PN).

Thus, a leaf assignment assigns to each agent a leaf of the tree. Consider an alternative a and a
preference profile PN. A leaf assignment respecting (a, PN) is obtained as follows. If the top-ranked
alternative t(Pi) of agent i is a, then assign i to an arbitrary leaf. Otherwise, assign i to some leaf b such that
t(Pi) is on the path [a, b]. Clearly, if PN, P′N ∈N are tops-equivalent, then (a, PN) = (a, P′N). The following
example illustrates Definition 7.3.2.

Example 7.3.3 Let A = {a1, . . . , a7} and consider the following tree.

a3

a1 1

a2 a4

2

a5

3

a6

a7
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LetN = {1, 2, 3}, and let PN be a preference profile with (t(P1), t(P2), t(P3)) = (a1, a4, a5), as
illustrated in the figure. Then

μ ∈ (a1, PN) ⇔ μ(1) ∈ {a1, a3, a6, a7}, μ(2), μ(3) ∈ {a6, a7}

μ ∈ (a2, PN) ⇔ μ(1) = a1, μ(2), μ(3) ∈ {a6, a7}

μ ∈ (a3, PN) ⇔ μ(1) = a1, μ(2), μ(3) ∈ {a6, a7}

μ ∈ (a4, PN) ⇔ μ(1) = a1, μ(2) ∈ {a1, a3, a6, a7}, μ(3) ∈ {a6, a7}

μ ∈ (a5, PN) ⇔ μ(1) = a1, μ(2) ∈ {a1, a3}, μ(3) ∈ {a1, a3, a6, a7}

μ ∈ (a6, PN) ⇔ μ(1) = a1, μ(2) ∈ {a1, a3}, μ(3) ∈ {a1, a3, a7}

μ ∈ (a7, PN) ⇔ μ(1) = a1, μ(2) ∈ {a1, a3}, μ(3) ∈ {a1, a3, a6}

describes the leaf assignments respecting (a, PN) for each a ∈ A. �

With each μ ∈we associate a probability distribution μ over A. We introduce the notion of
monotonicity for such a collection of probability distributions.

Definition 7.3.4 A collection of probability distributions (μ)μ∈ over A ismonotonic if

(i) for every b ∈ L(G) and μ ∈, if μ(i) = b for all i ∈ N, then μ(b) = 1,

(ii) for all μ, μ̂ ∈ and i ∈ N such that μ(j) = μ̂(j) for all j ∈ N \ {i},

(a) μ̂([c, μ̂(i)]) ≥μ ([c, μ̂(i)]) for all c ∈ [μ(i), μ̂(i)], and

(b) μ(c) =μ̂ (c) for all c ∈ A \ [μ(i), μ̂(i)].

Part (i) in this definition says that if in a leaf assignment μ, all agents are assigned to the same leaf, then
that leaf obtains probability one in the corresponding probability distribution βμ. Part (ii) says that if an
agent imoves from one leaf (at μ) to another (at μ̂), then, roughly speaking, probability increases along
the path from the former to the latter leaf (part (a)), whereas off this path nothing changes (part (b)).
Clearly, the conditions (i), (ii)(a), and (ii)(b) are related to unanimity, strategy-proofness, and
uncompromisingness of a PR, respectively.

The following example illustrates the notion of monotonic probability distributions.

Example 7.3.5 Consider again the tree of Example 7.3.3, replicated here for convenience.
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a3

a1

a2 a4 a5

a6

a7

Consider the probability distributions (μ)μ∈ in the table below. In this example, we assume that the
collection (μ)μ∈ is ‘anonymous’, which means that the probabilities depend only on the numbers of agents
on the leafs. The μ-assignments are to the leafs a1, a3, a6, and a7 consecutively. The probabilities (the
numbers in the table divided by 10) are those assigned to a1, . . . , a7, consecutively. It is straightforward to
verify that (μ)μ∈ in this table satisfies monotonicity.

μ μ μ μ

(3, 0, 0, 0) (10, 0, 0, 0, 0, 0, 0) (1, 0, 2, 0) (1, 3, 0, 2, 2, 2, 0)
(0, 3, 0, 0) (0, 0, 10, 0, 0, 0, 0) (0, 1, 2, 0) (0, 2, 3, 2, 1, 2, 0)
(0, 0, 3, 0) (0, 0, 0, 0, 0, 10, 0) (0, 0, 2, 1) (0, 0, 0, 0, 7, 2, 1)
(0, 0, 0, 3) (0, 0, 0, 0, 0, 0, 10) (1, 0, 0, 2) (1, 3, 0, 2, 2, 0, 2)
(2, 1, 0, 0) (4, 3, 3, 0, 0, 0, 0) (0, 1, 0, 2) (0, 2, 3, 2, 1, 0, 2)
(2, 0, 1, 0) (4, 2, 0, 2, 1, 1, 0) (0, 0, 1, 2) (0, 0, 0, 0, 7, 1, 2)
(2, 0, 0, 1) (4, 2, 0, 2, 1, 0, 1) (1, 1, 1, 0) (1, 2, 3, 2, 1, 1, 0)
(1, 2, 0, 0) (1, 5, 4, 0, 0, 0, 0) (1, 1, 0, 1) (1, 2, 3, 2, 1, 0, 1)
(0, 2, 1, 0) (0, 2, 4, 2, 1, 1, 0) (1, 0, 1, 1) (1, 3, 0, 3, 1, 1, 1)
(0, 2, 0, 1) (0, 2, 4, 2, 1, 0, 1) (0, 1, 1, 1) (0, 3, 1, 3, 1, 1, 1) �

In what follows, we associate a PR with each monotonic collection of probability distributions. As a
preparation we need Lemma 7.3.2 below.

In this lemma the leaf assignments μb and μ̂b are considered for an alternative a, a leaf b, and a
preference profile PN. Leaf assignment μb respects (a, PN) and has the (additional) property that an agent
i is assigned to b if and only if its peak t(Pi) lies on the path [a, b]. Leaf assignment μ̂b has the same
properties as μb except that an agent i is now assigned to b if its peak t(Pi) lies on the path (a, b], but is not
assigned to b if its peak is a. Thus, the agents who are assigned to b by μb are those who are assigned to b by
μ̂b plus those with peak a (i.e., μ−1

b (b) = μ̂−1
b (b) ∪ {i : t(Pi) = a}). Note that there is no restriction on

how μb and μ̂b assign agents to the leafs other than b except that they both respect (a, PN).
Lemma 7.3.2 now says that for any monotonic collection (μ)μ∈, the total probability assigned to the

alternatives in [a, b] by βμb is at least as high as the total probability assigned to the alternatives in (a, b] by
βμ̂b , that is, βμb [a, b]− βμ̂b(a, b] ≥ 0. Lemma 7.3.2 further says that this quantity βμb [a, b]− βμ̂b(a, b] does
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not depend on the choice of the leaf b, nor on the exact specification of μb and μ̂b for agents with peaks not
on [a, b]. Thus, for a given monotonic collection (μ)μ∈, the quantity βμb [a, b]− βμ̂b(a, b] depends only on
the alternative a and the profile PN. Later, we will associate a PR with a given monotonic collection (μ)μ∈
such that the probability of a at a profile PN is given by this quantity.

Lemma 7.3.2 Let (μ)μ∈ be a monotonic collection of probability distributions. Let a ∈ A, b, c ∈ L(G),
PN ∈N, and μb, μ̂b, μc, μ̂c ∈ (a, PN) be such that for each x ∈ {b, c} and all i ∈ N, μx(i) = x if and only if
t(Pi) ∈ [a, x] and μ̂x(i) = x if and only if t(Pi) ∈ (a, x]. Then

μb([a, b])−μ̂b ((a, b]) =μc ([a, c])−μ̂c ((a, c]) ≥ 0. (7.1)

Proof: First, we prove that the amount μb([a, b]) does not depend on the further specification of μb. That is,
if μ ∈ (a, PN) also satisfies μ(i) = b if and only if t(Pi) ∈ [a, b] for all i ∈ N, then μ([a, b]) =μb ([a, b]). To
see this, suppose that for some j ∈ Nwe have t(Pj) /∈ [a, b] and μ(j) ̸= μb(j). Hence, μ(j), μb(j) ̸= b. We
prove that d /∈ [a, b] for all d ∈ [μ(j), μb(j)]. Suppose to the contrary that there is d ∈ Awith
d ∈ [a, b] ∩ [μ(j), μb(j)]. The path from a to μb(j) consists of the subpath [a, d] ⊆ [a, b] followed by the
path (d, μb(j)], with t(Pj) ∈ (d, μb(j)]. This implies that t(Pj) /∈ [a, d] ∪ (d, μ(j)] = [a, μ(j)], which
contradicts the assumption that μ ∈ (a, PN). The desired result follows from repeating this argument for
all jwith μ(j) ̸= μb(j) and each time applying condition (ii)(b) in Definition 7.3.4.

Similarly, one proves that the amount μ̂b((a, b]) does not depend on the further specification of μ̂b, i.e.,
if μ ∈ (a, PN) also satisfies μ(i) = b if and only if t(Pi) ∈ (a, b] for all i ∈ N, then μ((a, b]) =μb ((a, b]).

We now prove (7.1). It is sufficient to prove this for the case where a ∈ [b, c]. Otherwise, there is a
d ∈ L(G) such that both a ∈ [d, b] and a ∈ [d, c]. Then, if we show (7.1) for the pairs of leafs b, d and c, d,
then (7.1) for the pair b, c follows by combining the two equations. Thus, we assume a ∈ [b, c]. Moreover,
by the first two paragraphs of the proof wemay assume that μb = μ̂c and μc = μ̂b. For the equality in (7.1),
it is then sufficient to show that

μb([a, b])−μc ((a, b]) =μc ([a, c])−μb ((a, c]).

We have

μb([b, c]) =μ̂c ([b, c]) =μc ([b, c]), (7.2)
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where the second equality follows from condition (ii)(b) in Definition 7.3.4. Therefore,

μb([a, b])−μc ((a, b]) =μb ([b, c])−μb ((a, c])−μc ((a, b])

=μc ([b, c])−μc ((a, b])−μb ((a, c])

=μc ([a, c])−μb ((a, c])

where the second equality follows from (7.2).
Finally, by condition (ii)(a) in Definition 7.3.4 we have

μb([a, b]) ≥μ̂b ([a, b]),

which implies the nonnegativity of the expressions in (7.1) and completes the proof of the lemma. ■

With every monotonic collection of probability distributions we associate a probabilistic rule, as
follows.

Definition 7.3.6 Let B = (μ)μ∈ be a monotonic collection of probability distributions over A. We define
ϕB :N→ ΔA as follows. For each a ∈ A and PN ∈N

ϕB
a (PN) =μb ([a, b])−μ̂b ((a, b]) (7.3)

for some b ∈ L(G) and μb, μ̂b ∈ (a, PN) such that μb(i) = b if and only if t(Pi) ∈ [a, b] and μ̂b(i) = b if
and only if t(Pi) ∈ (a, b].

Note that by Lemma 7.3.2, ϕB is well-defined: it does not depend on the particular choice of b, μb, or μ̂b.
Moreover we have:

Lemma 7.3.3 ϕB defined by (7.3) is a PR.

Proof: Let PN ∈N. By Lemma 7.3.2, ϕB
a (PN) ≥ 0 for every a ∈ A. We still have to prove that∑

a∈A ϕ
B
a (PN) = 1.

Let a ∈ A, b ∈ L(G), and let μ ∈ (a, PN) be such that μ(i) = b if and only if t(Pi) ∈ [a, b], for all i ∈ N.
We claim that ϕB

[a,b](PN) =μ ([a, b]). To show this, let [a, b] be the sequence a1, . . . , ak with a = a1 and
b = ak. For every j = 2, . . . , k let μj, μ̂j ∈ (aj, PN) be such that for all i ∈ Nwe have
μj(i) = b⇔ t(Pi) ∈ [aj, b] and μ̂(j) = b⇔ t(Pi) ∈ (aj, b]; and let μ̂ ∈ (a, PN) such that for all i ∈ Nwe
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have μ̂j(i) = b⇔ t(Pi) ∈ (a, b]. Then

ϕB
[a,b](PN) = μ([a, b])−μ̂ ((a, b])

+μ2
([a2, b])−μ̂2

((a2, b])

+μ3
([a3, b])−μ̂3

((a3, b])
...

+μk({b})−μ̂k (∅)

= μ([a, b])

where the second equality follows since μ̂((a, b]) =μ̂ ([a2, b]) =μ2
([a2, b]) and

μ̂j((aj, b]) =μ̂j ([aj+1, b]) =μj+1
([aj+1, b]) for every j = 2, . . . , k− 1 by condition (ii)(b) in Definition

7.3.4.

We partition A into subsets A1, . . . ,Ak, such that the alternatives in Aℓ form a path [aℓ, . . . , bℓ] for
some aℓ ∈ A and bℓ ∈ L(G) (possibly aℓ = bℓ). We define the leaf assignment μ as follows: (i) for each
ℓ = 1, . . . , k, μ−1(bℓ) = {i ∈ N : t(Pi) ∈ Aℓ}, and (ii) for each b ∈ L(G) \ {b1, . . . , bk}, μ−1(b) = ∅
(case (ii) occurs if b = aℓ for some ℓ). By the previous part of the proof, for each ℓ = 1, . . . , k, we have
ϕB
Aℓ(PN) =μℓ (A

ℓ) for (any) μℓ ∈ (aℓ, PN) such that μℓ(i) = bℓ ⇔ t(Pi) ∈ Aℓ for all i ∈ N. By definition
of μ and condition (ii)(b) in Definition 7.3.4, μℓ(A

ℓ) =μ (Aℓ) for every ℓ = 1, . . . , k. Hence,∑
a∈A ϕ

B
a (PN) =

∑k
ℓ=1 μℓ(A

ℓ) =
∑k

ℓ=1 μ(A
ℓ) =μ (A) = 1. ■

Definition 7.3.7 A PR ϕ is a leaf-peak rule if there is a monotonic collection of probability distributions
B = (μ)μ∈ such that ϕ = ϕB.

An example of a leaf-peak rule is the following.

Example 7.3.8 Consider the tree of Example 7.3.5. LetN = {1, 2, 3}. Let ϕ be the (anonymous, i.e.,
invariant under any permutation of the agents) leaf-peak rule with respect to (μ)μ∈ as in Example 7.3.5.
Consider the preference profile PN with (t(P1), t(P2), t(P3)) = (a1, a4, a5) as in Example 7.3.3. We take
the fixed leaf a1 for the computations in the following table, which provides the outcome of the leaf-peak
rule ϕ at PN.
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a b μ([a, b])−μ′ ((a, b]) ϕa(PN)
a1 a1 (1,0,2,0)([a1, a1])−(0,0,3,0) ((a1, a1]) .1
a2 a1 (1,0,2,0)([a2, a1])−(1,0,2,0) ((a2, a1]) .3
a3 a1 (1,0,2,0)([a3, a1])−(1,0,2,0) ((a3, a1]) 0
a4 a1 (2,0,1,0)([a4, a1])−(1,0,2,0) ((a4, a1]) .4
a5 a1 (3,0,0,0)([a5, a1])−(2,0,1,0) ((a5, a1]) .2
a6 a1 (3,0,0,0)([a6, a1])−(3,0,0,0) ((a6, a1]) 0
a7 a1 (3,0,0,0)([a7, a1])−(3,0,0,0) ((a7, a1]) 0 �

Our main result shows that leaf-peak rules are exactly the unanimous and strategy-proof PRs for
single-peaked preferences on trees. We prove this by means of the following two lemmas.

Lemma 7.3.4 Let B = (μ)μ∈ be a monotonic collection of probability distributions. Then ϕB is unanimous and
strategy-proof.

Proof: In this proof we write ϕ instead of ϕB. Unanimity follows directly from the definition of ϕ.
We next argue that ϕ is uncompromising. Let PN ∈N, i ∈ N, P′i ∈, and d ∈ A \ [t(Pi), t(P′i)]. Take

b ∈ L(G) such that [d, b] ∩ [t(Pi), t(P′i)] = ∅. Then, by definition of ϕ, in particular (7.3), we obtain
ϕd(PN) = ϕd(P−i, P′i). This shows that ϕ is uncompromising.

In order to prove strategy-proofness, assume for contradiction that there exists i ∈ N, PN ∈N, and P′i ∈
such that ϕU(c,Pi)(PN) < ϕU(c,Pi)(P

′
i, P−i) for some c ∈ A. Since ϕ is uncompromising and thus tops-only,

we may assume without loss of generality that Pi = [t(Pi), . . . , t(P′i)] · · · and P′i = [t(P′i), . . . , t(Pi)] · · · ,
and such that zPiz′ ⇔ zP′iz′ for all z, z′ /∈ [t(Pi), t(P′i)]. By uncompromisingness we also have
ϕz(PN) = ϕz(P

′
i, P−i) for all z /∈ [t(Pi), t(P′i)]. Therefore, c ∈ [t(Pi), t(P′i)) and thus

ϕ[t(Pi),c](PN) < ϕ[t(Pi),c](P
′
i, P−i). (7.4)

Let d appear just after c on the path [t(Pi), t(P′i)]. Let Pc ∈with t(Pc) = c and Pd ∈with t(P) = d. By
uncompromisingness, ϕ[t(Pi),c](PN) = ϕ[t(Pi),c](P

c, P−i) and ϕ[t(Pi),c](P
d, P−i) = ϕ[t(Pi),c](P

′
i, P−i). By (7.4),

this yields ϕ[t(Pi),c](P
c, P−i) < ϕ[t(Pi),c](P

d, P−i). Since by uncompromisingness ϕz(P
c, P−i) = ϕz(P

d, P−i)

for all z /∈ {c, d}, this implies
ϕc(P

c, P−i) < ϕc(P
d, P−i). (7.5)

Now take b, b′ ∈ L(G) such that {c, d} ⊆ [b, b′] and d /∈ [b, c]. By (7.3),

ϕc(P
c, P−i) =μb ([c, b])−μ̂b ((c, b]) (7.6)

where μb, μ̂b ∈ (c, (Pc, P−i)) are such that μb(j) = b if and only if t(Pj) ∈ [c, b] and μ̂b(j) = b if and only if
t(Pj) ∈ (c, b] for all j ∈ N. Let μ′b be such that μ′b(j) = μb(j) for all j ∈ N \ {i} and μ′b(i) = b′; and let
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μ̂′b = μ̂b. Note that μ′b, μ̂
′
b ∈ (c, (Pd, P−i)). Also, writing P̂N = (Pd, P−i), we have μ′b(j) = b if and only if

t(P̂j) ∈ [c, b] and μ̂′b(j) = b if and only if t(P̂j) ∈ (c, b] for all j ∈ N. Therefore, by (7.3),

ϕc(P
d, P−i) =μ′b ([c, b])−μ̂′b ((c, b]). (7.7)

By (7.5), (7.6), (7.7), and the fact that μ̂′b = μ̂b, we obtain

μb([c, b]) <μ′b ([c, b]). (7.8)

However, as (i) μ−1
b (b̂) = μ′−1

b (b̂) for all b̂ ∈ L(G) \ {b, b′} and (ii) μ′−1
b (b) ⊆ μ−1

b (b), this contradicts
condition (ii)(a) in Definition 7.3.4. ■

Next we show the converse of Lemma 7.3.4.

Lemma 7.3.5 Let ϕ be a unanimous and strategy-proof PR.Then there is a monotonic collection of probability
distributions B = (μ)μ∈ such that ϕ = ϕB.

Proof: By Lemma 7.3.1, ϕ is uncompromising. For every μ ∈ define μ = ϕ(PN), where PN ∈N satisfies
t(Pi) = μ(i) for all i ∈ N.

We first show that B = (μ)μ∈ thus defined, is a monotonic collection. Clearly, since ϕ is unanimous,
condition (i) in Definition 7.3.4 is satisfied. For condition (ii), let μ, μ̂ ∈ and i ∈ N be such that
μ(j) = μ̂(j) for all j ∈ N \ {i} and let PN, P̂N be such that t(Pk) = μ(k) and t(P̂k) = μ̂(k) for all k ∈ N.
Since ϕ is uncompromising, ϕc(PN) = ϕc(P̂N) for all c /∈ [t(Pi), t(P̂i)], hence μ(c) =μ̂ (c) for all
c /∈ [μ(i), μ̂(i)], i.e., condition (ii)(b) is satisfied. Moreover, by strategy-proofness of ϕ we have for all
c ∈ [t(Pi), t(P̂i)] that ϕU(c,P̂i)(P̂N) ≥ ϕU(c,P̂i)(PN). Since ϕz(PN) = ϕz(P̂N) for all z /∈ [t(Pi), t(P̂i)], this
implies ϕ[c,t(P̂i)](P̂N) ≥ ϕ[c,t(P̂i)](PN), and therefore μ̂([c, μ̂(i)]) ≥μ ([c, μ̂(i)]) for all c ∈ [μ(i), μ̂(i)]. This
proves condition (ii)(a).

Finally, we show that ϕ = ϕB. Let PN ∈N and a ∈ A. Let μ′, μ′′ ∈ (a, PN) and b ∈ L(G) be such that,
for all i ∈ N, μ′(i) = b if and only if t(Pi) ∈ [a, b] and μ′′(i) = b if and only if t(Pi) ∈ (a, b]. Also, let
P′N ∈N be such that t(P′i) = μ′(i) for all i ∈ N and P′′N ∈N be such that t(P′′i ) = μ′′(i) for all i ∈ N. Then

ϕB
a (P

N) = μ′([a, b])−μ′′ ((a, b])

= ϕ[a,b](P
′
N)− ϕ(a,b](P

′′
N)

= ϕa(PN)

where the last equality follows by uncompromisingness of ϕ. We conclude that ϕ = ϕB. ■

Lemmas 7.3.4 and 7.3.5 now imply the main result of this section.
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Theorem 7.3.9 Let G = (A, E) be a tree. Then a PR ϕ :N→ ΔA is unanimous and strategy-proof if and only
if it is a leaf-peak rule.

A characterization of unanimous and strategy-proof deterministic rules follows as a corollary of
Theorem 7.3.9. In Section 7.6.1, we show that the probabilistic rules with these properties are not
necessarily convex combinations of deterministic rules satisfying the same properties.

7.4 Leafless graphs

In this section,G = (A, E) is a connected graph without leafs. The main result will be that every
unanimous and strategy-proof PR is random dictatorial, to be defined below. We will derive this result for
the case of two agents, and then use Theorem 5 in [35] to extend it to more than two agents.

Our notational conventions about preferences as introduced in Section 7.2 will still be used.
Additionally, for a path π = [x1, xℓ]with sequence x1, . . . , xℓ we denote by π−1 = [xℓ, x1] the path in
reverse direction, i.e., with sequence xℓ, . . . , x1, and use this in notations for preferences such as
P = π · · · , P = π−1 · · · , etc., with obvious meaning.

A cycle inG is a sequence of distinct alternatives x1, . . . , xk ∈ A for some k ≥ 3 such that
{{xi, xi+1}, {xk, x1} : i = 1, . . . , k− 1} ⊆ E.

The following lemma considers unanimous and strategy-proof PRs for the case of two agents. Consider
two alternatives a and b that are contained in some cycle. In words, Lemma 7.4.1 says that in all profiles
where the peak of agent 1 is a and that of agent 2 is b, a receives some fixed probability ε and b receives the
rest of the probability 1− ε; thus, no alternative other a and b receives any positive probability. Moreover,
suppose that there is another alternative c such that there is a cycle through a and c and there is a path
from b to c that does not contain a. Then Lemma 7.4.1 says that the same as for a and b holds for a and c,
i.e., at all profiles where the peak of agent 1 is a and that of agent 2 is c, a receives (the same) probability ε
and c receives the rest of the probability 1− ε.

Lemma 7.4.1 Let n = 2 and let ϕ :N→ Δ(A) be a unanimous and strategy-proof PR.

(i) Let a, b ∈ A, a ̸= b, be such that there is a cycle containing a and b. Then there exists ε ∈ [0, 1] such that
for all P1, P2 ∈ with t(P1) = a and t(P2) = b we have ϕa(P1, P2) = ε and ϕb(P1, P2) = 1− ε.

(ii) Let, additionally, c /∈ {a, b} be such that there is a cycle containing a and c, and a path from b to c not
containing a. Then ϕa(P1, P2) = ε and ϕc(P1, P2) = 1− ε for all P1, P2 ∈ with t(P1) = a and
t(P2) = c, where ε is as in (i).
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Proof: (i) Since there is a cycle containing both a and b, there exist two paths π and π̂ from a to b inG such
that π ∩ π̂ = {a, b}. Hence, there are P,Q ∈ such that P = π · · · andQ = π̂−1 · · ·

Suppose that ϕx(P,Q) > 0 for some x ∈ A \ {a, b}. SinceU(b, P) ∩ U(a,Q) = {a, b}, we have
x /∈ U(b, P) or x /∈ U(a,Q). By unanimity, in the first case agent 1 can manipulate by changing toQ and
in the second case agent 2 can manipulate by changing to P. This contradicts strategy-proofness, and
therefore we have ϕx(P,Q) = 0 for all x ∈ A \ {a, b}. Thus, there exists ε ∈ [0, 1] such that ϕa(P,Q) = ε
and ϕb(P,Q) = 1− ε. Statement (i) now follows from tops-onliness of ϕ (Lemma 7.2.1).

(ii) Let P1, P2 ∈with t(P1) = a and t(P2) = c. Assume that ϕa(P1, P2) = ε′. By a similar argument as in
step (i), this implies ϕc(P1, P2) = 1− ε′. Thus, it is sufficient to show that ε = ε′. Suppose not. Assume
without loss of generality that ε > ε′. Let π now be a path from b to c such that a /∈ π, and consider
associated preferences P = π · · · , P′ = π−1 · · · ∈. By part (i),
ϕU(c,P)(P1, P) = 1− ε < 1− ε′ = ϕU(c,P)(P1, P′). This violates strategy-proofness and, hence, ε = ε′. ■

A PR ϕ is random-dictatorial if there are 1, . . . ,n ∈ [0, 1]with
∑

i∈N i = 1, such that for every PN ∈N and
a ∈ Awe have ϕa(PN) =

∑
i∈N:t(Pi)=a i.

Clearly, a random dictatorial rule is unanimous and strategy-proof. Indeed, whenG is a tree, a random
dictatorial rule is a leaf-peak rule. To see this note that, if ϕ is random dictatorial with weights 1, . . . ,n,
then the collection B = (μ)μ∈ given by μ(a) =

∑
i∈N:μ(i)=a i for each μ ∈ and every a ∈ L(G), is

monotonic. It is easy to verify that ϕ = ϕB. The following example provides an illustration of this.

Example 7.4.1 Consider the following tree:

a c
1, 3

d
2

b

LetN = {1, 2, 3} and let ϕ be random dictatorial with weights (1,2 ,3 ) = ( 1
6 ,

1
3 ,

1
2). The peaks of the

agents in the preference profile PN are indicated in the figure. Hence ϕc(PN) =
1
6 +

1
2 =

2
3 and

ϕd(PN) =
1
3 . With the collection B defined as above, we obtain

ϕB
c (PN) = μ([c, a])−μ̂ ((c, a])

=
1
6
+

1
2
− 0 =

2
3

= ϕc(PN),
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where μ(1) = μ(3) = a, μ(2) = b, and μ̂(1) = μ̂(2) = μ̂(3) = b. Similarly,

ϕB
d(PN) = μ′([d, a])−μ̂′ ((d, a])

= 1− 1
6
− 1

2
=

1
3

= ϕd(PN),

where μ′(1) = μ′(2) = μ′(3) = a, μ̂′(1) = μ̂′(3) = a, and μ̂′(2) = b. �

A graphG is 2-connected if for all distinct x, y ∈ A there is a cycle inG containing x and y. We can now
state the following consequence of Lemma 7.4.1.

Lemma 7.4.2 Let n = 2 and let ϕ :N→ Δ(A) be a unanimous and strategy-proof PR. Assume that the graph
G is 2-connected. Then ϕ is random dictatorial.

Proof: Let a ∈ A. By Lemma 7.4.1 there is an∈ [0, 1] such that for all x ∈ A and P1, P2 ∈N with t(P1) = a
and t(P2) = xwe have ϕa(P1, P2) = and ϕx(P1, P2) = 1−. Now let b ∈ A, b ̸= a. Then similarly one
proves that there is ′ ∈ [0, 1] such that for all x ∈ A andQ1,Q2 ∈N with t(Q1) = x and t(Q2) = bwe have
ϕb(Q1,Q2) =

′ and ϕx(Q1,Q2) = 1−′. Since the latter holds for x = a in particular, we have 1−′ =. This
implies that for all x, y ∈ A and Z1,Z2 ∈N with t(Z1) = x and t(Z2) = ywe have ϕx(Z1,Z2) = and
ϕy(Z1,Z2) = 1−. Hence, ϕ is random dictatorial. ■

The following lemma shows that random dictatorship for n = 2 still holds if the graphG has no leaf.

Lemma 7.4.3 Let n = 2, and let G have no leaf. Suppose ϕ :N→ Δ(A) is a unanimous and strategy-proof PR.
Then ϕ is random dictatorial.

Proof: IfG is 2-connected then the result follows from Lemma 7.4.2. Now assume thatG is not
2-connected. SinceG is connected we can decompose it into 2-connected subgraphs
(A1, E1), . . . , (Aℓ, Eℓ), the set of remaining alternatives B = A \ ∪ℓ

i=1Ai and the set of remaining edges
E′ = E \ ∪ℓ

i=1Ei.⁵ (We visualize these subgraphs as ordered from left to right, see below.)
For any distinct 1 ≤ p, q ≤ ℓ there are ap ∈ Ap and aq ∈ Aq such that all paths inG from an alternative

in Ap to an alternative in Aq leave Ap via ap and enter Aq via aq. In this case, with we use the notation
[[ap, aq]] to denote the set of alternatives containing ap, aq, and all x such that there is some path π inGwith
x ∈ π, starting at ap such that π ∩ Ap = {ap}, and aq /∈ π; or there is some path π inGwith x ∈ π,
starting at aq such that π ∩ Aq = {aq}, and ap /∈ π. Similarly, [[ap, aq)) = [[ap, aq]] \ {aq}; [[, ap]] denotes all

⁵This decomposition is close to the decomposition as a so-called block-tree. See, for instance, [22]. The formal definition of
a block-tree is slightly different, but the decomposition here is more convenient for our purposes.
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alternatives on paths starting at ap which have only ap in common with [[ap, aq]]; [[aq, ]] denotes all
alternatives on paths starting at aq which have only aq in common with [[ap, aq]]; [[, aq]] denotes all
alternatives on paths starting at aq which have only aq in common with Aq; and so on and so forth. See the
following diagram, which shows a possible part of the decomposition ofG, and visualizes parts of rest of
the proof.

Ap Ai Aq

Aj

ap b1 z bm z′ aq

By (the proof of) Lemma 7.4.2 there are 1, . . . ,ℓ ∈ [0, 1] such that, for all i = 1, . . . , ℓ, ϕt(P1)
(P1, P2) =i

and ϕt(P2)
(P1, P2) = 1−i for all (P1, P2) ∈N with t(P1), t(P2) ∈ Ai. (In words, ϕ induces a random

dictatorship on every Ai.) The proof proceeds in three steps.

(a) With notations as above, we first consider a preference profile (P1, P2) such that t(P1) ∈ Ap \ {ap}
and t(P2) ∈ Aq \ {aq} for some 1 ≤ p < q ≤ ℓ. Since ϕaq(P

′
1, P2) =q for P′1 ∈with t(P′1) = aq,

strategy-proofness (considering agent 1) implies that

ϕ[[,aq]](P1, P2) ≥q . (7.9)

Similarly,
ϕ[[ap,]](P1, P2) ≥ 1−p . (7.10)

Now consider P̃1 ∈with t(P̃1) ∈ Aq \ {t(P2)} and such that xP̃1t(P2) for all x ∈ [[, aq]]. Let y ∈ [[, aq]] be
such that xP̃1y for all x ∈ [[, aq]]. Since ϕt(P̃1)

(P̃1, P2) =q, strategy-proofness (considering agent 1) requires
that ϕU(y,P̃1)

(P1, P2) ≤q, hence:
ϕ[[,aq]](P1, P2) ≤q . (7.11)

Similarly,
ϕ[[ap,]](P1, P2) ≤ 1−p . (7.12)

Combining (7.9) and (7.11) we obtain ϕ[[,aq]](P1, P2) =q, and combining (7.10) and (7.12) we obtain
ϕ[[ap,]](P1, P2) = 1−p. By adding up these two equalities it follows that ϕ[[ap,aq]](P1, P2) =q −p. Similarly
one proves ϕ[[ap,aq]](P1, P2) =p −q. Hence, p =q and ϕ[[ap,aq]](P1, P2) = 0. Now writing for 1, . . . ,ℓ, we
obtain by (7.9) and (7.10) that ϕ[[,ap))(P1, P2) = and ϕ((aq,]](P1, P2) = 1−.

We next show that ϕt(P1)
(P1, P2) =. Consider two paths π and inG from t(P1) to ap with all alternatives
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in Ap and which only have t(P1) and ap in common, and let P′1 ∈with P′1 = π · · · . By strategy-proofness⁶
(considering agent 1), it is sufficient to prove that

ϕt(P′1)
(P′1, P2) = . (7.13)

Since ϕ[[,ap))(P1, P2) = and ϕaq(P̂1, P2) = for P̂1 ∈with t(P̂1) = aq, by strategy-proofness we have
ϕπ(P

′
1, P2) =. Suppose that there is a v ∈ π, v ̸= t(P′1), v ̸= ap, such that

ϕv(P
′
1, P2) > 0. (7.14)

Consider P′2 ∈with t(P′2) ∈ Aq and with P′2 = · · · x · · · (π−1 \ {ap, t(P1)})(\{ap}) · · · for all x ∈ [[ap, ]].
(Hence, P′2 orders all alternatives ‘to the right’ of ap before ap, then the alternatives on path π in reverse
order, next the alternatives on path up to but not including ap, and finally all remaining alternatives.) By
(7.14) and strategy-proofness,

ϕ[v,ap)(P
′
1, P

′
2) > 0 (7.15)

where [v, ap) denotes the part of path π from v up to but excluding the end point ap. Next consider P′′1 ∈
with P′′1 = · · · . Then by strategy-proofness ϕ(P

′′
1 , P′2) = (otherwise agent 1 manipulates), which again by

strategy-proofness implies ϕt(P′1)
(P′′1 , P′2) = (otherwise agent 2 manipulates). In turn, by

strategy-proofness this implies ϕt(P′1)
(P′1, P′2) = (otherwise agent 1 manipulates), which contradicts (7.15).

Consequently, (7.14) does not hold, which implies (7.13).
Similarly, one proves that ϕt(P2)

(P1, P2) = 1−.

(b) Second, all paths inG from ap to aq have a common initial part which is either (i) only ap or (ii)
[ap, b1, . . . , bm] for somem ≥ 1 with b1, . . . , bm−1 ∈ B. Let now (P1, P2) be a preference profile with
t(P2) ∈ Aq \ {aq} and t(P1) = z, where z = ap in case (i), or z ∈ [ap, b1, . . . , bm) in case (ii). By
strategy-proofness (considering agent 1) and part (a), we have ϕ[[,aq]](P1, P2) =. By strategy-proofness
(considering agent 2) and unanimity, ϕ[[z,]](P1, P2) = 1. Therefore, ϕ[[z,aq]](P1, P2) = and
ϕ((aq,]](P1, P2) = 1−.

Consider P′1 ∈with P′1 = [z, ap] · · · x · · · y · · · for all x ∈ [[, ap)) and all y ∈ ((z, ]]. Then as before
ϕ[z,aq](P

′
1, P2) =, which together with part (a) and strategy-proofness (considering agent 1) implies

ϕz(P
′
1, P2) =. In turn, by strategy-proofness (considering agent 1) this implies

ϕt(P1)
(P1, P2) = ϕz(P1, P2) =.

Suppose ϕb(P1, P2) > 0 for some b ∈ ((aq, ]]with b ̸= t(P2). Then consider P̃1 ∈with
t(P̃1) ∈ Ap \ {ap} and bP̃1t(P2). Then agent 1 with preference P̃1 manipulates via P1, a contradiction.

⁶Or by tops-onliness, Lemma 7.2.1.
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Hence, ϕt(P2)
(P1, P2) = 1−.

Similarly one proves ϕt(P1)
(P1, P2) = and ϕt(P2)

(P1, P2) = 1− if t(P1) ∈ Ap \ {ap} and t(P2) = z′,
where z′ is an alternative on the common initial part of all paths from aq to ap, analogously as above.

(c) Finally, let (P1, P2) be a preference profile with t(P1) = z and t(P2) = z′ with z and z′ as in part (b).
By unanimity and strategy-proofness, ϕ[z,z′](P1, P2) = 1. In order to prove that ϕz(P1, P2) = and
ϕz′(P1, P2) = 1− it is therefore sufficient to prove that ϕz(P1, P2) ≥. Consider P′1 ∈ as in (b), i.e., P′1 ∈
with P′1 = [z, ap] · · · x · · · y · · · for all x ∈ [[, ap)) and all y ∈ ((z, ]]. By strategy-proofness (considering
agent 1) and part (b), ϕz(P

′
1, P2) ≥. By strategy-proofness this implies ϕz(P1, P2) ≥, as was to be proved.

■

Theorem 5 in Chatterji et al (2014) states that if, for n = 2, every unanimous and strategy-proof PR on
a domain satisfying ‘Condition α’ is random dictatorial, then the same is true for n > 2. This Condition α
requires that there are distinct alternatives a, b, c ∈ A and preferences P1, P2, and P3, such that (i)
P1 = a · · · b · · · c · · · , P2 = b · · · c · · · a · · · , and P3 = c · · · a · · · b · · · , and (ii) for every
x ∈ A \ {a, b, c}, either bP1x or cP2x or aP3x. It is not hard to verify that Condition α holds ifG does not
have a leaf.⁷ Hence, by Lemma 7.4.3, we have the following result.

Lemma 7.4.4 Let ϕ :N→ Δ(A) be a unanimous and strategy-proof PR, and let the graph G have no leaf.
Then ϕ is random dictatorial.

IfG has a leaf, then a unanimous and strategy-proof PR is not necessarily random dictatorial, as the
following lemma shows.

Lemma 7.4.5 Let G have a leaf. Then there exists a unanimous and strategy-proof PR which is not random
dictatorial.

Proof: Let x ∈ A be a leaf and let y ∈ Awith {x, y} ∈ E. Let 1, . . . ,n ∈ [0, 1]with
∑

i∈N i = 1. For every
PN ∈N such that t(Pi) ̸= x for some i ∈ N and every a ∈ A \ {x, y} define ϕa(PN) =

∑
i∈N:t(Pi)=a i, and

define ϕy(PN) =
∑

i∈N:t(Pi)∈{x,y} i. For every PN ∈N such that t(Pi) = x for every i ∈ N define
ϕx(PN) = 1. Clearly, ϕ is not random dictatorial, and it is straightforward to verify that it is unanimous
and strategy-proof.⁸ ■

In fact, in the next section, for general connected graphs, all unanimous and strategy-proof PRs are
characterized. For now, combining Lemmas 7.4.4 and 7.4.5, we obtain the main result of this section.

⁷If G does not have a leaf, it has a cycle. Take three adjacent alternatives a, b, c on this cycle and take a spanning tree T =
(A, ET)with {a, b}, {b, c} ∈ ET. Take preferences P1 = abc · · · and P2 = bca · · · . Take another spanning tree including a path
from c to a that does not contain b, and take a preference P3 = c · · · a · · · b · · · . Then a, b, c and P1, P2, P3 ∈N satisfy Condition
α.

⁸As to strategy-proofness, an agent with peak unequal to x clearly cannot manipulate. An agent with peak x has y as second
best alternative and therefore again cannot manipulate.

171



Theorem 7.4.2 Let G be a connected graph. Then every unanimous and strategy-proof PR ϕ :N→ ΔA is
random dictatorial if and only if G has no leaf.

7.5 General connected graphs

Throughout the section,G = (A, E) is an arbitrary connected graph. Let Ḡ = (Ā, Ē) denote the maximal
subgraph⁹ ofG that has no leaf.¹⁰ Observe that Ḡ is unique, and Ḡ = ∅ (i.e., Ā = Ē = ∅) if and only ifG
is a tree.

Let l be a leaf ofG. Let a ∈ A be such that there is a path from l to a that either does not intersect Ā or
intersects Ā at exactly one point. The collection of all such alternatives a is defined as A(l). Formally, for
each leaf l ∈ L(G), the set of alternatives A(l) ⊆ A is defined as

A(l) = {l} ∪ {a ∈ A : there is a path [a, l] such that |[a, l] ∩ Ā| ≤ 1}.

Observe that A(l) has a unique alternative in common with Ā, which we denote by a(l). We also denote
Ā0 = Ā \ {a(l) : l ∈ L(G)}. Thus, Ā0 together with the sets A(l) for l ∈ L(G) form a partition of A. We
denote the set of edges containing the alternatives in A(l) by E(l), i.e.,

E(l) = {{a, b} ∈ E : a, b ∈ A(l)}.

The subgraph (A(l), E(l)) is called the branch of l.

Example 7.5.1 Consider the following graph:

x2

x1

x3 x4

x5

x6

x7 x8 x9

x10

x11

x15
x12

x14

x13

This graph has two branches (within the dotted circles), and the maximal leafless subgraph is the
middle part (within the dashed oval). Here, Ā = A \ {x1, x2, x3, x13, x14, x15}, Ā0 = Ā \ {x4, x12},
A(x1) = A(x2) = {x1, x2, x3, x4}, A(x14) = A(x15) = {x12, x13, x14, x15}, a(x1) = a(x2) = x4, and
a(x14) = a(x15) = x12. �

⁹I.e., Ē ⊆ E and Ā = {a ∈ A : {a, b} ∈ Ē for some b ∈ A}.
¹⁰This maximal leafless subgraph can be obtained by removing the leafs (and the edges containing these) ofG step by step as

follows. First, remove the leafs L(G) (and the edges containing these leafs) ofG. Let the graph obtained after this beG \ L(G).
Then, remove all the leafs (if any) of the graphG \ L(G). Continue until the remaining graph does not have any leaf.
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In this section we characterize all unanimous and strategy-proof PRs. We start with the following
auxiliary lemma.

Lemma 7.5.1 Let i ∈ N, Pi ∈, P−i ∈N\{i}, and x, y ∈ A be such that {x, y} ∈ E and t(Pi) = x. Let
P′i = yx · · · ∈ be such that aP′ib⇔ aPib for all a, b ∈ A \ {x, y}. Let ϕ be a unanimous and strategy-proof
PR.Then ϕa(Pi, P−i) = ϕa(P

′
i, P−i) for all a /∈ U(y, Pi).

Proof: Write Pi = xb1 · · · bkya1 · · · aℓ, then P′i = yxb1 · · · bka1 · · · aℓ. By strategy-proofness,
ϕU(aℓ−1,Pi)

(Pi, P−i) ≥ ϕU(aℓ−1,Pi)
(P′i, P−i) and ϕU(aℓ−1,P′i )

(P′i, P−i) ≥ ϕU(aℓ−1,P′i )
(Pi, P−i), hence

ϕaℓ
(Pi, P−i) = ϕaℓ

(P′i, P−i). Repeating this argument we obtain ϕaj(Pi, P−i) = ϕaj(P
′
i, P−i) for all

j = 1, . . . , ℓ. ■

The following lemma shows that a unanimous and strategy-proof PR ϕ is a random dictatorship when
restricted to profiles with all peaks in Ā.

Lemma 7.5.2 Let ϕ be a unanimous and strategy-proof PR.Then there exist 1, . . . ,n≥ 0 with
∑n

i=1 i = 1
such that ϕa(PN) =

∑
i∈N:t(Pi)=a i for all a ∈ Ā and all PN ∈N with t(Pi) ∈ Ā for all i ∈ N.

Proof: Let PN ∈N with t(Pi) ∈ Ā for all i ∈ N. Suppose that ϕA(l)\{a(l)}(PN) > 0 for some l ∈ L(G).
Consider i ∈ N and let T be a spanning tree ofG such that Pi is single-peaked with respect to T. Let
x = t(Pi) and suppose that x ̸= a(l). Take y ∈ Ā such that {x, y} is an edge of T and y is on the path from
x to a(l) in T. Let P′i be derived from Pi as in Lemma 7.5.1, i.e., P′i = yx · · · a(l) · · · ,
Pi = x · · · y · · · a(l) · · · , and Pi and P′i order all alternatives different from x and y equally. Then
Lemma 7.5.1 implies that ϕa(P

′
i, P−i) = ϕa(Pi, P−i) in particular for all a ∈ A(l). By repeatedly applying

this argument for player i and for all other players we arrive at a preference profile PN with t(Pj) = a(l) for
every j ∈ N and still ϕA(l)\{a(l)}(PN) > 0, which contradicts unanimity of ϕ. Hence, ϕĀ(PN) = 1.

Next, for all a(l) ∈ Ā, let Pl be a single-peaked preference on A(l)with graph (tree) (A(l), E(l)) and
peak a(l). For any single-peaked preference P̄ on (Ā, Ē), construct the single-peaked preference P̄e onG
by substituting, in P̄, each a(l) by Pl. Now define the PR ϕ̄ on (Ā, Ē) by

ϕ̄(P̄N) = ϕ(P̄eN) (7.16)

for each P̄N on Āwhich is single-peaked with respect to (Ā, Ē). By the first part of the proof, ϕ̄ is
well-defined, i.e., ϕ̄Ā(P̄N) = 1 for all P̄N. Also, it inherits unanimity and strategy-proofness from ϕ. By
Theorem 7.4.2 it follows that there are 1, . . . ,n≥ 0 with

∑n
i=1 i = 1 such that ϕ̄a(P̄N) =

∑
i∈N:t(P̄i)=a i for

all a ∈ Ā and each P̄N consisting of preferences that are single-peaked with respect to (Ā, Ē). By (7.16),
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the proof of the lemma is complete by observing that, due to tops-onliness (Lemma 7.2.1), ϕ̄ does not
depend on the particular extension P̄e of P̄. ■

Our next lemma extends the previous one by additionally including the branches ofG.

Lemma 7.5.3 Let ϕ be a unanimous and strategy-proof PR.Then there exist 1, . . . ,n≥ 0 with
∑n

i=1 i = 1
such that for all a ∈ Ā0 and all l ∈ L(G)

ϕa(PN) =
∑

i∈N:t(Pi)=a

i

and
ϕA(l)(PN) =

∑
i∈N:t(Pi)∈A(l)

i

for every PN ∈N.

Proof: Let PN ∈N and suppose that i ∈ N and t(Pi) = x ∈ A(l) \ {a(l)} for some l ∈ L(G). Consider P′i
with t(P′i) = y such that {x, y} ∈ E and y is on the path from x to a(l), as in Lemma 7.5.1. By this lemma,
we obtain that ϕa(P

′
i, P−i) = ϕa(PN) for all a /∈ A(l) \ {a(l)}. The proof is complete by repeating this

argument for agent i and all other agents, and next applying Lemma 7.5.2. ■

We now fix a spanning tree T = (A, ET) of the graphG = (A, E). Clearly, L(G) ⊆ L(T), i.e., each leaf
ofG is still a leaf of T. For l ∈ L(T) \ L(G) define A(l) = {l}. The set of preferences on A that are
single-peaked with respect to T is denoted by T. Let denote the set of leaf assignments with respect to T
(cf. Section 7.3).

The next lemma says that the restriction of a unanimous and strategy-proof PR ϕ to profiles that are
single-peaked with respect to T, can be written as a leaf-peak rule ϕB (cf. Section 7.4), where the
monotonic collection of probability distributions B = (μ)μ∈ associated with T satisfies the following
condition: there are non-negative weights α1, . . . , αn of the agents summing to 1 such that for all l ∈ L(G)
and all μ ∈, the total probability of the alternatives in A(l) according to βμ is the total weight of the agents
who are assigned to l by μ.

Lemma 7.5.4 Let ϕ :N→ ΔA be a unanimous and strategy-proof PR, and let ϕ denote the restriction of ϕ to N
T .

Then there are 1, . . . ,n≥ 0 with
∑n

i=1 i = 1 and a monotonic collection of probability distributions B = (μ)μ∈

with

μ(A(l)) =
∑

i∈N:μ(i)∈A(l)
i for every l ∈ L(T) and μ ∈ (7.17)

such that ϕ = ϕB.
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Proof: Let the numbers 1, . . . ,n be as in Lemma 7.5.2. Clearly, ϕ defined on N
T is unanimous and

strategy-proof, and thus by Lemma 7.3.5 there is a monotonic collection of probability distributions
B = (μ)μ∈ such that ϕ = ϕB. We are left to show (7.17). Let μ ∈ and PN ∈NT be such that t(Pi) = μ(i) for
every i ∈ N.

(i) First consider l ∈ L(G), and consider μ̂ ∈ such that μ̂(i) = μ(i) for all i ∈ Nwith μ(i) ̸= l, and with
μ̂(i) ̸= l for all i ∈ Nwith μ(i) = l. Then μ, μ̂ ∈ (l, PN) and by (7.3) we obtain

ϕB
l (PN) =μ ({l})−μ̂ (∅) =μ ({l}). (7.18)

Again by (7.3), for a ∈ A(l) \ L(G),

ϕB
a (PN) =μ ([a, l])−μ̂ ((a, l]) =μ ({a}), (7.19)

where [a, l] and (a, l] are paths in T. By (7.18) and (7.19) we obtain for each l ∈ L(G)

μ(A(l)) =
∑

l′∈A(l)∩L(G)
μ({l′}) +

∑
a∈A(l)\L(G)

μ({a}) = ϕB
A(l)(PN), (7.20)

hence by the definition of ϕ = ϕB and Lemma 7.5.3

μ(A(l)) = ϕA(l)(PN) =
∑

i∈N:μ(i)∈A(l)
i. (7.21)

(ii) Second consider l ∈ L(T) \ L(G). In a similar way as in (i), we obtain μ(A(l)) =μ ({l}) = ϕB
l (PN),

which by Lemma 7.5.3 implies

μ(A(l)) =
∑

i∈N:μ(i)=l

i. (7.22)

Now (7.17) follows from (7.21) and (7.22). ■

We can now state and prove the main and most general result of this paper. It characterizes all
unanimous and strategy-proof PRs on N.

Theorem 7.5.2 Let G = (A, E) be a connected graph and let T be a spanning tree of G. A PR ϕ :N→ ΔA is
unanimous and strategy-proof if and only if there are 1, . . . ,n≥ 0 with

∑n
i=1 i = 1 and a monotonic collection of

probability distributions B = (μ)μ∈ with

μ(A(l)) =
∑

i∈N:μ(i)∈A(l)
i for every l ∈ L(T) (7.23)
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such that ϕ(PN) = ϕB(PN) for all tops-equivalent PN ∈N and PN ∈NT .

Proof: The only-if direction follows from Lemmas 7.5.4 and 7.2.1. For the if direction, with (i)i∈N and B as
in the statement of the theorem, define the PR ϕ on N by ϕ(PN) = ϕB(PN) for every PN ∈N, where PN ∈NT
is arbitrary but tops-equivalent to PN. Clearly, since ϕB is tops-only by Lemma 7.2.1 and Theorem 7.3.9, ϕ
is well-defined. It is straightforward to check that ϕ is unanimous and strategy-proof. ■

Theorem 7.5.2 indeed generalizes Theorems 7.3.9 and 7.4.2, as we show in the following remark.

Remark 7.5.3 (i) IfG is a tree, then T = G and A(l) = A for all l ∈ L(G). In this case one can take

1, . . . ,n arbitrary and (7.23) is trivially satisfied. Thus, Theorem 7.5.2 reduces to Theorem 7.3.9. (ii) IfG
has no leaf, then A(l) = {l} for every l ∈ L(T). Now (7.23) and the definition of ϕB imply that ϕ is a
random dictatorship with weights 1, . . . ,n. Thus, Theorem 7.5.2 reduces to Theorem 7.4.2.

We conclude the section with a few examples illustrating Theorem 7.5.2.

Example 7.5.4 Consider the graph in Example 7.5.1. We take an arbitrary spanning tree (leaving out the
edges {x4, x5} and {x11, x12}):

x2

x1

x3 x4

x5

x6

x7 x8 x9

x10

x11

x15
x12

x14

x13

Now every unanimous and strategy-proof probabilistic rule is of the form ϕB, where B = (μ)μ∈ is a
monotonic collection of probability distributions for this spanning tree satisfying, for every μ ∈,

μ(x) =
∑

i∈N:μ(i)=x

i for x ∈ {x5, x11}

and

μ({x1, . . . , x4}) =
∑

i∈N:μ(i)∈{x1,x2}
i and μ({x12, . . . , x15}) =

∑
i∈N:μ(i)∈{x14,x15}

i

for weights 1, . . . ,n. �

Example 7.5.5 Consider the following graph and (on the right) a spanning tree:
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a b

c

d

e a b

c

d

e

LetN = {1, 2, 3}, 1 =2=3=
1
3 , and let each μ assign equal probabilities to a and b if the number of

agents assigned to a is below 3. Then, for instance, if PN ∈N satisfies t(P1) = a, t(P2) = c, and t(P3) = d,
then ϕB assigns ( 1

6 ,
1
6 ,

1
3 ,

1
3 , 0) to (a, b, c, d, e). �

We finally reconsider the example given in the Introduction.

Example 7.5.6 As in the previous example, letN = {1, 2, 3}, 1 =2=3=
1
3 , and let each μ assign equal

probabilities to a and b if the number of agents assigned to a is below 3. Consider the following graph and
two possible spanning trees:

a b

c

d

a b

c

d

a b

c

d

For the left spanning tree, let each μ be defined by μ(a) =μ (b) = 1
2

∑
i∈N:μ(i)=a i and

μ(d) =
∑

i∈N:μ(i)=d i.
For the right spanning tree, let each μ be defined by μ(a) =μ (b) = 1

2

∑
i∈N:μ(i)=a i, μ(c) =

∑
i∈N:μ(i)=c i,

and μ(d) =
∑

i∈N:μ(i)=d i.
It is straightforward to verify that both choices result in the probabilistic rule described in the

Introduction. �

7.6 Concluding remarks

The main result in this paper (Theorem 7.5.2) characterizes all unanimous and strategy-proof
probabilistic rules for single-peaked preference profiles on a connected but otherwise arbitrary graph of
which the nodes are the alternatives. Such a rule is a random dictatorship on the maximal leafless
subgraph, and on each branch it is a leaf-peak rule – extending the median-like rules in [72] and the
probabilistic rules in [46] on the line graph – such that the total probability on each branch equals the
sum of the random dictatorship weights of the agents who have their peaks on this branch.

We conclude with, first, a consideration of probabilistic versus deterministic rules and, second, a few
reflections on our domain of single-peaked preferences.
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7.6.1 Probabilistic and deterministic rules

Contrary to the line graph case [81] not every probabilistic rule is a convex combination of deterministic
rules, as we will show now.

LetG = (A, E) be a tree. The collection of leaf-peak rules characterized in Theorem 7.3.9 contains
deterministic rules, i.e., rules that assign probability one to some alternative. It is not difficult to verify that
these deterministic rules correspond to monotonic collections B = (μ)μ∈ which are deterministic, that is,
for every μ ∈, μ(x) = 1 for some x ∈ A.

The following example shows that, in contrast to the case where the graph is a line graph ([81]), not
every leaf-peak rule can be written as a convex combination of deterministic leaf-peak rules.

Example 7.6.1 LetN = {1, 2, 3} and A = {a, b, c, d}, and letG = (A, E) be the tree below. We
consider the anonymous leaf-peak rule with monotonic collection of leaf assignments as in the following
table, in which (j,k,l) denotes the probabilities assigned by the leaf assignment where j agents are assigned
to a, k agents to b, and l agents to c.

c b

d

a

a b c d

(1,1,1) .5 .3 .2 0

(2,1,0) .7 .3 0 0

(1,2,0) .5 .4 0 .1

(2,0,1) .7 0 .2 .1

(1,0,2) .5 0 .3 .2

(0,2,1) 0 .4 .2 .4

(0,1,2) 0 .3 .3 .4

Additionally, (3,0,0), (0,3,0), and (0,0,3) assign probability 1 to a, b, and c, respectively. The associated PR is
denoted by ψ, and we will show that ψ cannot be written as a convex combination of unanimous and
strategy-proof deterministic rules.

Let F be the set of all unanimous and strategy-proof deterministic rules for preference profiles that are
single-peaked with respect to the given tree. Further, for an alternative x and a preference profile PN, let
F(x, PN) be the set of all deterministic rules f such that f(PN) = x. By (S1, S2, S3), where S1, S2, S3 are
disjoint with unionN, we denote a preference profile where the top-alternatives of the agents in S1, S2, and
S3 are a, b, and c, respectively. Let F1 = F(a, ({1, 2}, {3}, ∅)), F2 = F(b, ({1, 3}, {2}, ∅)),
F3 = F(c, ({1}, {2}, {3})), F4 = F(b, ({1, 2}, {3}, ∅)), and F5 = F(b, ({1}, {2, 3}, ∅)). Then, by
Theorem 7.3.9, or more directly by uncompromisingness (Lemma 7.3.1), it follows that F1 ∩ F3 = ∅ and
F2 ∩ F3 = ∅. Combining, we have

(F1 ∪ F2) ∩ F3 = ∅. (7.24)
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Assume for contradiction that ψ can be written as
∑

f∈F ff, where f ≥ 0 for all f ∈ F and
∑

f∈F f = 1. For
G ⊆ F, let G =

∑
f∈G f. Then F1∪F2 =F1 +F2−F1∩F2 together with (7.24), yields F1 +F2 −F1∩F2+F3 ≤ 1. Since

ψ =
∑

f∈F ff, we have F1 = ψa({1, 2}, {3}, ∅), F2 = ψb({1, 3}, {2}, ∅), F3 = ψc({1}, {2}, {3}). Using the
values given in the table we obtain

F1∩F2 ≥ 0.2. (7.25)

Since the rules in F1 and F4 give different outcomes (a and b, respectively) at the same preference profile
({1, 2}, {3}, ∅), we have F1 ∩ F4 = ∅. Moreover, by uncompromisingness, F2 ⊆ F5 and F4 ⊆ F5, and
hence F2 ∪ F4 ⊆ F5. Because F1 ∩ F4 = ∅, we have

(F1 ∩ F2) ∩ F4 = ∅. (7.26)

Also, because F2 ∪ F4 ⊆ F5,
(F1 ∩ F2) ∪ F4 ⊆ F5. (7.27)

Combining (7.26) and (7.27), we have F1∩F2+F4 ≤F5 . By (7.25) and the table, F1∩F2+F4 ≥ 0.5, and hence

F5 ≥ 0.5. However, from the table it follows that F5 = 0.4. This is a contradiction. Thus, ψ cannot be
written as a convex combination of deterministic rules. �

7.6.2 The domain

An earlier version of the paper ([80]) shows that at least the results in the case where the graph is a tree
can be derived for a smaller set of single-peaked preferences.

In the opposite direction, enlarging the set of allowed single-peaked preferences, one could weaken the
single-peakedness requirement by demanding that an alternative x is preferred to an alternative y if x is on
every path from the peak of the preference to y. Then, logically, the collection of all unanimous and
probabilistic rules must be a subset of the collection characterized in Theorem 7.5.2, but it can actually be
shown that the two are equal.

Finally, if we would require that all preferences are single-peaked with respect to one fixed spanning
tree, then our domain would satisfy the ‘generalized single-peakedness’ condition in [75], who consider
deterministic rules. Since we allow that preferences are single-peaked with respect to different spanning
trees, our domain for general connected graphs is larger.
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Appendix

7.7 Proof of Lemma 7.2.1

The proof of Lemma 7.2.1 will be based on Theorem 1 in [31]. We need to introduce two concepts used
there, namely the Interior Property and the Exterior Property.

We say that preferences P, P′ are adjacent if there are distinct x, y ∈ Awith xPy, yP′x, aPb⇔ aP′b for
all a, b ∈ Awith {a, b} ̸= {x, y}, and xPzPy, yP′zP′y for no z ̸= x, y. A set of preferences has the Interior
Property if for all a ∈ A and all P, P′ ∈with t(P) = t(P′) = a there are P1, . . . , Pk ∈with k ≥ 1 and
t(Pj) = a for every j = 1, . . . , k such that P = P1, P′ = Pk, and for each j = 1, . . . , k− 1 the preferences
Pj, Pj+1 are adjacent.

Lemma 7.7.1 Let G = (A, E) be a connected graph. Then has the Interior Property.

Proof: Let 1 ≤ k ≤ |A| − 2 and let a1, . . . , ak, ak+1 be distinct alternatives. Consider a preference P,
single-peaked with respect to a spanning tree T ofG, such that t(P) = a1 and akPxPak+1 such that
xPzPak+1 for no z ̸= x, ak+1; and a preference P′ single-peaked with respect to a spanning tree T′, such
that t(P′) = a1 and akPak+1 such that akPzPak+1 for no z ̸= ak, ak+1. (Thus, a1, . . . , ak are ranked above all
other alternatives at P, and a1, . . . , ak+1 are ranked above all other alternatives at P′.) It is sufficient to
prove that there is a spanning tree Twith respect to which the preference P obtained by switching x and
ak+1 in P, is single-peaked. If x is not on the path π = [a1, ak+1] in T, then we can simply take T = T.
Otherwise, we have π = [a1, . . . , x, ak+1]. Let π′ = [a1, . . . , aℓ, ak+1] be the path in T′ from a1 to ak+1;
observe that the alternatives in π′ are a subset of {a1, . . . , ak+1}. Construct T from T as follows. First,
delete the edge {x, ak+1} from T. This results in two disconnected subtrees with a1, . . . , ak and x in one
subtree and ak+1 in the other: this follows from single-peakedness of Pwith respect to T (if ai for some
2 ≤ i ≤ kwould be in the same subtree as ak+1, then ak+1 would be on the path in T from a1 to ai and thus
ak+1Pai by single-peakedness, a contradiction). Therefore, by adding the edge {aℓ, ak+1}we obtain a
spanning tree T. The proof of the lemma is complete if we show that P is single-peaked with respect to T.

Suppose this were not the case. Then there are distinct z, z′ ∈ A such that z is on the path π = [a, z′] in
T, but z′Pz. If π is also a path in T, then we have zPz′, hence z = x and z′ = ak+1, and in particular
{x, ak+1} is an edge in T, which is a contradiction. Hence, π is not a path in T, and we can write
π = [a1, aℓ] · {aℓ, ak+1} · [ak+1, z′], where [a1, aℓ] and [ak+1, z′] are also paths in T. If z ∈ [ak+1, z′] then z is
on the path [a1, x] · {x, ak+1} · [ak+1, z′] inT, hence zPz′ and therefore zPz′, a contradiction. Therefore, we
have that z is on the path [a1, aℓ] in T and T, thus z ∈ {a1, . . . , ak}, and again zPz′, a contradiction. ■

For a preference P and a number ℓ ∈ {1, . . . , |A|}, let Bℓ(P) ⊆ A denote the set of the ℓ highest ranked
alternatives according to P, i.e., if a1Pa2 . . . aℓPaℓ+1Paℓ+2 . . . Pa|A| then Bℓ(P) = {a1, . . . , aℓ}. A set of
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preferences has the Exterior Property if for all P, P′ ∈with t(P) ̸= t(P′) and all distinct x, y ∈ Awith xPy
and xP′y, there are P1, . . . , Pk ∈, k ≥ 2, such that P = P1, P′ = Pk, and for every j = 1, . . . , k− 1 there is
an ℓ ∈ {1, . . . , |A|} such that x ∈ Bℓ(Pj) = Bℓ(Pj+1) and y /∈ Bℓ(Pj).

Lemma 7.7.2 Let G = (A, E) be a connected graph. Then has the Exterior Property.

Proof: Let P, P′ ∈with t(P) = a ̸= b = t(P′) and distinct x, y ∈ Awith xPy and xP′y. Let T be a
spanning tree ofGwith respect to which P is single-peaked.

(i) First suppose that bPy. Let the path [a, b] in T consist of the sequence a, z1, . . . , zk, b, hence
aPz1P . . . PzkPb. Define P′′ by bP′′zkP′′ . . . P′′z1P′′a . . . such that zP′′z′ ⇔ zPz′ for all
z, z′ ∈ A \ {a, z1, . . . , zk, b}, and let ℓ = max{|U(b, P)|, |U(x, P)|}.

We show that P′′ is single-peaked with respect to T. To this end, let [b · · · z · · · z′] be a path in T. We
show that zP′′z′. If z, z′ ∈ {a, z1, . . . , zk, b}, say z = zi and z′ = zj, then we have i > j and ziP′′zj, hence
zP′′z′. If z ∈ {a, z1, . . . , zk, b} and z′ /∈ {a, z1, . . . , zk, b} then zP′′z′. If z /∈ {a, z1, . . . , zk, b} and
z′ ∈ {a, z1, . . . , zk, b} then [b · · · z · · · z′] · [z′ · · · b] contains a cycle, a contradiction. If, finally,
z, z′ /∈ {a, z1, . . . , zk, b} then there is a path [a · · · z · · · z′] in T, hence zPz′ and therefore zP′′z′. This
completes the proof of single-peakedness of P′′ with respect to T.

Also, t(P′′) = b, x ∈ Bℓ(P) = Bℓ(P′′), and y /∈ Bℓ(P). The proof for this case is then complete by
constructing a sequence of adjacent preferences starting from P′′ and ending in P′ by using the Interior
Property (Lemma 7.7.1).

(ii) Second suppose that yPb and y is not on the path [a, b] in T. Construct the preference P as follows.
Let C = {z ∈ A : y is on the path [a, z] in T}. Then let z′Pz for all z ∈ C and z′ ∈ A \ C, and
zPz′ ⇔ zPz′ for all z, z′ ∈ C and all z, z′ ∈ A \ C. Then P is still single-peaked with respect to T, and for
ℓ = |U(x, P)|we have x ∈ Bℓ(P) = Bℓ(P) and y /∈ Bℓ(P). Since b /∈ C and therefore bPywe can
complete the proof by applying the arguments in (i) now starting from P.

(iii) Third suppose that yPb and y is on the path [a, b] in T. Let the path [a, b] in T be the sequence
a, . . . , a′, y, . . . , b. Let, similarly as above, C = {z ∈ A : y is on the path [a, z] in T}. Since P′ ∈ there is a
path π = [b, x] inGwith y /∈ [b, x]. On this path let {c, d} be the first edge with c ∈ C and d ∈ A \ C.
Now first delete the edge {a′, y} from T; next add the part π′ = [b · · · cd] of π; and finally delete edges
{v,w}with v,w ∈ C but {v,w} not in π′ such that a spanning tree T̄ ofG is obtained. Next construct a
preference P̄, single-peaked with respect to T̄, with zP̄z′ for all z ∈ A \ C and z ∈ C, zP̄z′ ⇔ zPz′ for all
z, z′ ∈ A \ C, x ∈ Bp(P) = Bp(P̄), and y /∈ Bp(P), where p = |U(x, P)| = |U(x, P̄)|. Then either bP̄y,
and we are back in case (i), or yP̄b. In the latter case, since the path [a, b] in T̄ is of the form [a · · · dc · · · b]
where [dc · · · b] is the converse path of π′, y (∈ C) is not on this path, and we are back in case (ii). ■

Lemma 7.2.1 now follows by applying Theorem 1 in [31].
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